diff --git a/LinearAlgebra/.editorconfig b/LinearAlgebra/.editorconfig deleted file mode 100644 index 1ec7f97..0000000 --- a/LinearAlgebra/.editorconfig +++ /dev/null @@ -1,19 +0,0 @@ -# EditorConfig is awesome: https://EditorConfig.org - -# top-most EditorConfig file -root = true - -[*] -indent_style = space -indent_size = 4 -end_of_line = crlf -charset = utf-8 -trim_trailing_whitespace = false -insert_final_newline = false -max_line_length = 80 - -[*.cs] -csharp_new_line_before_open_brace = none -# Suppress warnings everywhere -dotnet_diagnostic.IDE1006.severity = none -dotnet_diagnostic.IDE0130.severity = none \ No newline at end of file diff --git a/LinearAlgebra/.gitignore b/LinearAlgebra/.gitignore deleted file mode 100644 index f0b2f47..0000000 --- a/LinearAlgebra/.gitignore +++ /dev/null @@ -1,6 +0,0 @@ -DoxyGen/DoxyWarnLogfile.txt -.vscode/settings.json -**bin -**obj -**.meta -*.sln diff --git a/LinearAlgebra/src/Angle.cs b/LinearAlgebra/src/Angle.cs deleted file mode 100644 index f056e5a..0000000 --- a/LinearAlgebra/src/Angle.cs +++ /dev/null @@ -1,110 +0,0 @@ -using System; - -namespace LinearAlgebra { - - /// - /// %Angle utilities - /// - public static class Angle { - public const float pi = 3.1415927410125732421875F; - // public static float Rad2Deg = 360.0f / ((float)Math.PI * 2); - // public static float Deg2Rad = ((float)Math.PI * 2) / 360.0f; - - public const float Rad2Deg = 360.0f / ((float)Math.PI * 2); //0.0174532924F; - public const float Deg2Rad = ((float)Math.PI * 2) / 360.0f; //57.29578F; - - /// - /// Clamp the angle between the given min and max values - /// - /// The angle to clamp - /// The minimum angle - /// The maximum angle - /// The clamped angle - /// Angles are normalized - public static float Clamp(float angle, float min, float max) { - float normalizedAngle = Normalize(angle); - return Float.Clamp(normalizedAngle, min, max); - } - - /// - /// Determine the angle difference, result is a normalized angle - /// - /// First first angle - /// The second angle - /// the angle between the two angles - /// Angle values should be degrees - public static float Difference(float a, float b) { - float r = Normalize(b - a); - return r; - } - - /// - /// Normalize an angle to the range -180 < angle <= 180 - /// - /// The angle to normalize - /// The normalized angle in interval (-180..180] - /// Angle values should be in degrees - public static float Normalize(float angle) { - if (float.IsInfinity(angle)) - return angle; - - while (angle <= -180) angle += 360; - while (angle > 180) angle -= 360; - return angle; - } - - /// - /// Rotate from one angle to the other with a maximum degrees - /// - /// Starting angle - /// Target angle - /// Maximum angle to rotate - /// The resulting angle - /// This function is compatible with radian and degrees angles - public static float MoveTowards(float fromAngle, float toAngle, float maxAngle) { - float d = toAngle - fromAngle; - d = Normalize(d); - d = Math.Sign(d) * Float.Clamp(Math.Abs(d), 0, maxAngle); - return fromAngle + d; - } - - /// - /// Map interval of angles between vectors [0..Pi] to interval [0..1] - /// - /// The first vector - /// The second vector - /// The resulting factor in interval [0..1] - /// Vectors a and b must be normalized - /// \deprecated Please use Vector2.ToFactor instead. - [Obsolete("Please use Vector2.ToFactor instead.")] - public static float ToFactor(Vector2 v1, Vector2 v2) { - return (1 - Vector2.Dot(v1, v2)) / 2; - } - - // Normalize all vector angles to the range -180 < angle < 180 - //public static Vector3 Normalize(Vector3 angles) { - // float x = Normalize(angles.x); - // float y = Normalize(angles.y); - // float z = Normalize(angles.z); - // return new Vector3(x, y, z); - //} - - // Returns the signed angle in degrees between from and to. - //public static float SignedAngle(Vector3 from, Vector3 to) { - // float angle = Vector3.Angle(from, to); - // Vector3 cross = Vector3.Cross(from, to); - // if (cross.y < 0) angle = -angle; - // return angle; - //} - - // Returns the signed angle in degrees between from and to. - //public static float SignedAngle(Vector2 from, Vector2 to) { - // float sign = Math.Sign(from.y * to.x - from.x * to.y); - // return Vector2.Angle(from, to) * sign; - //} - - //public static Quaternion ToQuaternion(Rotation orientation) { - // return new Quaternion(orientation.x, orientation.y, orientation.z, orientation.w); - //} - } -} \ No newline at end of file diff --git a/LinearAlgebra/src/Decomposition.cs b/LinearAlgebra/src/Decomposition.cs deleted file mode 100644 index ddaf434..0000000 --- a/LinearAlgebra/src/Decomposition.cs +++ /dev/null @@ -1,287 +0,0 @@ -using System; -namespace LinearAlgebra { - class QR { - // QR Decomposition of a matrix A - public static (Matrix2 Q, Matrix2 R) Decomposition(Matrix2 A) { - int nRows = A.nRows; - int nCols = A.nCols; - - float[,] Q = new float[nRows, nCols]; - float[,] R = new float[nCols, nCols]; - - // Perform Gram-Schmidt orthogonalization - for (uint colIx = 0; colIx < nCols; colIx++) { - - // Step 1: v = column(ix) of A - float[] v = new float[nRows]; - for (int rowIx = 0; rowIx < nRows; rowIx++) - v[rowIx] = A.data[rowIx, colIx]; - - // Step 2: Subtract projections of v onto previous q's (orthogonalize) - for (uint colIx2 = 0; colIx2 < colIx; colIx2++) { - float dotProd = 0; - for (int i = 0; i < nRows; i++) - dotProd += Q[i, colIx2] * v[i]; - for (int i = 0; i < nRows; i++) - v[i] -= dotProd * Q[i, colIx2]; - } - - // Step 3: Normalize v to get column(ix) of Q - float norm = 0; - for (int rowIx = 0; rowIx < nRows; rowIx++) - norm += v[rowIx] * v[rowIx]; - norm = (float)Math.Sqrt(norm); - - for (int rowIx = 0; rowIx < nRows; rowIx++) - Q[rowIx, colIx] = v[rowIx] / norm; - - // Store the coefficients of R - for (int colIx2 = 0; colIx2 <= colIx; colIx2++) { - R[colIx2, colIx] = 0; - for (int k = 0; k < nRows; k++) - R[colIx2, colIx] += Q[k, colIx2] * A.data[k, colIx]; - } - } - return (new Matrix2(Q), new Matrix2(R)); - } - - // Reduced QR Decomposition of a matrix A - public static (Matrix2 Q, Matrix2 R) ReducedDecomposition(Matrix2 A) { - int nRows = A.nRows; - int nCols = A.nCols; - - float[,] Q = new float[nRows, nCols]; - float[,] R = new float[nCols, nCols]; - - // Perform Gram-Schmidt orthogonalization - for (int colIx = 0; colIx < nCols; colIx++) { - - // Step 1: v = column(colIx) of A - float[] columnIx = new float[nRows]; - bool isZeroColumn = true; - for (int rowIx = 0; rowIx < nRows; rowIx++) { - columnIx[rowIx] = A.data[rowIx, colIx]; - if (columnIx[rowIx] != 0) - isZeroColumn = false; - } - if (isZeroColumn) { - for (int rowIx = 0; rowIx < nRows; rowIx++) - Q[rowIx, colIx] = 0; - // Set corresponding R element to 0 - R[colIx, colIx] = 0; - - Console.WriteLine($"zero column {colIx}"); - - continue; - } - - // Step 2: Subtract projections of v onto previous q's (orthogonalize) - for (int colIx2 = 0; colIx2 < colIx; colIx2++) { - // Compute the dot product of v and column(colIx2) of Q - float dotProduct = 0; - for (int rowIx2 = 0; rowIx2 < nRows; rowIx2++) - dotProduct += columnIx[rowIx2] * Q[rowIx2, colIx2]; - // Subtract the projection from v - for (int rowIx2 = 0; rowIx2 < nRows; rowIx2++) - columnIx[rowIx2] -= dotProduct * Q[rowIx2, colIx2]; - } - - // Step 3: Normalize v to get column(colIx) of Q - float norm = 0; - for (int rowIx = 0; rowIx < nRows; rowIx++) - norm += columnIx[rowIx] * columnIx[rowIx]; - if (norm == 0) - throw new Exception("invalid value"); - - norm = (float)Math.Sqrt(norm); - - for (int rowIx = 0; rowIx < nRows; rowIx++) - Q[rowIx, colIx] = columnIx[rowIx] / norm; - - // Here is where it deviates from the Full QR Decomposition ! - - // Step 4: Compute the row(colIx) of R - for (int colIx2 = colIx; colIx2 < nCols; colIx2++) { - float dotProduct = 0; - for (int rowIx2 = 0; rowIx2 < nRows; rowIx2++) - dotProduct += Q[rowIx2, colIx] * A.data[rowIx2, colIx2]; - R[colIx, colIx2] = dotProduct; - } - } - if (!float.IsFinite(R[0, 0])) - throw new Exception("invalid value"); - - return (new Matrix2(Q), new Matrix2(R)); - } - } - - class SVD { - // According to ChatGPT, Mathnet uses Golub-Reinsch SVD algorithm - // 1. Bidiagonalization: The input matrix AA is reduced to a bidiagonal form using Golub-Kahan bidiagonalization. - // This process involves applying a sequence of Householder reflections to AA to create a bidiagonal matrix. - // This step reduces the complexity by making the matrix simpler while retaining the essential structure needed for SVD. - // - // 2. Diagonalization: Once the matrix is in bidiagonal form, - // the singular values are computed using an iterative process - // (typically involving QR factorization or Jacobi rotations) until convergence. - // This process diagonalizes the bidiagonal matrix and allows extraction of the singular values. - // - // 3. Computing UU and VTVT: After obtaining the singular values, - // the left singular vectors UU and right singular vectors VTVT are computed - // using the accumulated transformations (such as Householder reflections) from the bidiagonalization step. - - // Bidiagnolizations through Householder transformations - public static (Matrix2 U1, Matrix2 B, Matrix2 V1) Bidiagonalization(Matrix2 A) { - int m = A.nRows; // Rows of A - int n = A.nCols; // Columns of A - float[,] U1 = new float[m, m]; // Left orthogonal matrix - float[,] V1 = new float[n, n]; // Right orthogonal matrix - float[,] B = A.Clone().data; // Copy A to B for transformation - - // Initialize U1 and V1 as identity matrices - for (int i = 0; i < m; i++) - U1[i, i] = 1; - for (int i = 0; i < n; i++) - V1[i, i] = 1; - - // Perform Householder reflections to create a bidiagonal matrix B - for (int j = 0; j < n; j++) { - // Step 1: Construct the Householder vector y - float[] y = new float[m - j]; - for (int i = j; i < m; i++) - y[i - j] = B[i, j]; - - // Step 2: Compute the norm and scalar alpha - float norm = 0; - for (int i = 0; i < y.Length; i++) - norm += y[i] * y[i]; - norm = (float)Math.Sqrt(norm); - - if (B[j, j] > 0) - norm = -norm; - - float alpha = (float)Math.Sqrt(0.5 * (norm * (norm - B[j, j]))); - float r = (float)Math.Sqrt(0.5 * (norm * (norm + B[j, j]))); - - // Step 3: Apply the reflection to zero out below diagonal - for (int k = j; k < n; k++) { - float dot = 0; - for (int i = j; i < m; i++) - dot += y[i - j] * B[i, k]; - dot /= r; - - for (int i = j; i < m; i++) - B[i, k] -= 2 * dot * y[i - j]; - } - - // Step 4: Update U1 with the Householder reflection (U1 * Householder) - for (int i = j; i < m; i++) - U1[i, j] = y[i - j] / alpha; - - // Step 5: Update V1 (storing the Householder vector y) - // Correct indexing: we only need to store part of y in V1 from index j to n - for (int i = j; i < n; i++) - V1[j, i] = B[j, i]; - - // Repeat steps for further columns if necessary - } - return (new Matrix2(U1), new Matrix2(B), new Matrix2(V1)); - } - - public static Matrix2 Bidiagonalize(Matrix2 A) { - int m = A.nRows; // Rows of A - int n = A.nCols; // Columns of A - float[,] B = A.Clone().data; // Copy A to B for transformation - - // Perform Householder reflections to create a bidiagonal matrix B - for (int j = 0; j < n; j++) { - // Step 1: Construct the Householder vector y - float[] y = new float[m - j]; - for (int i = j; i < m; i++) - y[i - j] = B[i, j]; - - // Step 2: Compute the norm and scalar alpha - float norm = 0; - for (int i = 0; i < y.Length; i++) - norm += y[i] * y[i]; - norm = (float)Math.Sqrt(norm); - - if (B[j, j] > 0) - norm = -norm; - - float r = (float)Math.Sqrt(0.5 * (norm * (norm + B[j, j]))); - - // Step 3: Apply the reflection to zero out below diagonal - for (int k = j; k < n; k++) { - float dot = 0; - for (int i = j; i < m; i++) - dot += y[i - j] * B[i, k]; - dot /= r; - - for (int i = j; i < m; i++) - B[i, k] -= 2 * dot * y[i - j]; - } - - // Repeat steps for further columns if necessary - } - return new Matrix2(B); - } - - // QR Iteration for diagonalization of a bidiagonal matrix B - public static (Matrix1 singularValues, Matrix2 U, Matrix2 Vt) QRIteration(Matrix2 B) { - int m = B.nRows; - int n = B.nCols; - - Matrix2 U = new(m, m); // Left singular vectors (U) - Matrix2 Vt = new(n, n); // Right singular vectors (V^T) - float[] singularValues = new float[Math.Min(m, n)]; // Singular values - - // Initialize U and Vt as identity matrices - for (int i = 0; i < m; i++) - U.data[i, i] = 1; - for (int i = 0; i < n; i++) - Vt.data[i, i] = 1; - - // Perform QR iterations - float tolerance = 1e-7f; //1e-12f; for double - bool converged = false; - while (!converged) { - // Perform QR decomposition on the matrix B - (Matrix2 Q, Matrix2 R) = QR.Decomposition(B); - - // Update B to be the product Q * R //R * Q - B = R * Q; - - // Accumulate the transformations in U and Vt - U *= Q; - Vt *= R; - - // Check convergence by looking at the off-diagonal elements of B - converged = true; - for (int i = 0; i < m - 1; i++) { - for (int j = i + 1; j < n; j++) { - if (Math.Abs(B.data[i, j]) > tolerance) { - converged = false; - break; - } - } - } - } - - // Extract singular values (diagonal elements of B) - for (int i = 0; i < Math.Min(m, n); i++) - singularValues[i] = B.data[i, i]; - - return (new Matrix1(singularValues), U, Vt); - } - - public static (Matrix2 U, Matrix1 S, Matrix2 Vt) Decomposition(Matrix2 A) { - if (A.nRows != A.nCols) - throw new ArgumentException("SVD: matrix A has to be square."); - - Matrix2 B = Bidiagonalize(A); - (Matrix1 S, Matrix2 U, Matrix2 Vt) = QRIteration(B); - return (U, S, Vt); - } - } -} \ No newline at end of file diff --git a/LinearAlgebra/src/Direction.cs b/LinearAlgebra/src/Direction.cs deleted file mode 100644 index 6039bd5..0000000 --- a/LinearAlgebra/src/Direction.cs +++ /dev/null @@ -1,83 +0,0 @@ -using System; -#if UNITY_5_3_OR_NEWER -using Vector3Float = UnityEngine.Vector3; -#endif - -namespace LinearAlgebra -{ - - /// - /// A direction in 3D space - /// - /// A direction is represented using two angles: - /// * The horizontal angle ranging from -180 (inclusive) to 180 (exclusive) - /// degrees which is a rotation in the horizontal plane - /// * A vertical angle ranging from -90 (inclusive) to 90 (exclusive) degrees - /// which is the rotation in the up/down direction applied after the horizontal - /// rotation has been applied. - /// The angles are automatically normalized to stay within the abovenmentioned - /// ranges. - public class Direction { - public float horizontal; - public float vertical; - - public Direction() { - horizontal = 0; - vertical = 0; - } - // public Direction(float horizontal, float vertical) { - // this.horizontal = horizontal; - // this.vertical = vertical; - // //Normalize(); - // } - - public static Direction Degrees(float horizontal, float vertical) { - Direction d = new() { - horizontal = horizontal, - vertical = vertical - }; - //Normalize(); - return d; - } - public static Direction Radians(float horizontal, float vertical) { - Direction d = new() { - horizontal = horizontal * Angle.Rad2Deg, - vertical = vertical * Angle.Rad2Deg - }; - //Normalize(); - return d; - } - - public readonly static Direction forward = Degrees(0, 0); - public readonly static Direction backward = Degrees(-180, 0); - public readonly static Direction up = Degrees(0, 90); - public readonly static Direction down = Degrees(0, -90); - public readonly static Direction left = Degrees(-90, 0); - public readonly static Direction right = Degrees(90, 0); - - public void Normalize() { - if (this.vertical > 90 || this.vertical < -90) { - this.horizontal += 180; - this.vertical = 180 - this.vertical; - } - } - - public Vector3Float ToVector3() - { - float verticalRad = (Angle.pi / 2) - this.vertical * Angle.Deg2Rad; - float horizontalRad = this.horizontal * Angle.Deg2Rad; - float cosVertical = (float)Math.Cos(verticalRad); - float sinVertical = (float)Math.Sin(verticalRad); - float cosHorizontal = (float)Math.Cos(horizontalRad); - float sinHorizontal = (float)Math.Sin(horizontalRad); - - float x = sinVertical * sinHorizontal; - float y = cosVertical; - float z = sinVertical * cosHorizontal; - - Vector3Float v = new(x, y, z); - return v; - } - } - -} \ No newline at end of file diff --git a/LinearAlgebra/src/Float.cs b/LinearAlgebra/src/Float.cs deleted file mode 100644 index 2217b84..0000000 --- a/LinearAlgebra/src/Float.cs +++ /dev/null @@ -1,41 +0,0 @@ -namespace LinearAlgebra { - - /// - /// Float number utilities - /// - public class Float { - /// - /// The precision of float numbers - /// - public const float epsilon = 1E-05f; - /// - /// The square of the float number precision - /// - public const float sqrEpsilon = 1e-10f; - - /// - /// Clamp the value between the given minimum and maximum values - /// - /// The value to clamp - /// The minimum value - /// The maximum value - /// The clamped value - public static float Clamp(float f, float min, float max) { - if (f < min) - return min; - if (f > max) - return max; - return f; - } - - /// - /// Clamp the value between to the interval [0..1] - /// - /// The value to clamp - /// The clamped value - public static float Clamp01(float f) { - return Clamp(f, 0, 1); - } - } - -} \ No newline at end of file diff --git a/LinearAlgebra/src/LinearAlgebra.csproj b/LinearAlgebra/src/LinearAlgebra.csproj deleted file mode 100644 index 14d3947..0000000 --- a/LinearAlgebra/src/LinearAlgebra.csproj +++ /dev/null @@ -1,14 +0,0 @@ - - - - false - false - net5.0 - - - - - - - - diff --git a/LinearAlgebra/src/Matrix.cs b/LinearAlgebra/src/Matrix.cs deleted file mode 100644 index 5196d48..0000000 --- a/LinearAlgebra/src/Matrix.cs +++ /dev/null @@ -1,689 +0,0 @@ -using System; -#if UNITY_5_3_OR_NEWER -using Vector3Float = UnityEngine.Vector3; -using Vector2Float = UnityEngine.Vector2; -using Quaternion = UnityEngine.Quaternion; -#endif - -namespace LinearAlgebra { - - public readonly struct Slice - { - public int start { get; } - public int stop { get; } - public Slice(int start, int stop) - { - this.start = start; - this.stop = stop; - } - } - - public class Matrix2 { - public float[,] data { get; } - - public int nRows => data.GetLength(0); - public int nCols => data.GetLength(1); - - public Matrix2(int nRows, int nCols) - { - this.data = new float[nRows, nCols]; - } - public Matrix2(float[,] data) { - this.data = data; - } - - public Matrix2 Clone() { - float[,] data = new float[this.nRows, nCols]; - for (int rowIx = 0; rowIx < this.nRows; rowIx++) { - for (int colIx = 0; colIx < this.nCols; colIx++) - data[rowIx, colIx] = this.data[rowIx, colIx]; - } - return new Matrix2(data); - } - - public static Matrix2 Zero(int nRows, int nCols) - { - return new Matrix2(nRows, nCols); - } - - public static Matrix2 FromVector3(Vector3Float v) { - float[,] result = new float[3, 1]; - result[0, 0] = v.x; - result[1, 0] = v.y; - result[2, 0] = v.z; - return new Matrix2(result); - } - - public static Matrix2 Identity(int size) - { - return Diagonal(1, size); - } - public static Matrix2 Identity(int nRows, int nCols) - { - Matrix2 m = Zero(nRows, nCols); - m.FillDiagonal(1); - return m; - } - - public static Matrix2 Diagonal(Matrix1 v) { - float[,] resultData = new float[v.size, v.size]; - for (int ix = 0; ix < v.size; ix++) - resultData[ix, ix] = v.data[ix]; - return new Matrix2(resultData); - } - public static Matrix2 Diagonal(float f, int size) - { - float[,] resultData = new float[size, size]; - for (int ix = 0; ix < size; ix++) - resultData[ix, ix] = f; - return new Matrix2(resultData); - } - public void FillDiagonal(Matrix1 v) - { - int n = (int)Math.Min(Math.Min(this.nRows, this.nCols), v.size); - for (int ix = 0; ix < n; ix++) - this.data[ix, ix] = v.data[ix]; - } - public void FillDiagonal(float f) - { - int n = Math.Min(this.nRows, this.nCols); - for (int ix = 0; ix < n; ix++) - this.data[ix, ix] = f; - } - - public static Matrix2 SkewMatrix(Vector3Float v) { - float[,] result = new float[3, 3] { - {0, -v.z, v.y}, - {v.z, 0, -v.x}, - {-v.y, v.x, 0} - }; - return new Matrix2(result); - } - - public Matrix1 GetRow(int rowIx) { - float[] row = new float[this.nCols]; - for (int colIx = 0; colIx < this.nCols; colIx++) { - row[colIx] = this.data[rowIx, colIx]; - } - return new Matrix1(row); - } - -#if UNITY_5_3_OR_NEWER - public Vector3Float GetRow3(int rowIx) { - int cols = this.nCols; - Vector3Float row = new() { - x = this.data[rowIx, 0], - y = this.data[rowIx, 1], - z = this.data[rowIx, 2] - }; - return row; - } -#endif - public void SetRow(int rowIx, Matrix1 v) { - for (uint ix = 0; ix < v.size; ix++) - this.data[rowIx, ix] = v.data[ix]; - } - public void SetRow3(int rowIx, Vector3Float v) { - this.data[rowIx, 0] = v.x; - this.data[rowIx, 1] = v.y; - this.data[rowIx, 2] = v.z; - } - - public void SwapRows(int row1, int row2) { - for (uint ix = 0; ix < this.nCols; ix++) { - float temp = this.data[row1, ix]; - this.data[row1, ix] = this.data[row2, ix]; - this.data[row2, ix] = temp; - } - } - - public Matrix1 GetColumn(int colIx) - { - float[] column = new float[this.nRows]; - for (int i = 0; i < this.nRows; i++) { - column[i] = this.data[i, colIx]; - } - return new Matrix1(column); - } - public void SetColumn(int colIx, Matrix1 v) { - for (uint ix = 0; ix < v.size; ix++) - this.data[ix, colIx] = v.data[ix]; - } - public void SetColumn(int colIx, Vector3Float v) { - this.data[0, colIx] = v.x; - this.data[1, colIx] = v.y; - this.data[2, colIx] = v.z; - } - - public static bool AllClose(Matrix2 A, Matrix2 B, float atol = 1e-08f) { - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < A.nCols; j++) { - float d = MathF.Abs(A.data[i, j] - B.data[i, j]); - if (d > atol) - return false; - } - } - return true; - } - - public Matrix2 Transpose() { - float[,] resultData = new float[this.nCols, this.nRows]; - for (uint rowIx = 0; rowIx < this.nRows; rowIx++) { - for (uint colIx = 0; colIx < this.nCols; colIx++) - resultData[colIx, rowIx] = this.data[rowIx, colIx]; - } - return new Matrix2(resultData); - // double checked code - } - public Matrix2 transposed { - get => Transpose(); - } - - public static Matrix2 operator -(Matrix2 m) { - float[,] result = new float[m.nRows, m.nCols]; - - for (int i = 0; i < m.nRows; i++) { - for (int j = 0; j < m.nCols; j++) - result[i, j] = -m.data[i, j]; - } - return new Matrix2(result); - } - - public static Matrix2 operator -(Matrix2 A, Matrix2 B) { - if (A.nRows != B.nRows || A.nCols != B.nCols) - throw new System.ArgumentException("Size of A must match size of B."); - - float[,] result = new float[A.nRows, B.nCols]; - - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < A.nCols; j++) - result[i, j] = A.data[i, j] - B.data[i, j]; - } - return new Matrix2(result); - } - - public static Matrix2 operator +(Matrix2 A, Matrix2 B) { - if (A.nRows != B.nRows || A.nCols != B.nCols) - throw new System.ArgumentException("Size of A must match size of B."); - - float[,] result = new float[A.nRows, B.nCols]; - - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < A.nCols; j++) - result[i, j] = A.data[i, j] + B.data[i, j]; - } - return new Matrix2(result); - } - - public static Matrix2 operator *(Matrix2 A, Matrix2 B) { - if (A.nCols != B.nRows) - throw new System.ArgumentException("Number of columns in A must match number of rows in B."); - - float[,] result = new float[A.nRows, B.nCols]; - - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < B.nCols; j++) { - float sum = 0.0f; - for (int k = 0; k < A.nCols; k++) - sum += A.data[i, k] * B.data[k, j]; - - result[i, j] = sum; - } - } - - return new Matrix2(result); - // double checked code - } - - public static Matrix1 operator *(Matrix2 A, Matrix1 v) { - float[] result = new float[A.nRows]; - - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < A.nCols; j++) { - result[i] += A.data[i, j] * v.data[j]; - } - } - - return new Matrix1(result); - } - - public static Vector3Float operator *(Matrix2 A, Vector3Float v) { - return new Vector3Float( - A.data[0, 0] * v.x + A.data[0, 1] * v.y + A.data[0, 2] * v.z, - A.data[1, 0] * v.x + A.data[1, 1] * v.y + A.data[1, 2] * v.z, - A.data[2, 0] * v.x + A.data[2, 1] * v.y + A.data[2, 2] * v.z - ); - } - - public static Matrix2 operator *(Matrix2 A, float s) { - float[,] result = new float[A.nRows, A.nCols]; - - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < A.nCols; j++) - result[i, j] = A.data[i, j] * s; - } - - return new Matrix2(result); - } - public static Matrix2 operator *(float s, Matrix2 A) { - return A * s; - } - - public static Matrix2 operator /(Matrix2 A, float s) { - float[,] result = new float[A.nRows, A.nCols]; - - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < A.nCols; j++) - result[i, j] = A.data[i, j] / s; - } - - return new Matrix2(result); - } - public static Matrix2 operator /(float s, Matrix2 A) { - float[,] result = new float[A.nRows, A.nCols]; - - for (int i = 0; i < A.nRows; i++) { - for (int j = 0; j < A.nCols; j++) - result[i, j] = s / A.data[i, j]; - } - - return new Matrix2(result); - } - - public Matrix2 GetRows(Slice slice) { - return GetRows(slice.start, slice.stop); - } - public Matrix2 GetRows(int from, int to) { - if (from < 0 || to >= this.nRows) - throw new System.ArgumentException("Slice index out of range."); - - float[,] result = new float[to - from, this.nCols]; - int resultRowIx = 0; - for (int rowIx = from; rowIx < to; rowIx++) { - for (int colIx = 0; colIx < this.nCols; colIx++) - result[resultRowIx, colIx] = this.data[rowIx, colIx]; - - resultRowIx++; - } - - return new Matrix2(result); - } - - public Matrix2 Slice(Slice slice) - { - return Slice(slice.start, slice.stop); - } - public Matrix2 Slice(int from, int to) - { - if (from < 0 || to >= this.nRows) - throw new System.ArgumentException("Slice index out of range."); - - float[,] result = new float[to - from, this.nCols]; - int resultRowIx = 0; - for (int rowIx = from; rowIx < to; rowIx++) - { - for (int colIx = 0; colIx < this.nCols; colIx++) - { - result[resultRowIx, colIx] = this.data[rowIx, colIx]; - } - resultRowIx++; - } - - return new Matrix2(result); - } - public Matrix2 Slice(Slice rowRange, Slice colRange) { - return Slice((rowRange.start, rowRange.stop), (colRange.start, colRange.stop)); - } - public Matrix2 Slice((int start, int stop) rowRange, (int start, int stop) colRange) - { - float[,] result = new float[rowRange.stop - rowRange.start, colRange.stop - colRange.start]; - - int resultRowIx = 0; - int resultColIx = 0; - for (int i = rowRange.start; i < rowRange.stop; i++) - { - for (int j = colRange.start; j < colRange.stop; j++) - result[resultRowIx, resultColIx] = this.data[i, j]; - } - return new Matrix2(result); - } - - public void UpdateSlice(Slice slice, Matrix2 m) { - UpdateSlice((slice.start, slice.stop), m); - } - public void UpdateSlice((int start, int stop) slice, Matrix2 m) { - // if (slice.start == slice.stop) - // Console.WriteLine("WARNING: no data is updates when start equals stop in a slice!"); - int mRowIx = 0; - for (int rowIx = slice.start; rowIx < slice.stop; rowIx++, mRowIx++) { - for (int colIx = 0; colIx < this.nCols; colIx++) - this.data[rowIx, colIx] = m.data[mRowIx, colIx]; - } - } - - public void UpdateSlice(Slice rowRange, Slice colRange, Matrix2 m) - { - UpdateSlice((rowRange.start, rowRange.stop), (colRange.start, colRange.stop), m); - } - public void UpdateSlice((int start, int stop) rowRange, (int start, int stop) colRange, Matrix2 m) - { - for (int i = rowRange.start; i < rowRange.stop; i++) - { - for (int j = colRange.start; j < colRange.stop; j++) - this.data[i, j] = m.data[i - rowRange.start, j - colRange.start]; - } - } - - public Matrix2 Inverse() { - Matrix2 A = this; - // unchecked - int n = A.nRows; - - // Create an identity matrix of the same size as the original matrix - float[,] augmentedMatrix = new float[n, 2 * n]; - for (int i = 0; i < n; i++) { - for (int j = 0; j < n; j++) { - augmentedMatrix[i, j] = A.data[i, j]; - augmentedMatrix[i, j + n] = (i == j) ? 1 : 0; // Identity matrix - } - } - - // Perform Gaussian elimination - for (int i = 0; i < n; i++) { - // Find the pivot row - float pivot = augmentedMatrix[i, i]; - if (Math.Abs(pivot) < 1e-10) // Check for singular matrix - throw new InvalidOperationException("Matrix is singular and cannot be inverted."); - - // Normalize the pivot row - for (int j = 0; j < 2 * n; j++) - augmentedMatrix[i, j] /= pivot; - - // Eliminate the column below the pivot - for (int j = i + 1; j < n; j++) { - float factor = augmentedMatrix[j, i]; - for (int k = 0; k < 2 * n; k++) - augmentedMatrix[j, k] -= factor * augmentedMatrix[i, k]; - } - } - - // Back substitution - for (int i = n - 1; i >= 0; i--) - { - // Eliminate the column above the pivot - for (int j = i - 1; j >= 0; j--) - { - float factor = augmentedMatrix[j, i]; - for (int k = 0; k < 2 * n; k++) - augmentedMatrix[j, k] -= factor * augmentedMatrix[i, k]; - } - } - - // Extract the inverse matrix from the augmented matrix - float[,] inverse = new float[n, n]; - for (int i = 0; i < n; i++) { - for (int j = 0; j < n; j++) - inverse[i, j] = augmentedMatrix[i, j + n]; - } - - return new Matrix2(inverse); - } - - public float Determinant() - { - int n = this.nRows; - if (n != this.nCols) - throw new System.ArgumentException("Matrix must be square."); - - if (n == 1) - return this.data[0, 0]; // Base case for 1x1 matrix - - if (n == 2) // Base case for 2x2 matrix - return this.data[0, 0] * this.data[1, 1] - this.data[0, 1] * this.data[1, 0]; - - float det = 0; - for (int col = 0; col < n; col++) - det += (col % 2 == 0 ? 1 : -1) * this.data[0, col] * this.Minor(0, col).Determinant(); - - return det; - } - - // Helper function to compute the minor of a matrix - private Matrix2 Minor(int rowToRemove, int colToRemove) - { - int n = this.nRows; - float[,] minor = new float[n - 1, n - 1]; - - int r = 0, c = 0; - for (int i = 0; i < n; i++) { - if (i == rowToRemove) continue; - - c = 0; - for (int j = 0; j < n; j++) { - if (j == colToRemove) continue; - - minor[r, c] = this.data[i, j]; - c++; - } - r++; - } - - return new Matrix2(minor); - } - - public static Matrix2 DeleteRows(Matrix2 A, Slice rowRange) { - float[,] result = new float[A.nRows - (rowRange.stop - rowRange.start), A.nCols]; - - int resultRowIx = 0; - for (int i = 0; i < A.nRows; i++) { - if (i >= rowRange.start && i < rowRange.stop) - continue; - - for (int j = 0; j < A.nCols; j++) - result[resultRowIx, j] = A.data[i, j]; - - resultRowIx++; - } - return new Matrix2(result); - } - - internal static Matrix2 DeleteColumns(Matrix2 A, Slice colRange) { - float[,] result = new float[A.nRows, A.nCols - (colRange.stop - colRange.start)]; - - for (int i = 0; i < A.nRows; i++) { - int resultColIx = 0; - for (int j = 0; j < A.nCols; j++) { - if (j >= colRange.start && j < colRange.stop) - continue; - - result[i, resultColIx++] = A.data[i, j]; - } - } - return new Matrix2(result); - } - } - - public class Matrix1 - { - public float[] data { get; } - - public int size => data.GetLength(0); - - public Matrix1(int size) - { - this.data = new float[size]; - } - - public Matrix1(float[] data) { - this.data = data; - } - - public static Matrix1 Zero(int size) - { - return new Matrix1(size); - } - - public static Matrix1 FromVector2(Vector2Float v) { - float[] result = new float[2]; - result[0] = v.x; - result[1] = v.y; - return new Matrix1(result); - } - - public static Matrix1 FromVector3(Vector3Float v) { - float[] result = new float[3]; - result[0] = v.x; - result[1] = v.y; - result[2] = v.z; - return new Matrix1(result); - } - -#if UNITY_5_3_OR_NEWER - public static Matrix1 FromQuaternion(Quaternion q) { - float[] result = new float[4]; - result[0] = q.x; - result[1] = q.y; - result[2] = q.z; - result[3] = q.w; - return new Matrix1(result); - } -#endif - - public Vector2Float vector2 { - get { - if (this.size != 2) - throw new System.ArgumentException("Matrix1 must be of size 2"); - return new Vector2Float(this.data[0], this.data[1]); - } - } - public Vector3Float vector3 { - get { - if (this.size != 3) - throw new System.ArgumentException("Matrix1 must be of size 3"); - return new Vector3Float(this.data[0], this.data[1], this.data[2]); - } - } - -#if UNITY_5_3_OR_NEWER - public Quaternion quaternion { - get { - if (this.size != 4) - throw new System.ArgumentException("Matrix1 must be of size 4"); - return new Quaternion(this.data[0], this.data[1], this.data[2], this.data[3]); - } - } -#endif - - public Matrix1 Clone() { - float[] data = new float[this.size]; - for (int rowIx = 0; rowIx < this.size; rowIx++) - data[rowIx] = this.data[rowIx]; - return new Matrix1(data); - } - - - public float magnitude { - get { - float sum = 0; - foreach (var elm in data) - sum += elm; - return sum / data.Length; - } - } - public static Matrix1 operator +(Matrix1 A, Matrix1 B) { - if (A.size != B.size) - throw new System.ArgumentException("Size of A must match size of B."); - - float[] result = new float[A.size]; - - for (int i = 0; i < A.size; i++) { - result[i] = A.data[i] + B.data[i]; - } - return new Matrix1(result); - } - - public Matrix2 Transpose() { - float[,] r = new float[1, this.size]; - for (uint colIx = 0; colIx < this.size; colIx++) - r[1, colIx] = this.data[colIx]; - - return new Matrix2(r); - } - - public static float Dot(Matrix1 a, Matrix1 b) { - if (a.size != b.size) - throw new System.ArgumentException("Vectors must be of the same length."); - - float result = 0.0f; - for (int i = 0; i < a.size; i++) { - result += a.data[i] * b.data[i]; - } - return result; - } - - public static Matrix1 operator -(Matrix1 A, Matrix1 B) { - if (A.size != B.size) - throw new System.ArgumentException("Size of A must match size of B."); - - float[] result = new float[A.size]; - - for (int i = 0; i < A.size; i++) { - result[i] = A.data[i] - B.data[i]; - } - return new Matrix1(result); - } - - public static Matrix1 operator *(Matrix1 A, float f) - { - float[] result = new float[A.size]; - - for (int i = 0; i < A.size; i++) - result[i] += A.data[i] * f; - - return new Matrix1(result); - } - public static Matrix1 operator *(float f, Matrix1 A) { - return A * f; - } - - public static Matrix1 operator /(Matrix1 A, float f) { - float[] result = new float[A.size]; - - for (int i = 0; i < A.size; i++) - result[i] = A.data[i] / f; - - return new Matrix1(result); - } - public static Matrix1 operator /(float f, Matrix1 A) { - float[] result = new float[A.size]; - - for (int i = 0; i < A.size; i++) - result[i] = f / A.data[i]; - - return new Matrix1(result); - } - - public Matrix1 Slice(Slice range) - { - return Slice(range.start, range.stop); - } - public Matrix1 Slice(int from, int to) - { - if (from < 0 || to >= this.size) - throw new System.ArgumentException("Slice index out of range."); - - float[] result = new float[to - from]; - int resultIx = 0; - for (int ix = from; ix < to; ix++) - result[resultIx++] = this.data[ix]; - - return new Matrix1(result); - } - public void UpdateSlice(Slice slice, Matrix1 v) { - int vIx = 0; - for (int ix = slice.start; ix < slice.stop; ix++, vIx++) - this.data[ix] = v.data[vIx]; - } - } - -} \ No newline at end of file diff --git a/LinearAlgebra/src/Quat32.cs b/LinearAlgebra/src/Quat32.cs deleted file mode 100644 index f13266d..0000000 --- a/LinearAlgebra/src/Quat32.cs +++ /dev/null @@ -1,87 +0,0 @@ -using System; - -namespace LinearAlgebra { - public class Quat32 { - public float x; - public float y; - public float z; - public float w; - - public Quat32() { - this.x = 0; - this.y = 0; - this.z = 0; - this.w = 1; - } - - public Quat32(float x, float y, float z, float w) { - this.x = x; - this.y = y; - this.z = z; - this.w = w; - } - - public static Quat32 FromSwingTwist(SwingTwist s) { - Quat32 q32 = Quat32.Euler(-s.swing.vertical, s.swing.horizontal, s.twist); - return q32; - } - - public static Quat32 Euler(float yaw, float pitch, float roll) { - float rollOver2 = roll * Angle.Deg2Rad * 0.5f; - float sinRollOver2 = (float)Math.Sin((float)rollOver2); - float cosRollOver2 = (float)Math.Cos((float)rollOver2); - float pitchOver2 = pitch * 0.5f; - float sinPitchOver2 = (float)Math.Sin((float)pitchOver2); - float cosPitchOver2 = (float)Math.Cos((float)pitchOver2); - float yawOver2 = yaw * 0.5f; - float sinYawOver2 = (float)Math.Sin((float)yawOver2); - float cosYawOver2 = (float)Math.Cos((float)yawOver2); - Quat32 result = new Quat32() { - w = cosYawOver2 * cosPitchOver2 * cosRollOver2 + - sinYawOver2 * sinPitchOver2 * sinRollOver2, - x = sinYawOver2 * cosPitchOver2 * cosRollOver2 + - cosYawOver2 * sinPitchOver2 * sinRollOver2, - y = cosYawOver2 * sinPitchOver2 * cosRollOver2 - - sinYawOver2 * cosPitchOver2 * sinRollOver2, - z = cosYawOver2 * cosPitchOver2 * sinRollOver2 - - sinYawOver2 * sinPitchOver2 * cosRollOver2 - }; - return result; - } - - public void ToAngles(out float right, out float up, out float forward) { - float test = this.x * this.y + this.z * this.w; - if (test > 0.499f) { // singularity at north pole - right = 0; - up = 2 * (float)Math.Atan2(this.x, this.w) * Angle.Rad2Deg; - forward = 90; - return; - //return Vector3(0, 2 * (float)atan2(this.x, this.w) * Angle.Rad2Deg, 90); - } - else if (test < -0.499f) { // singularity at south pole - right = 0; - up = -2 * (float)Math.Atan2(this.x, this.w) * Angle.Rad2Deg; - forward = -90; - return; - //return Vector3(0, -2 * (float)atan2(this.x, this.w) * Angle.Rad2Deg, -90); - } - else { - float sqx = this.x * this.x; - float sqy = this.y * this.y; - float sqz = this.z * this.z; - - right = (float)Math.Atan2(2 * this.x * this.w - 2 * this.y * this.z, 1 - 2 * sqx - 2 * sqz) * Angle.Rad2Deg; - up = (float)Math.Atan2(2 * this.y * this.w - 2 * this.x * this.z, 1 - 2 * sqy - 2 * sqz) * Angle.Rad2Deg; - forward = (float)Math.Asin(2 * test) * Angle.Rad2Deg; - return; - // return Vector3( - // atan2f(2 * this.x * this.w - 2 * this.y * this.z, 1 - 2 * sqx - 2 * sqz) * - // Rad2Deg, - // atan2f(2 * this.y * this.w - 2 * this.x * this.z, 1 - 2 * sqy - 2 * sqz) * - // Rad2Deg, - // asinf(2 * test) * Angle.Rad2Deg); - } - } - - } -} \ No newline at end of file diff --git a/LinearAlgebra/src/Quaternion.cs b/LinearAlgebra/src/Quaternion.cs deleted file mode 100644 index 52dd26b..0000000 --- a/LinearAlgebra/src/Quaternion.cs +++ /dev/null @@ -1,81 +0,0 @@ -using System; -#if UNITY_5_3_OR_NEWER -using Quaternion = UnityEngine.Quaternion; -#endif - -namespace LinearAlgebra { - - public class QuaternionOf { - public T x; - public T y; - public T z; - public T w; - - public QuaternionOf(T x, T y, T z, T w) { - this.x = x; - this.y = y; - this.z = z; - this.w = w; - } - -#if UNITY_5_3_OR_NEWER - public static Quaternion Reflect(Quaternion q) { - return new(-q.x, -q.y, -q.z, q.w); - } - - public static Matrix2 ToRotationMatrix(Quaternion q) { - float w = q.x, x = q.y, y = q.z, z = q.w; - - float[,] result = new float[,] - { - { 1 - 2 * (y * y + z * z), 2 * (x * y - w * z), 2 * (x * z + w * y) }, - { 2 * (x * y + w * z), 1 - 2 * (x * x + z * z), 2 * (y * z - w * x) }, - { 2 * (x * z - w * y), 2 * (y * z + w * x), 1 - 2 * (x * x + y * y) } - }; - return new Matrix2(result); - } - - public static Quaternion FromRotationMatrix(Matrix2 m) { - float trace = m.data[0, 0] + m.data[1, 1] + m.data[2, 2]; - float w, x, y, z; - - if (trace > 0) { - float s = 0.5f / (float)Math.Sqrt(trace + 1.0f); - w = 0.25f / s; - x = (m.data[2, 1] - m.data[1, 2]) * s; - y = (m.data[0, 2] - m.data[2, 0]) * s; - z = (m.data[1, 0] - m.data[0, 1]) * s; - } - else { - if (m.data[0, 0] > m.data[1, 1] && m.data[0, 0] > m.data[2, 2]) { - float s = 2.0f * (float)Math.Sqrt(1.0f + m.data[0, 0] - m.data[1, 1] - m.data[2, 2]); - w = (m.data[2, 1] - m.data[1, 2]) / s; - x = 0.25f * s; - y = (m.data[0, 1] + m.data[1, 0]) / s; - z = (m.data[0, 2] + m.data[2, 0]) / s; - } - else if (m.data[1, 1] > m.data[2, 2]) { - float s = 2.0f * (float)Math.Sqrt(1.0f + m.data[1, 1] - m.data[0, 0] - m.data[2, 2]); - w = (m.data[0, 2] - m.data[2, 0]) / s; - x = (m.data[0, 1] + m.data[1, 0]) / s; - y = 0.25f * s; - z = (m.data[1, 2] + m.data[2, 1]) / s; - } - else { - float s = 2.0f * (float)Math.Sqrt(1.0f + m.data[2, 2] - m.data[0, 0] - m.data[1, 1]); - w = (m.data[1, 0] - m.data[0, 1]) / s; - x = (m.data[0, 2] + m.data[2, 0]) / s; - y = (m.data[1, 2] + m.data[2, 1]) / s; - z = 0.25f * s; - } - } - - return new Quaternion(x, y, z, w); - } -#endif - } - - // public class Quaternion : QuaternionOf { - // public Quaternion(float x, float y, float z, float w) : base(x, y, z, w) { } - // } -} \ No newline at end of file diff --git a/LinearAlgebra/src/Spherical.cs b/LinearAlgebra/src/Spherical.cs deleted file mode 100644 index 456646f..0000000 --- a/LinearAlgebra/src/Spherical.cs +++ /dev/null @@ -1,134 +0,0 @@ -using System; -#if UNITY_5_3_OR_NEWER -//using Vector3Float = UnityEngine.Vector3; -using Vector3 = UnityEngine.Vector3; -#endif - -namespace LinearAlgebra { - /// - /// A spherical vector - /// - public class Spherical { - - /// - /// Create a default vector with zero distance - /// - public Spherical() { - this.distance = 0; - this.direction = new Direction(); - } - - /// - /// Create a spherical vector - /// - /// The distance in meters - /// The direction of the vector - public Spherical(float distance, Direction direction) { - this.distance = distance; - this.direction = direction; - } - - /// - /// Create spherical vector. All given angles are in degrees - /// - /// The distance in meters - /// The horizontal angle in degrees - /// The vertical angle in degrees - /// - public static Spherical Degrees(float distance, float horizontal, float vertical) { - Direction direction = Direction.Degrees(horizontal, vertical); - Spherical s = new(distance, direction); - return s; - } - - public static Spherical Radians(float distance, float horizontal, float vertical) { - Direction direction = Direction.Radians(horizontal, vertical); - Spherical s = new(distance, direction); - return s; - } - - /// - /// The distance in meters - /// - /// @remark The distance should never be negative - public float distance; - /// - /// The direction of the vector - /// - public Direction direction; - - /// - /// A spherical vector with zero degree angles and distance - /// - public readonly static Spherical zero = new(0, Direction.forward); - /// - /// A normalized forward-oriented vector - /// - public readonly static Spherical forward = new(1, Direction.forward); - - - // public static Spherical FromVector3Float(Vector3Float v) { - // float distance = v.magnitude; - // if (distance == 0.0f) - // return Spherical.zero; - // else { - // float verticalAngle = (float)((Angle.pi / 2 - Math.Acos(v.y / distance)) * Angle.Rad2Deg); - // float horizontalAngle = (float)Math.Atan2(v.x, v.z) * Angle.Rad2Deg; - // return Spherical.Degrees(distance, horizontalAngle, verticalAngle); - // } - // } - - public static Spherical FromVector3(Vector3 v) { - float distance = v.magnitude; - if (distance == 0.0f) - return Spherical.zero; - else { - float verticalAngle = (float)((Angle.pi / 2 - Math.Acos(v.y / distance)) * Angle.Rad2Deg); - float horizontalAngle = (float)Math.Atan2(v.x, v.z) * Angle.Rad2Deg; - return Spherical.Degrees(distance, horizontalAngle, verticalAngle); - } - } - - // public Vector3Float ToVector3Float() { - // float verticalRad = (Angle.pi / 2) - this.direction.vertical * Angle.Deg2Rad; - // float horizontalRad = this.direction.horizontal * Angle.Deg2Rad; - // float cosVertical = (float)Math.Cos(verticalRad); - // float sinVertical = (float)Math.Sin(verticalRad); - // float cosHorizontal = (float)Math.Cos(horizontalRad); - // float sinHorizontal = (float)Math.Sin(horizontalRad); - - // float x = this.distance * sinVertical * sinHorizontal; - // float y = this.distance * cosVertical; - // float z = this.distance * sinVertical * cosHorizontal; - - // Vector3Float v = new(x, y, z); - // return v; - // } - - public Vector3 ToVector3() { - float verticalRad = (Angle.pi / 2) - this.direction.vertical * Angle.Deg2Rad; - float horizontalRad = this.direction.horizontal * Angle.Deg2Rad; - float cosVertical = (float)Math.Cos(verticalRad); - float sinVertical = (float)Math.Sin(verticalRad); - float cosHorizontal = (float)Math.Cos(horizontalRad); - float sinHorizontal = (float)Math.Sin(horizontalRad); - - float x = this.distance * sinVertical * sinHorizontal; - float y = this.distance * cosVertical; - float z = this.distance * sinVertical * cosHorizontal; - - Vector3 v = new(x, y, z); - return v; - } - - public static Spherical operator +(Spherical s1, Spherical s2) { - // let's do it the easy way... - Vector3 v1 = s1.ToVector3(); - Vector3 v2 = s2.ToVector3(); - Vector3 v = v1 + v2; - Spherical r = FromVector3(v); - return r; - } - - } -} \ No newline at end of file diff --git a/LinearAlgebra/src/SwingTwist.cs b/LinearAlgebra/src/SwingTwist.cs deleted file mode 100644 index 22eb0bb..0000000 --- a/LinearAlgebra/src/SwingTwist.cs +++ /dev/null @@ -1,41 +0,0 @@ -using System.Numerics; -#if UNITY_5_3_OR_NEWER -using Quaternion = UnityEngine.Quaternion; -#endif - -namespace LinearAlgebra { - - public class SwingTwist { - public Direction swing; - public float twist; - - public static readonly SwingTwist zero = new SwingTwist(0, 0, 0); - - public SwingTwist(Direction swing, float twist) { - this.swing = swing; - this.twist = twist; - } - public SwingTwist(float horizontalSwing, float verticalSwing, float twist) { - this.swing = Direction.Degrees(horizontalSwing, verticalSwing); - this.swing.Normalize(); - this.twist = twist; - } - public static SwingTwist FromQuat32(Quat32 q32) { - // UnityEngine.Quaternion q = new(q32.x, q32.y, q32.z, q32.w); - // SwingTwist r = new(q.eulerAngles.y, q.eulerAngles.x, q.eulerAngles.z); - q32.ToAngles(out float right, out float up, out float forward); - SwingTwist r = new SwingTwist(up, right, forward); - return r; - } - -#if UNITY_5_3_OR_NEWER - public Quaternion ToQuaternion() { - Quaternion q = Quaternion.Euler(-this.swing.vertical, - this.swing.horizontal, - this.twist); - return q; - } -#endif - } - -} \ No newline at end of file diff --git a/LinearAlgebra/src/Vector2.cs b/LinearAlgebra/src/Vector2.cs deleted file mode 100644 index 1840a7a..0000000 --- a/LinearAlgebra/src/Vector2.cs +++ /dev/null @@ -1,363 +0,0 @@ -using System; -using System.Numerics; - -namespace LinearAlgebra { - - public class Vector2Of where T : IComparable { - public T x; - public T y; - - public Vector2Of(T x, T y) { - this.x = x; - this.y = y; - } - } - - public class Vector2Int : Vector2Of { - public Vector2Int(int x, int y) : base(x, y) { } - - public static Vector2Int operator -(Vector2Int v1, Vector2Int v2) { - return new Vector2Int(v1.x - v2.x, v1.y - v2.y); - } - - public float magnitude { - get { - return (float)Math.Sqrt(this.x * this.x + this.y * this.y); - } - } - - public static float Distance(Vector2Int v1, Vector2Int v2) { - return (v1 - v2).magnitude; - } - } - - public class Vector2Float : Vector2Of { - public Vector2Float(float x, float y) : base(x, y) { } - - public static Vector2Float operator -(Vector2Float v1, Vector2Float v2) { - return new Vector2Float(v1.x - v2.x, v1.y - v2.y); - } - - public float magnitude { - get { - return (float)Math.Sqrt(this.x * this.x + this.y * this.y); - } - } - - public static float Distance(Vector2Float v1, Vector2Float v2) { - return (v1 - v2).magnitude; - } - } - - /// - /// 2-dimensional vectors - /// - public struct Vector2 : IEquatable { - - /// - /// The right axis of the vector - /// - public float x; // left/right - /// - /// The upward/forward axis of the vector - /// - public float y; // forward/backward - // directions are to be inline with Vector3 as much as possible... - - /// - /// Create a new 2-dimensional vector - /// - /// x axis value - /// y axis value - public Vector2(float x, float y) { - this.x = x; - this.y = y; - } - - /// - /// A vector with zero for all axis - /// - public static readonly Vector2 zero = new Vector2(0, 0); - /// - /// A vector with values (1, 1) - /// - public static readonly Vector2 one = new Vector2(1, 1); - /// - /// A vector with values (0, 1) - /// - public static readonly Vector2 up = new Vector2(0, 1); - /// - /// A vector with values (0, -1) - /// - public static readonly Vector2 down = new Vector2(0, -1); - /// - /// A vector with values (0, 1) - /// - public static readonly Vector2 forward = new Vector2(0, 1); - /// - /// A vector with values (0, -1) - /// - public static readonly Vector2 back = new Vector2(0, -1); - /// - /// A vector3 with values (-1, 0) - /// - public static readonly Vector2 left = new Vector2(-1, 0); - /// - /// A vector with values (1, 0) - /// - public static readonly Vector2 right = new Vector2(1, 0); - - /// - /// The squared length of this vector - /// - /// The squared length - /// The squared length is computationally simpler than the real length. - /// Think of Pythagoras A^2 + B^2 = C^2. - /// This leaves out the calculation of the squared root of C. - public float sqrMagnitude { - get { - float d = x * x + y * y; - return d; - } - } - - /// - /// The length of this vector - /// - /// The length of this vector - public float magnitude { - get { - float d = (float)Math.Sqrt(x * x + y * y); - return d; - } - } - - /// - /// Convert the vector to a length of a 1 - /// - /// The vector with length 1 - public Vector2 normalized { - get { - float l = magnitude; - Vector2 v = zero; - if (l > Float.epsilon) - v = this / l; - return v; - } - } - - /// - /// Add two vectors - /// - /// The first vector - /// The second vector - /// The result of adding the two vectors - public static Vector2 operator +(Vector2 v1, Vector2 v2) { - Vector2 v = new Vector2(v1.x + v2.x, v1.y + v2.y); - return v; - } - - /// - /// Subtract two vectors - /// - /// The first vector - /// The second vector - /// The result of adding the two vectors - public static Vector2 operator -(Vector2 v1, Vector2 v2) { - Vector2 v = new Vector2(v1.x - v2.x, v1.y - v2.y); - return v; - } - - /// - /// Negate the vector - /// - /// The vector to negate - /// The negated vector - /// This will result in a vector pointing in the opposite direction - public static Vector2 operator -(Vector2 v1) { - Vector2 v = new Vector2(-v1.x, -v1.y); - return v; - } - - /// - /// Scale a vector uniformly up - /// - /// The vector to scale - /// The scaling factor - /// The scaled vector - /// Each component of the vector will be multipled with the same factor. - public static Vector2 operator *(Vector2 v1, float f) { - Vector2 v = new Vector2(v1.x * f, v1.y * f); - return v; - } - - /// - /// Scale a vector uniformly up - /// - /// The scaling factor - /// The vector to scale - /// The scaled vector - /// Each component of the vector will be multipled with the same factor. - public static Vector2 operator *(float f, Vector2 v1) { - Vector2 v = new Vector2(f * v1.x, f * v1.y); - return v; - } - - /// - /// Scale a vector uniformly down - /// - /// The vector to scale - /// The scaling factor - /// The scaled vector - /// Each component of the vector will be devided by the same factor. - public static Vector2 operator /(Vector2 v1, float f) { - Vector2 v = new Vector2(v1.x / f, v1.y / f); - return v; - } - - /// - /// Tests if the vector has equal values as the given vector - /// - /// The vector to compare to - /// true if the vector values are equal - public bool Equals(Vector2 v1) => x == v1.x && y == v1.y; - - /// - /// Tests if the vector is equal to the given object - /// - /// The object to compare to - /// false when the object is not a Vector2 or does not have equal values - public override bool Equals(object obj) { - if (!(obj is Vector2 v)) - return false; - - return (x == v.x && y == v.y); - } - - /// - /// Tests if the two vectors have equal values - /// - /// The first vector - /// The second vector - /// truewhen the vectors have equal values - /// Note that this uses a Float equality check which cannot be not exact in all cases. - /// In most cases it is better to check if the Vector2.Distance between the vectors is smaller than Float.epsilon - /// Or more efficient: (v1 - v2).sqrMagnitude < Float.sqrEpsilon - public static bool operator ==(Vector2 v1, Vector2 v2) { - return (v1.x == v2.x && v1.y == v2.y); - } - - /// - /// Tests if two vectors have different values - /// - /// The first vector - /// The second vector - /// truewhen the vectors have different values - /// Note that this uses a Float equality check which cannot be not exact in all case. - /// In most cases it is better to check if the Vector2.Distance between the vectors is smaller than Float.epsilon. - /// Or more efficient: (v1 - v2).sqrMagnitude < Float.sqrEpsilon - public static bool operator !=(Vector2 v1, Vector2 v2) { - return (v1.x != v2.x || v1.y != v2.y); - } - - /// - /// Get an hash code for the vector - /// - /// The hash code - public override int GetHashCode() { - return (x, y).GetHashCode(); - } - - /// - /// Get the distance between two vectors - /// - /// The first vector - /// The second vector - /// The distance between the two vectors - public static float Distance(Vector2 v1, Vector2 v2) { - float x = v1.x - v2.x; - float y = v1.y - v2.y; - float d = (float)Math.Sqrt(x * x + y * y); - return d; - } - - /// - /// The dot product of two vectors - /// - /// The first vector - /// The second vector - /// The dot product of the two vectors - public static float Dot(Vector2 v1, Vector2 v2) { - return v1.x * v2.x + v1.y * v2.y; - } - - /// - /// Lerp between two vectors - /// - /// The from vector - /// The to vector - /// The interpolation distance [0..1] - /// The lerped vector - /// The factor f is unclamped. Value 0 matches the *v1* vector, Value 1 - /// matches the *v2* vector Value -1 is *v1* vector minus the difference - /// between *v1* and *v2* etc. - public static Vector2 Lerp(Vector2 v1, Vector2 v2, float f) { - Vector2 v = v1 + (v2 - v1) * f; - return v; - } - - /// - /// Calculate the signed angle between two vectors. - /// - /// The starting vector - /// The ending vector - /// The axis to rotate around - /// The signed angle in degrees - public static float SignedAngle(Vector2 from, Vector2 to) { - //float sign = Math.Sign(v1.y * v2.x - v1.x * v2.y); - //return Vector2.Angle(v1, v2) * sign; - - float sqrMagFrom = from.sqrMagnitude; - float sqrMagTo = to.sqrMagnitude; - - if (sqrMagFrom == 0 || sqrMagTo == 0) - return 0; - //if (!isfinite(sqrMagFrom) || !isfinite(sqrMagTo)) - // return nanf(""); - - float angleFrom = (float)Math.Atan2(from.y, from.x); - float angleTo = (float)Math.Atan2(to.y, to.x); - return (angleTo - angleFrom) * Angle.Rad2Deg; - } - - /// - /// Rotates the vector with the given angle - /// - /// The vector to rotate - /// The angle in degrees - /// - public static Vector2 Rotate(Vector2 v1, float angle) { - float sin = (float)Math.Sin(angle * Angle.Deg2Rad); - float cos = (float)Math.Cos(angle * Angle.Deg2Rad); - - float tx = v1.x; - float ty = v1.y; - Vector2 v = new Vector2() { - x = (cos * tx) - (sin * ty), - y = (sin * tx) + (cos * ty) - }; - return v; - } - - /// - /// Map interval of angles between vectors [0..Pi] to interval [0..1] - /// - /// The first vector - /// The second vector - /// The resulting factor in interval [0..1] - /// Vectors a and b must be normalized - public static float ToFactor(Vector2 v1, Vector2 v2) { - return (1 - Vector2.Dot(v1, v2)) / 2; - } - } -} \ No newline at end of file diff --git a/LinearAlgebra/src/Vector3.cs b/LinearAlgebra/src/Vector3.cs deleted file mode 100644 index 7994dcb..0000000 --- a/LinearAlgebra/src/Vector3.cs +++ /dev/null @@ -1,179 +0,0 @@ -#if !UNITY_5_3_OR_NEWER -using System; - -namespace LinearAlgebra { - public class Vector3Of { - public T x; - public T y; - public T z; - - public Vector3Of(T x, T y, T z) { - this.x = x; - this.y = y; - this.z = z; - } - - // public uint magnitude { - // get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z); - // } - } - - public class Vector3Int : Vector3Of { - public Vector3Int(int x, int y, int z) : base(x, y, z) { } - } - public class Vector3Float : Vector3Of { - public Vector3Float(float x, float y, float z) : base(x, y, z) { } - - public float magnitude { - get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z); - } - } - - /// - /// 3-dimensional vectors - /// - /// This uses the right-handed coordinate system. - public struct Vector3 : IEquatable { - - /// - /// The right axis of the vector - /// - public float x; //> left/right - /// - /// The upward axis of the vector - /// - public float y; //> up/down - /// - /// The forward axis of the vector - /// - public float z; //> forward/backward - - /// - /// Create a new 3-dimensional vector - /// - /// x axis value - /// y axis value - /// z axis value - public Vector3(float x, float y, float z) { - this.x = x; - this.y = y; - this.z = z; - } - - /// - /// A vector with zero for all axis - /// - public static readonly Vector3 zero = new Vector3(0, 0, 0); - /// - /// A vector with one for all axis - /// - public static readonly Vector3 one = new Vector3(1, 1, 1); - /// - /// A vector3 with values (-1, 0, 0) - /// - public static readonly Vector3 left = new Vector3(-1, 0, 0); - /// - /// A vector with values (1, 0, 0) - /// - public static readonly Vector3 right = new Vector3(1, 0, 0); - /// - /// A vector with values (0, -1, 0) - /// - public static readonly Vector3 down = new Vector3(0, -1, 0); - /// - /// A vector with values (0, 1, 0) - /// - public static readonly Vector3 up = new Vector3(0, 1, 0); - /// - /// A vector with values (0, 0, -1) - /// - public static readonly Vector3 back = new Vector3(0, -1, 0); - /// - /// A vector with values (0, 0, 1) - /// - public static readonly Vector3 forward = new Vector3(0, 1, 0); - - public readonly float magnitude { - get { - float d = (float)Math.Sqrt(x * x + y * y + z * z); - return d; - } - } - - public Vector3 normalized { - get { - float l = magnitude; - Vector3 v = zero; - if (l > Float.epsilon) - v = this / l; - return v; - } - } - - public static Vector3 operator +(Vector3 v1, Vector3 v2) { - Vector3 v = new Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z); - return v; - } - - public static Vector3 operator -(Vector3 v1, Vector3 v2) { - Vector3 v = new Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z); - return v; - } - - public static Vector3 operator -(Vector3 v1) { - Vector3 v = new Vector3(-v1.x, -v1.y, -v1.z); - return v; - } - - public static Vector3 operator *(Vector3 v1, float d) { - Vector3 v = new Vector3(v1.x * d, v1.y * d, v1.z * d); - return v; - } - - public static Vector3 operator *(float d, Vector3 v1) { - Vector3 v = new Vector3(d * v1.x, d * v1.y, d * v1.z); - return v; - } - - public static Vector3 operator /(Vector3 v1, float d) { - Vector3 v = new Vector3(v1.x / d, v1.y / d, v1.z / d); - return v; - } - - public bool Equals(Vector3 v) => (x == v.x && y == v.y && z == v.z); - - public override bool Equals(object obj) { - if (!(obj is Vector3 v)) - return false; - - return (x == v.x && y == v.y && z == v.z); - } - - public static bool operator ==(Vector3 v1, Vector3 v2) { - return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z); - } - - public static bool operator !=(Vector3 v1, Vector3 v2) { - return (v1.x != v2.x || v1.y != v2.y || v1.z != v2.z); - } - - public override int GetHashCode() { - return (x, y, z).GetHashCode(); - } - - public static float Distance(Vector3 v1, Vector3 v2) { - return (v2 - v1).magnitude; - } - - public static float Dot(Vector3 v1, Vector3 v2) { - return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; - } - - public static Vector3 Lerp(Vector3 v1, Vector3 v2, float f) { - Vector3 v = v1 + (v2 - v1) * f; - return v; - } - - } -} -#endif \ No newline at end of file diff --git a/LinearAlgebra/src/float16.cs b/LinearAlgebra/src/float16.cs deleted file mode 100644 index 4b58cdd..0000000 --- a/LinearAlgebra/src/float16.cs +++ /dev/null @@ -1,322 +0,0 @@ -using System; - -namespace LinearAlgebra { - - public class float16 { - // - // FILE: float16.cpp - // AUTHOR: Rob Tillaart - // VERSION: 0.1.8 - // PURPOSE: library for Float16s for Arduino - // URL: http://en.wikipedia.org/wiki/Half-precision_floating-point_format - - ushort _value; - - public float16() { _value = 0; } - - public float16(float f) { - //_value = f32tof16(f); - _value = F32ToF16__(f); - } - - public float toFloat() { - return f16tof32(_value); - } - - public ushort GetBinary() { return _value; } - public void SetBinary(ushort value) { _value = value; } - - ////////////////////////////////////////////////////////// - // - // EQUALITIES - // - /* - bool float16::operator ==(const float16 &f) { return (_value == f._value); } - - bool float16::operator !=(const float16 &f) { return (_value != f._value); } - - bool float16::operator >(const float16 &f) { - if ((_value & 0x8000) && (f._value & 0x8000)) - return _value < f._value; - if (_value & 0x8000) - return false; - if (f._value & 0x8000) - return true; - return _value > f._value; - } - - bool float16::operator >=(const float16 &f) { - if ((_value & 0x8000) && (f._value & 0x8000)) - return _value <= f._value; - if (_value & 0x8000) - return false; - if (f._value & 0x8000) - return true; - return _value >= f._value; - } - - bool float16::operator <(const float16 &f) { - if ((_value & 0x8000) && (f._value & 0x8000)) - return _value > f._value; - if (_value & 0x8000) - return true; - if (f._value & 0x8000) - return false; - return _value < f._value; - } - - bool float16::operator <=(const float16 &f) { - if ((_value & 0x8000) && (f._value & 0x8000)) - return _value >= f._value; - if (_value & 0x8000) - return true; - if (f._value & 0x8000) - return false; - return _value <= f._value; - } - - ////////////////////////////////////////////////////////// - // - // NEGATION - // - float16 float16::operator -() { - float16 f16; - f16.setBinary(_value ^ 0x8000); - return f16; - } - - ////////////////////////////////////////////////////////// - // - // MATH - // - float16 float16::operator +(const float16 &f) { - return float16(this->toDouble() + f.toDouble()); - } - - float16 float16::operator -(const float16 &f) { - return float16(this->toDouble() - f.toDouble()); - } - - float16 float16::operator *(const float16 &f) { - return float16(this->toDouble() * f.toDouble()); - } - - float16 float16::operator /(const float16 &f) { - return float16(this->toDouble() / f.toDouble()); - } - - float16 & float16::operator+=(const float16 &f) { - *this = this->toDouble() + f.toDouble(); - return *this; - } - - float16 & float16::operator-=(const float16 &f) { - *this = this->toDouble() - f.toDouble(); - return *this; - } - - float16 & float16::operator*=(const float16 &f) { - *this = this->toDouble() * f.toDouble(); - return *this; - } - - float16 & float16::operator/=(const float16 &f) { - *this = this->toDouble() / f.toDouble(); - return *this; - } - - ////////////////////////////////////////////////////////// - // - // MATH HELPER FUNCTIONS - // - int float16::sign() { - if (_value & 0x8000) - return -1; - if (_value & 0xFFFF) - return 1; - return 0; - } - - bool float16::isZero() { return ((_value & 0x7FFF) == 0x0000); } - - bool float16::isNaN() { - if ((_value & 0x7C00) != 0x7C00) - return false; - if ((_value & 0x03FF) == 0x0000) - return false; - return true; - } - - bool float16::isInf() { return ((_value == 0x7C00) || (_value == 0xFC00)); } - */ - ////////////////////////////////////////////////////////// - // - // CORE CONVERSION - // - float f16tof32(ushort _value) { - //ushort sgn; - ushort man; - int exp; - float f; - - //Debug.Log($"{_value}"); - - bool sgn = (_value & 0x8000) > 0; - exp = (_value & 0x7C00) >> 10; - man = (ushort)(_value & 0x03FF); - - //Debug.Log($"{sgn} {exp} {man}"); - - // ZERO - if ((_value & 0x7FFF) == 0) { - return sgn ? -0 : 0; - } - // NAN & INF - if (exp == 0x001F) { - if (man == 0) - return sgn ? float.NegativeInfinity : float.PositiveInfinity; //-INFINITY : INFINITY; - else - return float.NaN; // NAN; - } - - // SUBNORMAL/NORMAL - if (exp == 0) - f = 0; - else - f = 1; - - // PROCESS MANTISSE - for (int i = 9; i >= 0; i--) { - f *= 2; - if ((man & (1 << i)) != 0) - f = f + 1; - } - //Debug.Log($"{f}"); - f = f * (float)Math.Pow(2.0f, exp - 25); - if (exp == 0) { - f = f * (float)Math.Pow(2.0f, -13); // 5.96046447754e-8; - } - //Debug.Log($"{f}"); - return sgn ? -f : f; - } - - public static uint SingleToInt32Bits(float value) { - byte[] bytes = BitConverter.GetBytes(value); - if (BitConverter.IsLittleEndian) - Array.Reverse(bytes); // If the system is little-endian, reverse the byte order - return BitConverter.ToUInt32(bytes, 0); - } - - public ushort F32ToF16__(float f) { - uint t = BitConverter.ToUInt32(BitConverter.GetBytes(f), 0); - ushort man = (ushort)((t & 0x007FFFFF) >> 12); - int exp = (int)((t & 0x7F800000) >> 23); - bool sgn = (t & 0x80000000) != 0; - - // handle 0 - if ((t & 0x7FFFFFFF) == 0) { - return sgn ? (ushort)0x8000 : (ushort)0x0000; - } - // denormalized float32 does not fit in float16 - if (exp == 0x00) { - return sgn ? (ushort)0x8000 : (ushort)0x0000; - } - // handle infinity & NAN - if (exp == 0x00FF) { - if (man != 0) - return 0xFE00; // NAN - return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF - } - - // normal numbers - exp = exp - 127 + 15; - // overflow does not fit => INF - if (exp > 30) { - return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF - } - // subnormal numbers - if (exp < -38) { - return sgn ? (ushort)0x8000 : (ushort)0x0000; // -0 or 0 ? just 0 ? - } - if (exp <= 0) // subnormal - { - man >>= (exp + 14); - // rounding - man++; - man >>= 1; - if (sgn) - return (ushort)(0x8000 | man); - return man; - } - - // normal - // TODO rounding - exp <<= 10; - man++; - man >>= 1; - if (sgn) - return (ushort)(0x8000 | exp | man); - return (ushort)(exp | man); - } - - //This function is faulty!!!! - ushort f32tof16(float f) { - //uint t = *(uint*)&f; - //uint t = (uint)BitConverter.SingleToInt32Bits(f); - uint t = SingleToInt32Bits(f); - // man bits = 10; but we keep 11 for rounding - ushort man = (ushort)((t & 0x007FFFFF) >> 12); - short exp = (short)((t & 0x7F800000) >> 23); - bool sgn = (t & 0x80000000) != 0; - - // handle 0 - if ((t & 0x7FFFFFFF) == 0) { - return sgn ? (ushort)0x8000 : (ushort)0x0000; - } - // denormalized float32 does not fit in float16 - if (exp == 0x00) { - return sgn ? (ushort)0x8000 : (ushort)0x0000; - } - // handle infinity & NAN - if (exp == 0x00FF) { - if (man != 0) - return 0xFE00; // NAN - return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF - } - - // normal numbers - exp = (short)(exp - 127 + 15); - // overflow does not fit => INF - if (exp > 30) { - return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF - } - // subnormal numbers - if (exp < -38) { - return sgn ? (ushort)0x8000 : (ushort)0x0000; // -0 or 0 ? just 0 ? - } - if (exp <= 0) // subnormal - { - man >>= (exp + 14); - // rounding - man++; - man >>= 1; - if (sgn) - return (ushort)(0x8000 | man); - return man; - } - - // normal - // TODO rounding - exp <<= 10; - man++; - man >>= 1; - ushort uexp = (ushort)exp; - if (sgn) - return (ushort)(0x8000 | uexp | man); - return (ushort)(uexp | man); - } - - // -- END OF FILE -- - } - -} \ No newline at end of file diff --git a/LinearAlgebra/test/AngleTest.cs b/LinearAlgebra/test/AngleTest.cs deleted file mode 100644 index c248465..0000000 --- a/LinearAlgebra/test/AngleTest.cs +++ /dev/null @@ -1,171 +0,0 @@ -#if !UNITY_5_6_OR_NEWER -using NUnit.Framework; - -namespace LinearAlgebra.Test -{ - public class Tests - { - [SetUp] - public void Setup() - { - } - - [Test] - public void Normalize() - { - float r = 0; - - r = Angle.Normalize(90); - Assert.AreEqual(r, 90, "Normalize 90"); - - r = Angle.Normalize(-90); - Assert.AreEqual(r, -90, "Normalize -90"); - - r = Angle.Normalize(270); - Assert.AreEqual(r, -90, "Normalize 270"); - - r = Angle.Normalize(270 + 360); - Assert.AreEqual(r, -90, "Normalize 270+360"); - - r = Angle.Normalize(-270); - Assert.AreEqual(r, 90, "Normalize -270"); - - r = Angle.Normalize(-270 - 360); - Assert.AreEqual(r, 90, "Normalize -270-360"); - - r = Angle.Normalize(0); - Assert.AreEqual(r, 0, "Normalize 0"); - - r = Angle.Normalize(float.PositiveInfinity); - Assert.AreEqual(r, float.PositiveInfinity, "Normalize INFINITY"); - - r = Angle.Normalize(float.NegativeInfinity); - Assert.AreEqual(r, float.NegativeInfinity, "Normalize INFINITY"); - } - - [Test] - public void Clamp() - { - float r = 0; - - r = Angle.Clamp(1, 0, 2); - Assert.AreEqual(r, 1, "Clamp 1 0 2"); - - r = Angle.Clamp(-1, 0, 2); - Assert.AreEqual(r, 0, "Clamp -1 0 2"); - - r = Angle.Clamp(3, 0, 2); - Assert.AreEqual(r, 2, "Clamp 3 0 2"); - - r = Angle.Clamp(1, 0, 0); - Assert.AreEqual(r, 0, "Clamp 1 0 0"); - - r = Angle.Clamp(0, 0, 0); - Assert.AreEqual(r, 0, "Clamp 0 0 0"); - - r = Angle.Clamp(0, 1, -1); - Assert.AreEqual(r, 1, "Clamp 0 1 -1"); - - r = Angle.Clamp(1, 0, float.PositiveInfinity); - Assert.AreEqual(r, 1, "Clamp 1 0 INFINITY"); - - r = Angle.Clamp(1, float.NegativeInfinity, 1); - Assert.AreEqual(r, 1, "Clamp 1 -INFINITY 1"); - } - - [Test] - public void Difference() - { - float r = 0; - - r = Angle.Difference(0, 90); - Assert.AreEqual(r, 90, "Difference 0 90"); - - r = Angle.Difference(0, -90); - Assert.AreEqual(r, -90, "Difference 0 -90"); - - r = Angle.Difference(0, 270); - Assert.AreEqual(r, -90, "Difference 0 270"); - - r = Angle.Difference(0, -270); - Assert.AreEqual(r, 90, "Difference 0 -270"); - - r = Angle.Difference(90, 0); - Assert.AreEqual(r, -90, "Difference 90 0"); - - r = Angle.Difference(-90, 0); - Assert.AreEqual(r, 90, "Difference -90 0"); - - r = Angle.Difference(0, 0); - Assert.AreEqual(r, 0, "Difference 0 0"); - - r = Angle.Difference(90, 90); - Assert.AreEqual(r, 0, "Difference 90 90"); - - r = Angle.Difference(0, float.PositiveInfinity); - Assert.AreEqual(r, float.PositiveInfinity, "Difference 0 INFINITY"); - - r = Angle.Difference(0, float.NegativeInfinity); - Assert.AreEqual(r, float.NegativeInfinity, "Difference 0 -INFINITY"); - - r = Angle.Difference(float.NegativeInfinity, float.PositiveInfinity); - Assert.AreEqual(r, float.PositiveInfinity, "Difference -INFINITY INFINITY"); - } - - [Test] - public void MoveTowards() - { - float r = 0; - - r = Angle.MoveTowards(0, 90, 30); - Assert.AreEqual(r, 30, "MoveTowards 0 90 30"); - - r = Angle.MoveTowards(0, 90, 90); - Assert.AreEqual(r, 90, "MoveTowards 0 90 90"); - - r = Angle.MoveTowards(0, 90, 180); - Assert.AreEqual(r, 90, "MoveTowards 0 90 180"); - - r = Angle.MoveTowards(0, 90, 270); - Assert.AreEqual(r, 90, "MoveTowrads 0 90 270"); - - r = Angle.MoveTowards(0, 90, -30); - Assert.AreEqual(r, -30, "MoveTowards 0 90 -30"); - - r = Angle.MoveTowards(0, -90, -30); - Assert.AreEqual(r, 30, "MoveTowards 0 -90 -30"); - - r = Angle.MoveTowards(0, -90, -90); - Assert.AreEqual(r, 90, "MoveTowards 0 -90 -90"); - - r = Angle.MoveTowards(0, -90, -180); - Assert.AreEqual(r, 180, "MoveTowards 0 -90 -180"); - - r = Angle.MoveTowards(0, -90, -270); - Assert.AreEqual(r, 270, "MoveTowrads 0 -90 -270"); - - r = Angle.MoveTowards(0, 90, 0); - Assert.AreEqual(r, 0, "MoveTowards 0 90 0"); - - r = Angle.MoveTowards(0, 0, 0); - Assert.AreEqual(r, 0, "MoveTowards 0 0 0"); - - r = Angle.MoveTowards(0, 0, 30); - Assert.AreEqual(r, 0, "MoveTowrads 0 0 30"); - - r = Angle.MoveTowards(0, 90, float.PositiveInfinity); - Assert.AreEqual(r, 90, "MoveTowards 0 90 INFINITY"); - - r = Angle.MoveTowards(0, float.PositiveInfinity, 30); - Assert.AreEqual(r, 30, "MoveTowrads 0 INFINITY 30"); - - r = Angle.MoveTowards(0, -90, float.NegativeInfinity); - Assert.AreEqual(r, float.PositiveInfinity, "MoveTowards 0 -90 -INFINITY"); - - r = Angle.MoveTowards(0, float.NegativeInfinity, -30); - Assert.AreEqual(r, 30, "MoveTowrads 0 -INFINITY -30"); - - } - } -} -#endif \ No newline at end of file diff --git a/LinearAlgebra/test/LinearAlgebra_Test.csproj b/LinearAlgebra/test/LinearAlgebra_Test.csproj deleted file mode 100644 index 3ee2230..0000000 --- a/LinearAlgebra/test/LinearAlgebra_Test.csproj +++ /dev/null @@ -1,19 +0,0 @@ - - - - net5.0 - false - true - - - - - - - - - - - - - diff --git a/LinearAlgebra/test/SphericalTest.cs b/LinearAlgebra/test/SphericalTest.cs deleted file mode 100644 index 3ede4f4..0000000 --- a/LinearAlgebra/test/SphericalTest.cs +++ /dev/null @@ -1,30 +0,0 @@ -#if !UNITY_5_6_OR_NEWER -using NUnit.Framework; - -namespace LinearAlgebra.Test { - public class SphericalTest { - [SetUp] - public void Setup() { - } - - [Test] - public void FromVector3() { - Vector3 v = new(0, 0, 1); - Spherical s = Spherical.FromVector3(v); - Assert.AreEqual(1.0f, s.distance, "s.distance 0 0 1"); - Assert.AreEqual(0.0f, s.direction.horizontal, "s.hor 0 0 1"); - Assert.AreEqual(0.0f, s.direction.vertical, "s.vert 0 0 1"); - } - - [Test] - public void Addition() { - Spherical v1 = Spherical.Degrees(1, 45, 0); - Spherical v2 = Spherical.zero; - Spherical r = Spherical.zero; - - r = v1 + v2; - Assert.AreEqual(v1.distance, r.distance, "Addition(0,0,0)"); - } - } -} -#endif \ No newline at end of file