// This Source Code Form is subject to the terms of the Mozilla Public // License, v. 2.0.If a copy of the MPL was not distributed with this // file, You can obtain one at https ://mozilla.org/MPL/2.0/. #include "Angle.h" #include "FloatSingle.h" #include /* const float Angle::Rad2Deg = 57.29578F; const float Angle::Deg2Rad = 0.0174532924F; float Angle::Normalize(float angle) { if (!isfinite(angle)) return angle; while (angle <= -180) angle += 360; while (angle > 180) angle -= 360; return angle; } float Angle::Clamp(float angle, float min, float max) { float normalizedAngle = Normalize(angle); float r = Float::Clamp(normalizedAngle, min, max); return r; } float Angle::Difference(float a, float b) { float r = Normalize(b - a); return r; } float Angle::MoveTowards(float fromAngle, float toAngle, float maxAngle) { float d = toAngle - fromAngle; float sign = signbit(d) ? -1 : 1; d = sign * Float::Clamp(fabs(d), 0, maxAngle); return fromAngle + d; } float Angle::CosineRuleSide(float a, float b, float gamma) { float a2 = a * a; float b2 = b * b; float d = a2 + b2 - 2 * a * b * cos(gamma * Angle::Deg2Rad); // Catch edge cases where float inacuracies lead tot nans if (d < 0) return 0; float c = sqrtf(d); return c; } float Angle::CosineRuleAngle(float a, float b, float c) { float a2 = a * a; float b2 = b * b; float c2 = c * c; float d = (a2 + b2 - c2) / (2 * a * b); // Catch edge cases where float inacuracies lead tot nans if (d >= 1) return 0; if (d <= -1) return 180; float gamma = acos(d) * Angle::Rad2Deg; return gamma; } float Angle::SineRuleAngle(float a, float beta, float b) { float alpha = asin(a * sin(beta * Angle::Deg2Rad) / b); return alpha; } */ //---------------------- template <> AngleOf AngleOf::pi = 3.1415927410125732421875F; template <> AngleOf AngleOf::Rad2Deg = 360.0f / (pi * 2); template <> AngleOf AngleOf::Deg2Rad = (pi * 2) / 360.0f; template <> bool Passer::AngleOf::operator==(AngleOf a) { return (float)*this == (float)a; } template <> AngleOf AngleOf::Normalize(AngleOf angle) { float angleValue = angle; if (!isfinite(angleValue)) return angleValue; while (angleValue <= -180) angleValue += 360; while (angleValue > 180) angleValue -= 360; return angleValue; } template <> AngleOf AngleOf::Clamp(AngleOf angle, AngleOf min, AngleOf max) { float normalizedAngle = Normalize(angle); float r = Float::Clamp(normalizedAngle, min, max); return r; } // template // Angle2 Angle2::Difference(Angle2 a, Angle2 b) { // Angle2 r = Normalize(b - a); // return r; // } template <> AngleOf AngleOf::MoveTowards(AngleOf fromAngle, AngleOf toAngle, AngleOf maxAngle) { float d = toAngle - fromAngle; float sign = signbit(d) ? -1 : 1; d = sign * Float::Clamp(fabs(d), 0, maxAngle); return fromAngle + d; } template <> AngleOf AngleOf::CosineRuleSide(float a, float b, AngleOf gamma) { float a2 = a * a; float b2 = b * b; float d = a2 + b2 - 2 * a * b * cos(gamma * AngleOf::Deg2Rad); // Catch edge cases where float inacuracies lead tot nans if (d < 0) return 0; float c = sqrtf(d); return c; } template <> AngleOf AngleOf::CosineRuleAngle(float a, float b, float c) { float a2 = a * a; float b2 = b * b; float c2 = c * c; float d = (a2 + b2 - c2) / (2 * a * b); // Catch edge cases where float inacuracies lead tot nans if (d >= 1) return 0; if (d <= -1) return 180; float gamma = acos(d) * Angle::Rad2Deg; return gamma; } template <> AngleOf AngleOf::SineRuleAngle(float a, AngleOf beta, float b) { float alpha = asin(a * sin(beta * Angle::Deg2Rad) / b); return alpha; }