#if GTEST #include #include #include #include "Spherical.h" #define FLOAT_INFINITY std::numeric_limits::infinity() TEST(SphericalSingle, FromVector3) { Vector3 v = Vector3(0, 0, 1); SphericalSingle s = SphericalSingle ::FromVector3(v); EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 0 0 1"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F) << "s.hor 0 0 1"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert 0 0 1"; v = Vector3(0, 1, 0); s = SphericalSingle ::FromVector3(v); EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 0 1 0"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F) << "s.hor 0 1 0"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 90.0F) << "s.vert 0 1 0"; v = Vector3(1, 0, 0); s = SphericalSingle ::FromVector3(v); EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 1 0 0"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 90.0F) << "s.hor 1 0 0"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert 1 0 0"; } TEST(SphericalSingle, FromPolar) { PolarSingle p = PolarSingle(1, AngleSingle::Degrees(0)); SphericalSingle s = SphericalSingle ::FromPolar(p); EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 0)"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F) << "s.hor Polar(1 0)"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert Polar(1 0)"; p = PolarSingle(1, AngleSingle::Degrees(45)); s = SphericalSingle ::FromPolar(p); EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 45)"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 45.0F) << "s.hor Polar(1 45)"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert Polar(1 45)"; p = PolarSingle(1, AngleSingle::Degrees(-45)); s = SphericalSingle ::FromPolar(p); EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 -45)"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), -45.0F) << "s.hor Polar(1 -45)"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert Polar(1 -45)"; p = PolarSingle(0, AngleSingle::Degrees(0)); s = SphericalSingle ::FromPolar(p); EXPECT_FLOAT_EQ(s.distance, 0.0F) << "s.distance Polar(0 0)"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F) << "s.hor Polar(0 0)"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert Polar(0 0)"; p = PolarSingle(-1, AngleSingle::Degrees(0)); s = SphericalSingle ::FromPolar(p); EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(-1 0)"; EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), -180.0F) << "s.hor Polar(-1 0)"; EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert Polar(-1 0)"; } TEST(SphericalSingle, Incident1) { Vector3 v = Vector3(2.242557f, 1.027884f, -0.322347f); SphericalSingle s = SphericalSingle ::FromVector3(v); SphericalSingle sr = SphericalSingle(2.49F, AngleSingle::Degrees(98.18f), AngleSingle::Degrees(24.4F)); EXPECT_NEAR(s.distance, sr.distance, 1.0e-01); EXPECT_NEAR(s.direction.horizontal.InDegrees(), sr.direction.horizontal.InDegrees(), 1.0e-02); EXPECT_NEAR(s.direction.vertical.InDegrees(), sr.direction.vertical.InDegrees(), 1.0e-02); Vector3 r = Vector3(sr); EXPECT_NEAR(r.Right(), v.Right(), 1.0e-02) << "toVector3.x 1 0 0"; EXPECT_NEAR(r.Up(), v.Up(), 1.0e-02) << "toVector3.y 1 0 0"; EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-02) << "toVector3.z 1 0 0"; } TEST(SphericalSingle, Incident2) { Vector3 v = Vector3(1.0f, 0.0f, 1.0f); SphericalSingle s = SphericalSingle ::FromVector3(v); SphericalSingle sr = SphericalSingle( 1.4142135623F, AngleSingle::Degrees(45.0f), AngleSingle::Degrees(0.0F)); EXPECT_NEAR(s.distance, sr.distance, 1.0e-05); EXPECT_NEAR(s.direction.horizontal.InDegrees(), sr.direction.horizontal.InDegrees(), 1.0e-05); EXPECT_NEAR(s.direction.vertical.InDegrees(), sr.direction.vertical.InDegrees(), 1.0e-05); Vector3 r = Vector3(sr); EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06); EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06); EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06); v = Vector3(0.0f, 1.0f, 1.0f); s = SphericalSingle ::FromVector3(v); sr = SphericalSingle(1.4142135623F, AngleSingle::Degrees(0.0f), AngleSingle::Degrees(45.0F)); EXPECT_NEAR(s.distance, sr.distance, 1.0e-05); EXPECT_NEAR(s.direction.horizontal.InDegrees(), sr.direction.horizontal.InDegrees(), 1.0e-05); EXPECT_NEAR(s.direction.vertical.InDegrees(), sr.direction.vertical.InDegrees(), 1.0e-05); r = Vector3(sr); EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06); EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06); EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06); v = Vector3(1.0f, 1.0f, 1.0f); s = SphericalSingle ::FromVector3(v); r = Vector3(s); EXPECT_NEAR(s.distance, 1.73205080F, 1.0e-02); EXPECT_NEAR(s.direction.horizontal.InDegrees(), 45.0F, 1.0e-02); EXPECT_NEAR(s.direction.vertical.InDegrees(), 35.26F, 1.0e-02); EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06); EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06); EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06); // s = SphericalSingle(10, 45, 45); // r = s.ToVector3(); // EXPECT_NEAR(r.x, 5, 1.0e-06); // EXPECT_NEAR(r.y, 7.07, 1.0e-06); // EXPECT_NEAR(r.z, 5, 1.0e-06); } TEST(SphericalSingle, Addition) { SphericalSingle v1 = SphericalSingle(1, AngleSingle::Degrees(45), AngleSingle::Degrees(0)); SphericalSingle v2 = SphericalSingle ::zero; SphericalSingle r = SphericalSingle ::zero; r = v1 + v2; EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0 0)"; r = v1; r += v2; EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0 0)"; v2 = SphericalSingle(1, AngleSingle::Degrees(-45), AngleSingle::Degrees(0)); r = v1 + v2; EXPECT_FLOAT_EQ(r.distance, sqrtf(2)) << "Addition(1 -45 0)"; EXPECT_FLOAT_EQ(r.direction.horizontal.InDegrees(), 0) << "Addition(1 -45 0)"; EXPECT_FLOAT_EQ(r.direction.vertical.InDegrees(), 0) << "Addition(1 -45 0)"; v2 = SphericalSingle(1, AngleSingle::Degrees(0), AngleSingle::Degrees(90)); r = v1 + v2; EXPECT_FLOAT_EQ(r.distance, sqrtf(2)) << "Addition(1 0 90)"; EXPECT_FLOAT_EQ(r.direction.horizontal.InDegrees(), 45) << "Addition(1 0 90)"; EXPECT_FLOAT_EQ(r.direction.vertical.InDegrees(), 45) << "Addition(1 0 90)"; } TEST(SphericalSingle, AdditionPerformance) { const int numIterations = 1000000; // Number of additions to test std::vector sphericalObjects; // Populate the vector with random SphericalOf objects for (int i = 0; i < numIterations; ++i) { float distance = (float)(rand() % 100); float horizontal = (float)(rand() % 180); float vertical = (float)(rand() % 360); SphericalSingle s = SphericalSingle::Deg(distance, horizontal, vertical); sphericalObjects.push_back(s); } // Measure the time to perform multiple additions auto start = std::chrono::high_resolution_clock::now(); SphericalSingle result = SphericalSingle::zero; // Start with a // zero-initialized object for (int i = 0; i < numIterations - 1; ++i) { result = result + sphericalObjects[i]; // Add objects // together } auto end = std::chrono::high_resolution_clock::now(); std::chrono::duration duration = end - start; std::cout << "Time to perform " << numIterations - 1 << " additions: " << duration.count() << " seconds." << std::endl; // Assert that the time taken is less than // 1 second (or any other performance // requirement) ASSERT_LE(duration.count(), 1.0) << "Performance test failed: " "Additions took longer than 1 " "second."; } #endif