Added EulerXYZ
This commit is contained in:
parent
d3e2ded5d7
commit
00b62c9baa
@ -32,7 +32,6 @@ extern "C" {
|
||||
} Quat;
|
||||
}
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// A quaternion
|
||||
/// </summary>
|
||||
@ -104,18 +103,18 @@ public:
|
||||
/// Check the equality of two quaternions
|
||||
/// </summary>
|
||||
/// <param name="quaternion">The quaternion to compare to</param>
|
||||
/// <returns>True when the components of the quaternions are identical</returns>
|
||||
/// Note that this does not compare the rotations themselves.
|
||||
/// Two quaternions with the same rotational effect may have different
|
||||
/// components. Use Quaternion::Angle to check if the rotations are the same.
|
||||
/// <returns>True when the components of the quaternions are
|
||||
/// identical</returns> Note that this does not compare the rotations
|
||||
/// themselves. Two quaternions with the same rotational effect may have
|
||||
/// different components. Use Quaternion::Angle to check if the rotations are
|
||||
/// the same.
|
||||
bool operator==(const Quaternion& quaternion);
|
||||
|
||||
|
||||
/// <summary>
|
||||
/// The inverse of quaterion
|
||||
/// </summary>
|
||||
/// <param name="quaternion">The quaternion for which the inverse is needed</param>
|
||||
/// <returns>The inverted quaternion</returns>
|
||||
/// <param name="quaternion">The quaternion for which the inverse is
|
||||
/// needed</param> <returns>The inverted quaternion</returns>
|
||||
static Quaternion Inverse(Quaternion quaternion);
|
||||
|
||||
/// <summary>
|
||||
@ -124,14 +123,17 @@ public:
|
||||
/// <param name="forward">The look direction</param>
|
||||
/// <param name="upwards">The up direction</param>
|
||||
/// <returns>The look rotation</returns>
|
||||
static Quaternion LookRotation(const Vector3& forward, const Vector3& upwards);
|
||||
static Quaternion LookRotation(const Vector3& forward,
|
||||
const Vector3& upwards);
|
||||
/// <summary>
|
||||
/// Creates a quaternion with the given forward direction with up = Vector3::up
|
||||
/// Creates a quaternion with the given forward direction with up =
|
||||
/// Vector3::up
|
||||
/// </summary>
|
||||
/// <param name="forward">The look direction</param>
|
||||
/// <returns>The rotation for this direction</returns>
|
||||
/// For the rotation, Vector::up is used for the up direction.
|
||||
/// Note: if the forward direction == Vector3::up, the result is Quaternion::identity
|
||||
/// Note: if the forward direction == Vector3::up, the result is
|
||||
/// Quaternion::identity
|
||||
static Quaternion LookRotation(const Vector3& forward);
|
||||
|
||||
/// <summary>
|
||||
@ -147,9 +149,11 @@ public:
|
||||
/// </summary>
|
||||
/// <param name="from">The from rotation</param>
|
||||
/// <param name="to">The destination rotation</param>
|
||||
/// <param name="maxDegreesDelta">The maximum amount of degrees to rotate</param>
|
||||
/// <returns>The possibly limited rotation</returns>
|
||||
static Quaternion RotateTowards(const Quaternion& from, const Quaternion& to, float maxDegreesDelta);
|
||||
/// <param name="maxDegreesDelta">The maximum amount of degrees to
|
||||
/// rotate</param> <returns>The possibly limited rotation</returns>
|
||||
static Quaternion RotateTowards(const Quaternion& from,
|
||||
const Quaternion& to,
|
||||
float maxDegreesDelta);
|
||||
|
||||
/// <summary>
|
||||
/// Convert an angle/axis representation to a quaternion
|
||||
@ -170,7 +174,8 @@ public:
|
||||
/// </summary>
|
||||
/// <param name="orientation1">The first orientation</param>
|
||||
/// <param name="orientation2">The second orientation</param>
|
||||
/// <returns>The smallest angle in degrees between the two orientations</returns>
|
||||
/// <returns>The smallest angle in degrees between the two
|
||||
/// orientations</returns>
|
||||
static float Angle(Quaternion orientation1, Quaternion orientation2);
|
||||
/// <summary>
|
||||
/// Sherical lerp between two rotations
|
||||
@ -180,7 +185,9 @@ public:
|
||||
/// <param name="factor">The factor between 0 and 1.</param>
|
||||
/// <returns>The resulting rotation</returns>
|
||||
/// A factor 0 returns rotation1, factor1 returns rotation2.
|
||||
static Quaternion Slerp(const Quaternion& rotation1, const Quaternion& rotation2, float factor);
|
||||
static Quaternion Slerp(const Quaternion& rotation1,
|
||||
const Quaternion& rotation2,
|
||||
float factor);
|
||||
/// <summary>
|
||||
/// Unclamped sherical lerp between two rotations
|
||||
/// </summary>
|
||||
@ -190,7 +197,9 @@ public:
|
||||
/// <returns>The resulting rotation</returns>
|
||||
/// A factor 0 returns rotation1, factor1 returns rotation2.
|
||||
/// Values outside the 0..1 range will result in extrapolated rotations
|
||||
static Quaternion SlerpUnclamped(const Quaternion& rotation1, const Quaternion& rotation2, float factor);
|
||||
static Quaternion SlerpUnclamped(const Quaternion& rotation1,
|
||||
const Quaternion& rotation2,
|
||||
float factor);
|
||||
|
||||
/// <summary>
|
||||
/// Create a rotation from euler angles
|
||||
@ -199,28 +208,45 @@ public:
|
||||
/// <param name="y">The angle around the upward axis</param>
|
||||
/// <param name="z">The angle around the forward axis</param>
|
||||
/// <returns>The resulting quaternion</returns>
|
||||
/// Rotation are appied in the order z, X, Y.
|
||||
/// Rotation are appied in the order Z, X, Y.
|
||||
static Quaternion Euler(float x, float y, float z);
|
||||
/// <summary>
|
||||
/// Create a rotation from a vector containing euler angles
|
||||
/// </summary>
|
||||
/// <param name="eulerAngles">Vector with the euler angles</param>
|
||||
/// <returns>The resulting quaternion</returns>
|
||||
/// Rotation are appied in the order z, X, Y.
|
||||
/// Rotation are appied in the order Z, X, Y.
|
||||
static Quaternion Euler(Vector3 eulerAngles);
|
||||
|
||||
/// <summary>
|
||||
/// Create a rotation from euler angles
|
||||
/// </summary>
|
||||
/// <param name="x">The angle around the right axis</param>
|
||||
/// <param name="y">The angle around the upward axis</param>
|
||||
/// <param name="z">The angle around the forward axis</param>
|
||||
/// <returns>The resulting quaternion</returns>
|
||||
/// Rotation are appied in the order X, Y, Z.
|
||||
static Quaternion EulerXYZ(float x, float y, float z);
|
||||
/// <summary>
|
||||
/// Create a rotation from a vector containing euler angles
|
||||
/// </summary>
|
||||
/// <param name="eulerAngles">Vector with the euler angles</param>
|
||||
/// <returns>The resulting quaternion</returns>
|
||||
/// Rotation are appied in the order X, Y, Z.
|
||||
static Quaternion EulerXYZ(Vector3 eulerAngles);
|
||||
|
||||
/// <summary>
|
||||
/// Returns the angle of around the give axis for a rotation
|
||||
/// </summary>
|
||||
/// <param name="axis">The axis around which the angle should be computed</param>
|
||||
/// <param name="rotation">The source rotation</param>
|
||||
/// <param name="axis">The axis around which the angle should be
|
||||
/// computed</param> <param name="rotation">The source rotation</param>
|
||||
/// <returns>The signed angle around the axis</returns>
|
||||
static float GetAngleAround(Vector3 axis, Quaternion rotation);
|
||||
/// <summary>
|
||||
/// Returns the rotation limited around the given axis
|
||||
/// </summary>
|
||||
/// <param name="axis">The axis which which the rotation should be limited</param>
|
||||
/// <param name="rotation">The source rotation</param>
|
||||
/// <param name="axis">The axis which which the rotation should be
|
||||
/// limited</param> <param name="rotation">The source rotation</param>
|
||||
/// <returns>The rotation around the given axis</returns>
|
||||
static Quaternion GetRotationAround(Vector3 axis, Quaternion rotation);
|
||||
/// <summary>
|
||||
@ -228,9 +254,13 @@ public:
|
||||
/// </summary>
|
||||
/// <param name="axis">The base direction for the decomposition</param>
|
||||
/// <param name="rotation">The source rotation</param>
|
||||
/// <param name="swing">A pointer to the quaternion for the swing result</param>
|
||||
/// <param name="twist">A pointer to the quaternion for the twist result</param>
|
||||
static void GetSwingTwist(Vector3 axis, Quaternion rotation, Quaternion* swing, Quaternion* twist);
|
||||
/// <param name="swing">A pointer to the quaternion for the swing
|
||||
/// result</param> <param name="twist">A pointer to the quaternion for the
|
||||
/// twist result</param>
|
||||
static void GetSwingTwist(Vector3 axis,
|
||||
Quaternion rotation,
|
||||
Quaternion* swing,
|
||||
Quaternion* twist);
|
||||
|
||||
/// <summary>
|
||||
/// Calculate the dot product of two quaternions
|
||||
@ -247,7 +277,7 @@ private:
|
||||
|
||||
void ToAxisAngleRad(const Quaternion& q, Vector3* const axis, float* angle);
|
||||
static Quaternion FromEulerRad(Vector3 euler);
|
||||
|
||||
static Quaternion FromEulerRadXYZ(Vector3 euler);
|
||||
|
||||
Vector3 xyz() const;
|
||||
};
|
||||
|
@ -2,9 +2,9 @@
|
||||
// License, v. 2.0.If a copy of the MPL was not distributed with this
|
||||
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
#include "Quaternion.h"
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include "Vector3.h"
|
||||
|
||||
void CopyQuat(const Quat& q1, Quat& q2) {
|
||||
@ -72,7 +72,6 @@ Quaternion Quaternion::Normalize(const Quaternion& q) {
|
||||
return result;
|
||||
};
|
||||
|
||||
|
||||
float Quaternion::Dot(Quaternion a, Quaternion b) {
|
||||
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
|
||||
}
|
||||
@ -80,29 +79,20 @@ float Quaternion::Dot(Quaternion a, Quaternion b) {
|
||||
Vector3 Quaternion::ToAngles(const Quaternion& q1) {
|
||||
float test = q1.x * q1.y + q1.z * q1.w;
|
||||
if (test > 0.499) { // singularity at north pole
|
||||
return Vector3(
|
||||
0,
|
||||
2 * (float)atan2(q1.x, q1.w) * Rad2Deg,
|
||||
90
|
||||
);
|
||||
}
|
||||
else if (test < -0.499) { // singularity at south pole
|
||||
return Vector3(
|
||||
0,
|
||||
-2 * (float)atan2(q1.x, q1.w) * Rad2Deg,
|
||||
-90
|
||||
);
|
||||
}
|
||||
else {
|
||||
return Vector3(0, 2 * (float)atan2(q1.x, q1.w) * Rad2Deg, 90);
|
||||
} else if (test < -0.499) { // singularity at south pole
|
||||
return Vector3(0, -2 * (float)atan2(q1.x, q1.w) * Rad2Deg, -90);
|
||||
} else {
|
||||
float sqx = q1.x * q1.x;
|
||||
float sqy = q1.y * q1.y;
|
||||
float sqz = q1.z * q1.z;
|
||||
|
||||
return Vector3(
|
||||
atan2f(2 * q1.x * q1.w - 2 * q1.y * q1.z, 1 - 2 * sqx - 2 * sqz) * Rad2Deg,
|
||||
atan2f(2 * q1.y * q1.w - 2 * q1.x * q1.z, 1 - 2 * sqy - 2 * sqz) * Rad2Deg,
|
||||
asinf(2 * test) * Rad2Deg
|
||||
);
|
||||
atan2f(2 * q1.x * q1.w - 2 * q1.y * q1.z, 1 - 2 * sqx - 2 * sqz) *
|
||||
Rad2Deg,
|
||||
atan2f(2 * q1.y * q1.w - 2 * q1.x * q1.z, 1 - 2 * sqy - 2 * sqz) *
|
||||
Rad2Deg,
|
||||
asinf(2 * test) * Rad2Deg);
|
||||
}
|
||||
}
|
||||
|
||||
@ -111,8 +101,7 @@ Quaternion Quaternion::operator *(const Quaternion& r2) const {
|
||||
this->x * r2.w + this->y * r2.z - this->z * r2.y + this->w * r2.x,
|
||||
-this->x * r2.z + this->y * r2.w + this->z * r2.x + this->w * r2.y,
|
||||
this->x * r2.y - this->y * r2.x + this->z * r2.w + this->w * r2.z,
|
||||
-this->x * r2.x - this->y * r2.y - this->z * r2.z + this->w * r2.w
|
||||
);
|
||||
-this->x * r2.x - this->y * r2.y - this->z * r2.z + this->w * r2.w);
|
||||
};
|
||||
|
||||
Vector3 Quaternion::operator*(const Vector3& p) const {
|
||||
@ -129,9 +118,12 @@ Vector3 Quaternion::operator *(const Vector3& p) const {
|
||||
float num11 = this->w * num2;
|
||||
float num12 = this->w * num3;
|
||||
Vector3 result = Vector3::zero;
|
||||
result.x = (1 - (num5 + num6)) * p.x + (num7 - num12) * p.y + (num8 + num11) * p.z;
|
||||
result.y = (num7 + num12) * p.x + (1 - (num4 + num6)) * p.y + (num9 - num10) * p.z;
|
||||
result.z = (num8 - num11) * p.x + (num9 + num10) * p.y + (1 - (num4 + num5)) * p.z;
|
||||
result.x =
|
||||
(1 - (num5 + num6)) * p.x + (num7 - num12) * p.y + (num8 + num11) * p.z;
|
||||
result.y =
|
||||
(num7 + num12) * p.x + (1 - (num4 + num6)) * p.y + (num9 - num10) * p.z;
|
||||
result.z =
|
||||
(num8 - num11) * p.x + (num9 + num10) * p.y + (1 - (num4 + num5)) * p.z;
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -162,7 +154,6 @@ Quaternion Quaternion::LookRotation(const Vector3& forward, const Vector3& up) {
|
||||
float m21 = nForward.y;
|
||||
float m22 = nForward.z;
|
||||
|
||||
|
||||
float num8 = (m00 + m11) + m22;
|
||||
Quaternion quaternion = Quaternion();
|
||||
if (num8 > 0) {
|
||||
@ -201,7 +192,8 @@ Quaternion Quaternion::LookRotation(const Vector3& forward, const Vector3& up) {
|
||||
return quaternion;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::FromToRotation(Vector3 fromDirection, Vector3 toDirection) {
|
||||
Quaternion Quaternion::FromToRotation(Vector3 fromDirection,
|
||||
Vector3 toDirection) {
|
||||
Vector3 axis = Vector3::Cross(fromDirection, toDirection);
|
||||
axis = Vector3::Normalize(axis);
|
||||
float angle = Vector3::SignedAngle(fromDirection, toDirection, axis);
|
||||
@ -209,7 +201,9 @@ Quaternion Quaternion::FromToRotation(Vector3 fromDirection, Vector3 toDirection
|
||||
return rotation;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::RotateTowards(const Quaternion& from, const Quaternion& to, float maxDegreesDelta) {
|
||||
Quaternion Quaternion::RotateTowards(const Quaternion& from,
|
||||
const Quaternion& to,
|
||||
float maxDegreesDelta) {
|
||||
float num = Quaternion::Angle(from, to);
|
||||
if (num == 0) {
|
||||
return to;
|
||||
@ -240,37 +234,35 @@ float Quaternion::Angle(Quaternion a, Quaternion b) {
|
||||
return (float)acos(fmin(fabs(f), 1)) * 2 * Rad2Deg;
|
||||
}
|
||||
|
||||
void Quaternion::ToAngleAxis(float* angle, Vector3* axis)
|
||||
{
|
||||
void Quaternion::ToAngleAxis(float* angle, Vector3* axis) {
|
||||
Quaternion::ToAxisAngleRad(*this, axis, angle);
|
||||
*angle *= Rad2Deg;
|
||||
}
|
||||
|
||||
void Quaternion::ToAxisAngleRad(const Quaternion& q, Vector3* const axis, float* angle)
|
||||
{
|
||||
void Quaternion::ToAxisAngleRad(const Quaternion& q,
|
||||
Vector3* const axis,
|
||||
float* angle) {
|
||||
Quaternion q1 = (fabs(q.w) > 1.0f) ? Quaternion::Normalize(q) : q;
|
||||
*angle = 2.0f * acosf(q1.w); // angle
|
||||
float den = sqrtf(1.0F - q1.w * q1.w);
|
||||
if (den > 0.0001f)
|
||||
{
|
||||
if (den > 0.0001f) {
|
||||
*axis = q1.xyz() / den;
|
||||
}
|
||||
else
|
||||
{
|
||||
} else {
|
||||
// This occurs when the angle is zero.
|
||||
// Not a problem: just set an arbitrary normalized axis.
|
||||
*axis = Vector3(1, 0, 0);
|
||||
}
|
||||
}
|
||||
Quaternion Quaternion::SlerpUnclamped(const Quaternion& a, const Quaternion& b, float t) {
|
||||
Quaternion Quaternion::SlerpUnclamped(const Quaternion& a,
|
||||
const Quaternion& b,
|
||||
float t) {
|
||||
// if either input is zero, return the other.
|
||||
if (Quaternion::GetLengthSquared(a) == 0.0) {
|
||||
if (Quaternion::GetLengthSquared(b) == 0.0) {
|
||||
return Quaternion();
|
||||
}
|
||||
return b;
|
||||
}
|
||||
else if (Quaternion::GetLengthSquared(b) == 0.0f) {
|
||||
} else if (Quaternion::GetLengthSquared(b) == 0.0f) {
|
||||
return a;
|
||||
}
|
||||
|
||||
@ -282,8 +274,7 @@ Quaternion Quaternion::SlerpUnclamped(const Quaternion& a, const Quaternion& b,
|
||||
if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f) {
|
||||
// angle = 0.0f, so just return one input.
|
||||
return a;
|
||||
}
|
||||
else if (cosHalfAngle < 0.0f) {
|
||||
} else if (cosHalfAngle < 0.0f) {
|
||||
b2.x = -b.x;
|
||||
b2.y = -b.y;
|
||||
b2.z = -b.z;
|
||||
@ -300,8 +291,7 @@ Quaternion Quaternion::SlerpUnclamped(const Quaternion& a, const Quaternion& b,
|
||||
float oneOverSinHalfAngle = 1.0F / sinHalfAngle;
|
||||
blendA = sinf(halfAngle * (1.0F - t)) * oneOverSinHalfAngle;
|
||||
blendB = sinf(halfAngle * t) * oneOverSinHalfAngle;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
// do lerp if angle is really small.
|
||||
blendA = 1.0f - t;
|
||||
blendB = t;
|
||||
@ -314,9 +304,13 @@ Quaternion Quaternion::SlerpUnclamped(const Quaternion& a, const Quaternion& b,
|
||||
return Quaternion();
|
||||
}
|
||||
|
||||
Quaternion Quaternion::Slerp(const Quaternion& a, const Quaternion& b, float t) {
|
||||
if (t > 1) t = 1;
|
||||
if (t < 0) t = 0;
|
||||
Quaternion Quaternion::Slerp(const Quaternion& a,
|
||||
const Quaternion& b,
|
||||
float t) {
|
||||
if (t > 1)
|
||||
t = 1;
|
||||
if (t < 0)
|
||||
t = 0;
|
||||
return Quaternion::SlerpUnclamped(a, b, t);
|
||||
}
|
||||
|
||||
@ -341,10 +335,45 @@ Quaternion Quaternion::FromEulerRad(Vector3 euler) {
|
||||
float sinYawOver2 = (float)sin((float)yawOver2);
|
||||
float cosYawOver2 = (float)cos((float)yawOver2);
|
||||
Quaternion result;
|
||||
result.w = cosYawOver2 * cosPitchOver2 * cosRollOver2 + sinYawOver2 * sinPitchOver2 * sinRollOver2;
|
||||
result.x = sinYawOver2 * cosPitchOver2 * cosRollOver2 + cosYawOver2 * sinPitchOver2 * sinRollOver2;
|
||||
result.y = cosYawOver2 * sinPitchOver2 * cosRollOver2 - sinYawOver2 * cosPitchOver2 * sinRollOver2;
|
||||
result.z = cosYawOver2 * cosPitchOver2 * sinRollOver2 - sinYawOver2 * sinPitchOver2 * cosRollOver2;
|
||||
result.w = cosYawOver2 * cosPitchOver2 * cosRollOver2 +
|
||||
sinYawOver2 * sinPitchOver2 * sinRollOver2;
|
||||
result.x = sinYawOver2 * cosPitchOver2 * cosRollOver2 +
|
||||
cosYawOver2 * sinPitchOver2 * sinRollOver2;
|
||||
result.y = cosYawOver2 * sinPitchOver2 * cosRollOver2 -
|
||||
sinYawOver2 * cosPitchOver2 * sinRollOver2;
|
||||
result.z = cosYawOver2 * cosPitchOver2 * sinRollOver2 -
|
||||
sinYawOver2 * sinPitchOver2 * cosRollOver2;
|
||||
return result;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::EulerXYZ(float x, float y, float z) {
|
||||
return Quaternion::EulerXYZ(Vector3(x, y, z));
|
||||
}
|
||||
Quaternion Quaternion::EulerXYZ(Vector3 euler) {
|
||||
return Quaternion::FromEulerRadXYZ(euler * Deg2Rad);
|
||||
}
|
||||
Quaternion Quaternion::FromEulerRadXYZ(Vector3 euler) {
|
||||
float yaw = euler.x;
|
||||
float pitch = euler.y;
|
||||
float roll = euler.z;
|
||||
float rollOver2 = roll * 0.5f;
|
||||
float sinRollOver2 = (float)sin((float)rollOver2);
|
||||
float cosRollOver2 = (float)cos((float)rollOver2);
|
||||
float pitchOver2 = pitch * 0.5f;
|
||||
float sinPitchOver2 = (float)sin((float)pitchOver2);
|
||||
float cosPitchOver2 = (float)cos((float)pitchOver2);
|
||||
float yawOver2 = yaw * 0.5f;
|
||||
float sinYawOver2 = (float)sin((float)yawOver2);
|
||||
float cosYawOver2 = (float)cos((float)yawOver2);
|
||||
Quaternion result;
|
||||
result.w = cosYawOver2 * cosPitchOver2 * cosRollOver2 +
|
||||
sinYawOver2 * sinPitchOver2 * sinRollOver2;
|
||||
result.x = sinYawOver2 * cosPitchOver2 * cosRollOver2 -
|
||||
cosYawOver2 * sinPitchOver2 * sinRollOver2;
|
||||
result.y = cosYawOver2 * sinPitchOver2 * cosRollOver2 +
|
||||
sinYawOver2 * cosPitchOver2 * sinRollOver2;
|
||||
result.z = cosYawOver2 * cosPitchOver2 * sinRollOver2 -
|
||||
sinYawOver2 * sinPitchOver2 * cosRollOver2;
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -363,14 +392,17 @@ float Quaternion::GetAngleAround(Vector3 axis, Quaternion rotation) {
|
||||
|
||||
Quaternion Quaternion::GetRotationAround(Vector3 axis, Quaternion rotation) {
|
||||
Vector3 ra = Vector3(rotation.x, rotation.y, rotation.z); // rotation axis
|
||||
Vector3 p = Vector3::Project(ra, axis); // return projection ra on to axis (parallel component)
|
||||
Vector3 p = Vector3::Project(
|
||||
ra, axis); // return projection ra on to axis (parallel component)
|
||||
Quaternion twist = Quaternion(p.x, p.y, p.z, rotation.w);
|
||||
twist = Quaternion::Normalize(twist);
|
||||
return twist;
|
||||
}
|
||||
|
||||
void Quaternion::GetSwingTwist(Vector3 axis, Quaternion rotation, Quaternion* swing, Quaternion* twist) {
|
||||
void Quaternion::GetSwingTwist(Vector3 axis,
|
||||
Quaternion rotation,
|
||||
Quaternion* swing,
|
||||
Quaternion* twist) {
|
||||
*twist = GetRotationAround(axis, rotation);
|
||||
*swing = rotation * Quaternion::Inverse(*twist);
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user