Compare commits

..

10 Commits

15 changed files with 391 additions and 84 deletions

View File

@ -21,7 +21,7 @@ template <typename T>
class AngleOf { class AngleOf {
public: public:
/// @brief Create a new angle with a zero value /// @brief Create a new angle with a zero value
AngleOf<T>(); AngleOf();
/// @brief An zero value angle /// @brief An zero value angle
const static AngleOf<T> zero; const static AngleOf<T> zero;
@ -209,7 +209,7 @@ class AngleOf {
private: private:
T value; T value;
AngleOf<T>(T rawValue); AngleOf(T rawValue);
}; };
using AngleSingle = AngleOf<float>; using AngleSingle = AngleOf<float>;

View File

@ -9,6 +9,7 @@
#include <math.h> #include <math.h>
namespace LinearAlgebra {
template <typename T> template <typename T>
DirectionOf<T>::DirectionOf() { DirectionOf<T>::DirectionOf() {
this->horizontal = AngleOf<T>(); this->horizontal = AngleOf<T>();
@ -98,5 +99,6 @@ void DirectionOf<T>::Normalize() {
} }
} }
template class DirectionOf<float>; template class LinearAlgebra::DirectionOf<float>;
template class DirectionOf<signed short>; template class LinearAlgebra::DirectionOf<signed short>;
}

View File

@ -30,11 +30,11 @@ class DirectionOf {
AngleOf<T> vertical; AngleOf<T> vertical;
/// @brief Create a new direction with zero angles /// @brief Create a new direction with zero angles
DirectionOf<T>(); DirectionOf();
/// @brief Create a new direction /// @brief Create a new direction
/// @param horizontal The horizontal angle /// @param horizontal The horizontal angle
/// @param vertical The vertical angle. /// @param vertical The vertical angle.
DirectionOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical); DirectionOf(AngleOf<T> horizontal, AngleOf<T> vertical);
/// @brief Convert the direction into a carthesian vector /// @brief Convert the direction into a carthesian vector
/// @return The carthesian vector corresponding to this direction. /// @return The carthesian vector corresponding to this direction.
@ -99,6 +99,4 @@ using Direction = DirectionSingle;
} // namespace LinearAlgebra } // namespace LinearAlgebra
using namespace LinearAlgebra;
#endif #endif

View File

@ -1,26 +1,137 @@
#include "Matrix.h" #include "Matrix.h"
#if !defined(NO_STD)
#include <iostream>
#endif
namespace LinearAlgebra {
#pragma region Matrix1
Matrix1::Matrix1(int size) : size(size) {
if (this->size == 0)
data = nullptr;
else {
this->data = new float[size]();
this->externalData = false;
}
}
Matrix1::Matrix1(float* data, int size) : data(data), size(size) {
this->externalData = true;
}
Matrix1 LinearAlgebra::Matrix1::FromQuaternion(Quaternion q) {
Matrix1 r = Matrix1(4);
float* data = r.data;
data[0] = q.x;
data[1] = q.y;
data[2] = q.z;
data[3] = q.w;
return r;
}
Quaternion LinearAlgebra::Matrix1::ToQuaternion() {
return Quaternion(this->data[0], this->data[1], this->data[2], this->data[3]);
}
// Matrix1
#pragma endregion
#pragma region Matrix2 #pragma region Matrix2
Matrix2::Matrix2() {}
Matrix2::Matrix2(int nRows, int nCols) : nRows(nRows), nCols(nCols) { Matrix2::Matrix2(int nRows, int nCols) : nRows(nRows), nCols(nCols) {
this->nValues = nRows * nCols; this->nValues = nRows * nCols;
data = new float[nValues](); if (this->nValues == 0)
this->data = nullptr;
else {
this->data = new float[this->nValues];
this->externalData = false;
}
} }
Matrix2::Matrix2(float* data, int nRows, int nCols) Matrix2::Matrix2(float* data, int nRows, int nCols)
: nRows(nRows), nCols(nCols), data(data) { : nRows(nRows), nCols(nCols), data(data) {
this->nValues = nRows * nCols; this->nValues = nRows * nCols;
this->externalData = true;
}
Matrix2::Matrix2(const Matrix2& m)
: nRows(m.nRows), nCols(m.nCols), nValues(m.nValues) {
if (this->nValues == 0)
this->data = nullptr;
else {
this->data = new float[this->nValues];
for (int ix = 0; ix < this->nValues; ++ix)
this->data[ix] = m.data[ix];
}
}
Matrix2& Matrix2::operator=(const Matrix2& m) {
if (this != &m) {
delete[] this->data; // Free the current memory
this->nRows = m.nRows;
this->nCols = m.nCols;
this->nValues = m.nValues;
if (this->nValues == 0)
this->data = nullptr;
else {
this->data = new float[this->nValues];
for (int ix = 0; ix < this->nValues; ++ix)
this->data[ix] = m.data[ix];
}
}
return *this;
} }
Matrix2::~Matrix2() { Matrix2::~Matrix2() {
delete[] data; if (!this->externalData)
delete[] data;
}
Matrix2 Matrix2::Clone() const {
Matrix2 r = Matrix2(this->nRows, this->nCols);
for (int ix = 0; ix < this->nValues; ++ix)
r.data[ix] = this->data[ix];
return r;
}
// Move constructor
Matrix2::Matrix2(Matrix2&& other) noexcept
: nRows(other.nRows),
nCols(other.nCols),
nValues(other.nValues),
data(other.data) {
other.data = nullptr; // Set the other object's pointer to nullptr to avoid
// double deletion
}
// Move assignment operator
Matrix2& Matrix2::operator=(Matrix2&& other) noexcept {
if (this != &other) {
delete[] data; // Clean up current data
nRows = other.nRows;
nCols = other.nCols;
nValues = other.nValues;
data = other.data;
other.data = nullptr; // Avoid double deletion
}
return *this;
} }
Matrix2 Matrix2::Zero(int nRows, int nCols) { Matrix2 Matrix2::Zero(int nRows, int nCols) {
Matrix2 m = Matrix2(nRows, nCols); Matrix2 r = Matrix2(nRows, nCols);
for (int ix = 0; ix < m.nValues; ix++) for (int ix = 0; ix < r.nValues; ix++)
m.data[ix] = 0; r.data[ix] = 0;
return m; return r;
}
void Matrix2::Clear() {
for (int ix = 0; ix < this->nValues; ix++)
this->data[ix] = 0;
} }
Matrix2 Matrix2::Identity(int size) { Matrix2 Matrix2::Identity(int size) {
@ -31,7 +142,7 @@ Matrix2 Matrix2::Diagonal(float f, int size) {
Matrix2 r = Matrix2(size, size); Matrix2 r = Matrix2(size, size);
float* data = r.data; float* data = r.data;
int valueIx = 0; int valueIx = 0;
for (int ix = 0; ix < r.nValues; ix++) { for (int ix = 0; ix < size; ix++) {
data[valueIx] = f; data[valueIx] = f;
valueIx += size + 1; valueIx += size + 1;
} }
@ -50,6 +161,17 @@ Matrix2 Matrix2::SkewMatrix(const Vector3& v) {
return r; return r;
} }
Matrix2 Matrix2::Transpose() const {
Matrix2 r = Matrix2(this->nCols, this->nRows);
for (int rowIx = 0; rowIx < this->nRows; rowIx++) {
for (int colIx = 0; colIx < this->nCols; colIx++)
r.data[colIx * this->nCols + rowIx] =
this->data[rowIx * this->nCols + colIx];
}
return r;
}
Matrix2 LinearAlgebra::Matrix2::operator-() const { Matrix2 LinearAlgebra::Matrix2::operator-() const {
Matrix2 r = Matrix2(this->nRows, this->nCols); Matrix2 r = Matrix2(this->nRows, this->nCols);
for (int ix = 0; ix < r.nValues; ix++) for (int ix = 0; ix < r.nValues; ix++)
@ -57,13 +179,26 @@ Matrix2 LinearAlgebra::Matrix2::operator-() const {
return r; return r;
} }
Matrix2 LinearAlgebra::Matrix2::operator+(const Matrix2& v) const {
Matrix2 r = Matrix2(this->nRows, this->nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = this->data[ix] + v.data[ix];
return r;
}
Matrix2 Matrix2::operator+=(const Matrix2& v) {
for (int ix = 0; ix < this->nValues; ix++)
this->data[ix] += v.data[ix];
return *this;
}
Matrix2 LinearAlgebra::Matrix2::operator*(const Matrix2& B) const { Matrix2 LinearAlgebra::Matrix2::operator*(const Matrix2& B) const {
Matrix2 r = Matrix2(this->nRows, B.nCols); Matrix2 r = Matrix2(this->nRows, B.nCols);
int ACols = this->nCols; int ACols = this->nCols;
int BCols = B.nCols; int BCols = B.nCols;
int ARows = this->nRows; int ARows = this->nRows;
//int BRows = B.nRows; // int BRows = B.nRows;
for (int i = 0; i < ARows; ++i) { for (int i = 0; i < ARows; ++i) {
// Pre-compute row offsets // Pre-compute row offsets
@ -71,33 +206,83 @@ Matrix2 LinearAlgebra::Matrix2::operator*(const Matrix2& B) const {
int BColOffset = i * BCols; // BColOffset is constant for each row of B int BColOffset = i * BCols; // BColOffset is constant for each row of B
for (int j = 0; j < BCols; ++j) { for (int j = 0; j < BCols; ++j) {
float sum = 0; float sum = 0;
// std::cout << " 0";
int BIndex = j; int BIndex = j;
for (int k = 0; k < ACols; ++k) { for (int k = 0; k < ACols; ++k) {
// std::cout << " + " << this->data[ARowOffset + k] << " * "
// << B.data[BIndex];
sum += this->data[ARowOffset + k] * B.data[BIndex]; sum += this->data[ARowOffset + k] * B.data[BIndex];
BIndex += BCols; BIndex += BCols;
} }
r.data[BColOffset + j] = sum; r.data[BColOffset + j] = sum;
// std::cout << " = " << sum << " ix: " << BColOffset + j << "\n";
} }
} }
return r; return r;
} }
void LinearAlgebra::Matrix2::SetSlice(int rowStart, Matrix2 Matrix2::Slice(int rowStart, int rowStop, int colStart, int colStop) {
int rowStop, Matrix2 r = Matrix2(rowStop - rowStart, colStop - colStart);
int colStart,
int colStop, int resultRowIx = 0;
const Matrix2& m) const { int resultColIx = 0;
for (int i = rowStart; i < rowStop; i++) { for (int i = rowStart; i < rowStop; i++) {
for (int j = colStart; j < colStop; j++) for (int j = colStart; j < colStop; j++)
this->data[i * this->nCols + j] = r.data[resultRowIx * r.nCols + resultColIx] =
m.data[(i - rowStart) * m.nCols + (j - colStart)]; this->data[i * this->nCols + j];
// this->data[i, j] = m.data[i - rowStart, j - colStart];
} }
return r;
}
void Matrix2::UpdateSlice(int rowStart,
int rowStop,
int colStart,
int colStop,
const Matrix2& m) const {
// for (int i = rowStart; i < rowStop; i++) {
// for (int j = colStart; j < colStop; j++)
// this->data[i * this->nCols + j] =
// m.data[(i - rowStart) * m.nCols + (j - colStart)];
// }
int rRowDataIx = rowStart * this->nCols;
int mRowDataIx = 0;
for (int rowIx = rowStart; rowIx < rowStop; rowIx++) {
rRowDataIx = rowIx * this->nCols;
// rRowDataIx += this->nCols;
mRowDataIx += m.nCols;
for (int colIx = colStart; colIx < colStop; colIx++) {
this->data[rRowDataIx + colIx] = m.data[mRowDataIx + (colIx - colStart)];
}
}
}
/// @brief Compute the Omega matrix of a 3D vector
/// @param v The vector
/// @return 4x4 Omega matrix
Matrix2 LinearAlgebra::Matrix2::Omega(const Vector3& v) {
Matrix2 r = Matrix2::Zero(4, 4);
r.UpdateSlice(0, 3, 0, 3, -Matrix2::SkewMatrix(v));
// set last row to -v
int ix = 3 * 4;
r.data[ix++] = -v.x;
r.data[ix++] = -v.y;
r.data[ix] = -v.z;
// Set last column to v
ix = 3;
r.data[ix += 4] = v.x;
r.data[ix += 4] = v.y;
r.data[ix] = v.z;
return r;
} }
// Matrix2 // Matrix2
#pragma endregion #pragma endregion
} // namespace LinearAlgebra
template <> template <>
MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) { MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
if (rows <= 0 || cols <= 0) { if (rows <= 0 || cols <= 0) {

View File

@ -1,10 +1,28 @@
#ifndef MATRIX_H #ifndef MATRIX_H
#define MATRIX_H #define MATRIX_H
#include "Quaternion.h"
#include "Vector3.h" #include "Vector3.h"
namespace LinearAlgebra { namespace LinearAlgebra {
/// @brief A 1-dimensional matrix or vector of arbitrary size
class Matrix1 {
public:
float* data = nullptr;
int size = 0;
Matrix1(int size);
Matrix1(float* data, int size);
static Matrix1 FromQuaternion(Quaternion q);
Quaternion ToQuaternion();
private:
bool externalData = true;
};
/// @brief A 2-dimensional matrix of arbitrary size
class Matrix2 { class Matrix2 {
public: public:
int nRows = 0; int nRows = 0;
@ -12,12 +30,18 @@ class Matrix2 {
int nValues = 0; int nValues = 0;
float* data = nullptr; float* data = nullptr;
Matrix2();
Matrix2(int nRows, int nCols); Matrix2(int nRows, int nCols);
Matrix2(float* data, int nRows, int nCols); Matrix2(float* data, int nRows, int nCols);
Matrix2(const Matrix2& m);
Matrix2& operator=(const Matrix2& other);
~Matrix2(); ~Matrix2();
Matrix2 Clone() const;
static Matrix2 Zero(int nRows, int nCols); static Matrix2 Zero(int nRows, int nCols);
void Clear();
static Matrix2 Identity(int size); static Matrix2 Identity(int size);
@ -25,11 +49,69 @@ class Matrix2 {
static Matrix2 SkewMatrix(const Vector3& v); static Matrix2 SkewMatrix(const Vector3& v);
Matrix2 Transpose() const;
Matrix2 operator-() const; Matrix2 operator-() const;
Matrix2 operator*(const Matrix2& m) const; /// @brief Add a matrix to this matrix
/// @param m The matrix to add to this matrix
/// @return The result of the addition
Matrix2 operator+(const Matrix2& v) const;
Matrix2 operator+=(const Matrix2& v);
void SetSlice(int rowStart, int rowStop, int colStart, int colStop, const Matrix2& m) const; Matrix2 operator*(const Matrix2& m) const;
friend Matrix2 operator*(const Matrix2& m, float f) {
Matrix2 r = Matrix2(m.nRows, m.nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = m.data[ix] * f;
return r;
}
friend Matrix2 operator*(float f, const Matrix2& m) {
Matrix2 r = Matrix2(m.nRows, m.nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = f * m.data[ix];
return r;
}
friend Matrix1 operator*(const Matrix2& m, const Matrix1& v) {
Matrix1 r = Matrix1(m.nRows);
for (int rowIx = 0; rowIx < m.nRows; rowIx++) {
int mRowIx = rowIx * m.nCols;
for (int colIx = 0; colIx < m.nCols; colIx++)
r.data[rowIx] += m.data[mRowIx + colIx] * v.data[rowIx];
}
return r;
}
friend Matrix2 operator/(const Matrix2& m, float f) {
Matrix2 r = Matrix2(m.nRows, m.nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = m.data[ix] / f;
return r;
}
friend Matrix2 operator/(float f, const Matrix2& m) {
Matrix2 r = Matrix2(m.nRows, m.nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = f / m.data[ix];
return r;
}
Matrix2 Slice(int rawStart, int rowStop, int colStart, int colStop);
void UpdateSlice(int rowStart,
int rowStop,
int colStart,
int colStop,
const Matrix2& m) const;
// private:
// move constructor and move assignment operator
Matrix2(Matrix2&& other) noexcept;
Matrix2& operator=(Matrix2&& other) noexcept;
static Matrix2 Omega(const Vector3& v);
private:
bool externalData = true;
}; };
/// @brief Single precision float matrix /// @brief Single precision float matrix
@ -143,6 +225,6 @@ class MatrixOf {
}; };
} // namespace LinearAlgebra } // namespace LinearAlgebra
using namespace LinearAlgebra; // using namespace LinearAlgebra;
#endif #endif

View File

@ -175,5 +175,5 @@ PolarOf<T> PolarOf<T>::Rotate(const PolarOf& v, AngleOf<T> angle) {
return r; return r;
} }
template class PolarOf<float>; template class LinearAlgebra::PolarOf<float>;
template class PolarOf<signed short>; template class LinearAlgebra::PolarOf<signed short>;

View File

@ -5,6 +5,8 @@
#include <math.h> #include <math.h>
namespace LinearAlgebra {
template <typename T> template <typename T>
SphericalOf<T>::SphericalOf() { SphericalOf<T>::SphericalOf() {
this->distance = 0.0f; this->distance = 0.0f;
@ -301,3 +303,5 @@ SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T>& v,
template class SphericalOf<float>; template class SphericalOf<float>;
template class SphericalOf<signed short>; template class SphericalOf<signed short>;
} // namespace LinearAlgebra

View File

@ -24,9 +24,9 @@ class SphericalOf {
/// @brief The direction of the vector /// @brief The direction of the vector
DirectionOf<T> direction; DirectionOf<T> direction;
SphericalOf<T>(); SphericalOf();
SphericalOf<T>(float distance, AngleOf<T> horizontal, AngleOf<T> vertical); SphericalOf(float distance, AngleOf<T> horizontal, AngleOf<T> vertical);
SphericalOf<T>(float distance, DirectionOf<T> direction); SphericalOf(float distance, DirectionOf<T> direction);
/// @brief Create spherical vector without using AngleOf type. All given /// @brief Create spherical vector without using AngleOf type. All given
/// angles are in degrees /// angles are in degrees
@ -186,7 +186,6 @@ using Spherical = SphericalSingle;
#endif #endif
} // namespace LinearAlgebra } // namespace LinearAlgebra
using namespace LinearAlgebra;
#include "Polar.h" #include "Polar.h"
#include "Vector3.h" #include "Vector3.h"

View File

@ -4,6 +4,8 @@
#include "SwingTwist.h" #include "SwingTwist.h"
namespace LinearAlgebra {
template <typename T> template <typename T>
SwingTwistOf<T>::SwingTwistOf() { SwingTwistOf<T>::SwingTwistOf() {
this->swing = DirectionOf<T>(AngleOf<T>(), AngleOf<T>()); this->swing = DirectionOf<T>(AngleOf<T>(), AngleOf<T>());
@ -165,4 +167,6 @@ void SwingTwistOf<T>::Normalize() {
} }
template class SwingTwistOf<float>; template class SwingTwistOf<float>;
template class SwingTwistOf<signed short>; template class SwingTwistOf<signed short>;
}

View File

@ -21,9 +21,9 @@ class SwingTwistOf {
DirectionOf<T> swing; DirectionOf<T> swing;
AngleOf<T> twist; AngleOf<T> twist;
SwingTwistOf<T>(); SwingTwistOf();
SwingTwistOf<T>(DirectionOf<T> swing, AngleOf<T> twist); SwingTwistOf(DirectionOf<T> swing, AngleOf<T> twist);
SwingTwistOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist); SwingTwistOf(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist);
static SwingTwistOf<T> Degrees(float horizontal, static SwingTwistOf<T> Degrees(float horizontal,
float vertical = 0, float vertical = 0,

View File

@ -6,6 +6,8 @@
#include "Direction.h" #include "Direction.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity() #define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Direction16, Compare) { TEST(Direction16, Compare) {

View File

@ -1,60 +1,88 @@
#if GTEST #if GTEST
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <limits>
#include <math.h> #include <math.h>
#include <limits>
#include "Matrix.h" #include "Matrix.h"
TEST(Matrix2, Multiplication) { TEST(Matrix2, Zero) {
// Test 1: Multiplying two 2x2 matrices // Test case 1: 2x2 zero matrix
float dataA[] = {1, 2, 3, 4};
float dataB[] = {5, 6, 7, 8};
Matrix2 A(dataA, 2, 2);
Matrix2 B(dataB, 2, 2);
Matrix2 result = A * B;
float expectedData[] = {19, 22, 43, 50};
for (int i = 0; i < 4; ++i) {
//assert(result.data[i] == expectedData[i]);
EXPECT_TRUE(result.data[i] == expectedData[i]);
}
std::cout << "Test 1 passed: 2x2 matrix multiplication.\n";
// Test 2: Multiplying a 3x2 matrix with a 2x3 matrix
float dataC[] = {1, 2, 3, 4, 5, 6};
float dataD[] = {7, 8, 9, 10, 11, 12};
Matrix2 C(dataC, 3, 2);
Matrix2 D(dataD, 2, 3);
Matrix2 result2 = C * D;
float expectedData2[] = {29, 32, 35, 65, 72, 79, 101, 112, 123};
for (int i = 0; i < 9; ++i) {
assert(result2.data[i] == expectedData2[i]);
EXPECT_TRUE(result2.data[i] == expectedData2[i]);
}
std::cout << "Test 2 passed: 3x2 * 2x3 matrix multiplication.\n";
// Test 3: Multiplying with a zero matrix
Matrix2 zeroMatrix = Matrix2::Zero(2, 2); Matrix2 zeroMatrix = Matrix2::Zero(2, 2);
Matrix2 result3 = A * zeroMatrix; EXPECT_TRUE(zeroMatrix.nRows == 2);
EXPECT_TRUE(zeroMatrix.nCols == 2);
for (int i = 0; i < 4; ++i) { for (int i = 0; i < zeroMatrix.nValues; ++i) {
assert(result3.data[i] == 0); EXPECT_TRUE(zeroMatrix.data[i] == 0.0f);
EXPECT_TRUE(result3.data[i] == 0);
} }
std::cout << "Test 3 passed: Multiplication with zero matrix.\n"; std::cout << "Test case 1 passed: 2x2 zero matrix\n";
// Test 4: Multiplying with an identity matrix // Test case 2: 3x3 zero matrix
Matrix2 identityMatrix = Matrix2::Identity(2); zeroMatrix = Matrix2::Zero(3, 3);
Matrix2 result4 = A * identityMatrix; EXPECT_TRUE(zeroMatrix.nRows == 3);
EXPECT_TRUE(zeroMatrix.nCols == 3);
for (int i = 0; i < 4; ++i) { for (int i = 0; i < zeroMatrix.nValues; ++i) {
assert(result4.data[i] == A.data[i]); EXPECT_TRUE(zeroMatrix.data[i] == 0.0f);
EXPECT_TRUE(result4.data[i] == A.data[i]);
} }
std::cout << "Test 4 passed: Multiplication with identity matrix.\n"; std::cout << "Test case 2 passed: 3x3 zero matrix\n";
// Test case 3: 1x1 zero matrix
zeroMatrix = Matrix2::Zero(1, 1);
EXPECT_TRUE(zeroMatrix.nRows == 1);
EXPECT_TRUE(zeroMatrix.nCols == 1);
EXPECT_TRUE(zeroMatrix.data[0] == 0.0f);
std::cout << "Test case 3 passed: 1x1 zero matrix\n";
// Test case 4: 0x0 matrix (edge case)
zeroMatrix = Matrix2::Zero(0, 0);
EXPECT_TRUE(zeroMatrix.nRows == 0);
EXPECT_TRUE(zeroMatrix.nCols == 0);
EXPECT_TRUE(zeroMatrix.data == nullptr);
std::cout << "Test case 4 passed: 0x0 matrix\n";
}
TEST(Matrix2, Multiplication) {
// Test 1: Multiplying two 2x2 matrices
float dataA[] = {1, 2, 3, 4};
float dataB[] = {5, 6, 7, 8};
Matrix2 A(dataA, 2, 2);
Matrix2 B(dataB, 2, 2);
Matrix2 result = A * B;
float expectedData[] = {19, 22, 43, 50};
for (int i = 0; i < 4; ++i)
EXPECT_TRUE(result.data[i] == expectedData[i]);
std::cout << "Test 1 passed: 2x2 matrix multiplication.\n";
// Test 2: Multiplying a 3x2 matrix with a 2x3 matrix
float dataC[] = {1, 2, 3, 4, 5, 6};
float dataD[] = {7, 8, 9, 10, 11, 12};
Matrix2 C(dataC, 3, 2);
Matrix2 D(dataD, 2, 3);
Matrix2 result2 = C * D;
float expectedData2[] = {27, 30, 33, 61, 68, 75, 95, 106, 117};
for (int i = 0; i < 9; ++i)
EXPECT_TRUE(result2.data[i] == expectedData2[i]);
std::cout << "Test 2 passed: 3x2 * 2x3 matrix multiplication.\n";
// Test 3: Multiplying with a zero matrix
Matrix2 zeroMatrix = Matrix2::Zero(2, 2);
Matrix2 result3 = A * zeroMatrix;
for (int i = 0; i < 4; ++i)
EXPECT_TRUE(result3.data[i] == 0);
std::cout << "Test 3 passed: Multiplication with zero matrix.\n";
// Test 4: Multiplying with an identity matrix
Matrix2 identityMatrix = Matrix2::Identity(2);
Matrix2 result4 = A * identityMatrix;
for (int i = 0; i < 4; ++i)
EXPECT_TRUE(result4.data[i] == A.data[i]);
std::cout << "Test 4 passed: Multiplication with identity matrix.\n";
} }
TEST(MatrixSingle, Init) { TEST(MatrixSingle, Init) {

View File

@ -2,6 +2,7 @@
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <limits> #include <limits>
#include <math.h> #include <math.h>
#include <chrono>
#include "Polar.h" #include "Polar.h"
#include "Spherical.h" #include "Spherical.h"

View File

@ -2,6 +2,7 @@
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <limits> #include <limits>
#include <math.h> #include <math.h>
#include <chrono>
#include "Spherical.h" #include "Spherical.h"
#include "Vector3.h" #include "Vector3.h"

View File

@ -2,6 +2,7 @@
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <limits> #include <limits>
#include <math.h> #include <math.h>
#include <chrono>
#include "Spherical.h" #include "Spherical.h"