Compare commits
1 Commits
Experiment
...
main
Author | SHA1 | Date | |
---|---|---|---|
![]() |
54634f0582 |
129
Angle.cpp
129
Angle.cpp
@ -3,15 +3,15 @@
|
||||
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
|
||||
|
||||
#include "Angle.h"
|
||||
#include <math.h>
|
||||
#include "FloatSingle.h"
|
||||
#include <math.h>
|
||||
|
||||
namespace LinearAlgebra {
|
||||
const float Rad2Deg = 57.29578F;
|
||||
const float Deg2Rad = 0.0174532924F;
|
||||
|
||||
//===== AngleSingle, AngleOf<float>
|
||||
|
||||
template <>
|
||||
AngleOf<float> AngleOf<float>::Degrees(float degrees) {
|
||||
template <> AngleOf<float> Passer::LinearAlgebra::AngleOf<float>::Degrees(float degrees) {
|
||||
if (isfinite(degrees)) {
|
||||
while (degrees < -180)
|
||||
degrees += 360;
|
||||
@ -22,8 +22,7 @@ AngleOf<float> AngleOf<float>::Degrees(float degrees) {
|
||||
return AngleOf<float>(degrees);
|
||||
}
|
||||
|
||||
template <>
|
||||
AngleOf<float> AngleOf<float>::Radians(float radians) {
|
||||
template <> AngleOf<float> AngleOf<float>::Radians(float radians) {
|
||||
if (isfinite(radians)) {
|
||||
while (radians <= -pi)
|
||||
radians += 2 * pi;
|
||||
@ -34,13 +33,9 @@ AngleOf<float> AngleOf<float>::Radians(float radians) {
|
||||
return Binary(radians * Rad2Deg);
|
||||
}
|
||||
|
||||
template <>
|
||||
float AngleOf<float>::InDegrees() const {
|
||||
return this->value;
|
||||
}
|
||||
template <> float AngleOf<float>::InDegrees() const { return this->value; }
|
||||
|
||||
template <>
|
||||
float AngleOf<float>::InRadians() const {
|
||||
template <> float AngleOf<float>::InRadians() const {
|
||||
return this->value * Deg2Rad;
|
||||
}
|
||||
|
||||
@ -63,29 +58,25 @@ AngleOf<signed short> AngleOf<signed short>::Radians(float radians) {
|
||||
return Binary(value);
|
||||
}
|
||||
|
||||
template <>
|
||||
float AngleOf<signed short>::InDegrees() const {
|
||||
template <> float AngleOf<signed short>::InDegrees() const {
|
||||
float degrees = this->value / 65536.0f * 360.0f;
|
||||
return degrees;
|
||||
}
|
||||
|
||||
template <>
|
||||
float AngleOf<signed short>::InRadians() const {
|
||||
template <> float AngleOf<signed short>::InRadians() const {
|
||||
float radians = this->value / 65536.0f * (2 * pi);
|
||||
return radians;
|
||||
}
|
||||
|
||||
//===== Angle8, AngleOf<signed char>
|
||||
|
||||
template <>
|
||||
AngleOf<signed char> AngleOf<signed char>::Degrees(float degrees) {
|
||||
template <> AngleOf<signed char> AngleOf<signed char>::Degrees(float degrees) {
|
||||
// map float [-180..180) to integer [-128..127)
|
||||
signed char value = (signed char)roundf(degrees / 360.0F * 256.0F);
|
||||
return Binary(value);
|
||||
}
|
||||
|
||||
template <>
|
||||
AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
|
||||
template <> AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
|
||||
if (!isfinite(radians))
|
||||
return AngleOf<signed char>::zero;
|
||||
|
||||
@ -94,42 +85,32 @@ AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
|
||||
return Binary(value);
|
||||
}
|
||||
|
||||
template <>
|
||||
float AngleOf<signed char>::InDegrees() const {
|
||||
template <> float AngleOf<signed char>::InDegrees() const {
|
||||
float degrees = this->value / 256.0f * 360.0f;
|
||||
return degrees;
|
||||
}
|
||||
|
||||
template <>
|
||||
float AngleOf<signed char>::InRadians() const {
|
||||
template <> float AngleOf<signed char>::InRadians() const {
|
||||
float radians = this->value / 128.0f * pi;
|
||||
return radians;
|
||||
}
|
||||
|
||||
//===== Generic
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T>::AngleOf() : value(0) {}
|
||||
template <typename T> AngleOf<T>::AngleOf() : value(0) {}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T>::AngleOf(T rawValue) : value(rawValue) {}
|
||||
template <typename T> AngleOf<T>::AngleOf(T rawValue) : value(rawValue) {}
|
||||
|
||||
template <typename T>
|
||||
const AngleOf<T> AngleOf<T>::zero = AngleOf<T>();
|
||||
template <typename T> const AngleOf<T> AngleOf<T>::zero = AngleOf<T>();
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::Binary(T rawValue) {
|
||||
template <typename T> AngleOf<T> AngleOf<T>::Binary(T rawValue) {
|
||||
AngleOf<T> angle = AngleOf<T>();
|
||||
angle.SetBinary(rawValue);
|
||||
return angle;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
T AngleOf<T>::GetBinary() const {
|
||||
return this->value;
|
||||
}
|
||||
template <typename T>
|
||||
void AngleOf<T>::SetBinary(T rawValue) {
|
||||
template <typename T> T AngleOf<T>::GetBinary() const { return this->value; }
|
||||
template <typename T> void AngleOf<T>::SetBinary(T rawValue) {
|
||||
this->value = rawValue;
|
||||
}
|
||||
|
||||
@ -138,28 +119,24 @@ bool AngleOf<T>::operator==(const AngleOf<T> angle) const {
|
||||
return this->value == angle.value;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool AngleOf<T>::operator>(AngleOf<T> angle) const {
|
||||
template <typename T> bool AngleOf<T>::operator>(AngleOf<T> angle) const {
|
||||
return this->value > angle.value;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool AngleOf<T>::operator>=(AngleOf<T> angle) const {
|
||||
template <typename T> bool AngleOf<T>::operator>=(AngleOf<T> angle) const {
|
||||
return this->value >= angle.value;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool AngleOf<T>::operator<(AngleOf<T> angle) const {
|
||||
template <typename T> bool AngleOf<T>::operator<(AngleOf<T> angle) const {
|
||||
return this->value < angle.value;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool AngleOf<T>::operator<=(AngleOf<T> angle) const {
|
||||
template <typename T> bool AngleOf<T>::operator<=(AngleOf<T> angle) const {
|
||||
return this->value <= angle.value;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
signed int AngleOf<T>::Sign(AngleOf<T> angle) {
|
||||
signed int Passer::LinearAlgebra::AngleOf<T>::Sign(AngleOf<T> angle) {
|
||||
if (angle.value < 0)
|
||||
return -1;
|
||||
if (angle.value > 0)
|
||||
@ -168,52 +145,51 @@ signed int AngleOf<T>::Sign(AngleOf<T> angle) {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::Abs(AngleOf<T> angle) {
|
||||
AngleOf<T> Passer::LinearAlgebra::AngleOf<T>::Abs(AngleOf<T> angle) {
|
||||
if (Sign(angle) < 0)
|
||||
return -angle;
|
||||
else
|
||||
return angle;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::operator-() const {
|
||||
template <typename T> AngleOf<T> AngleOf<T>::operator-() const {
|
||||
AngleOf<T> angle = Binary(-this->value);
|
||||
return angle;
|
||||
}
|
||||
|
||||
template <>
|
||||
AngleOf<float> AngleOf<float>::operator-(const AngleOf<float>& angle) const {
|
||||
AngleOf<float> AngleOf<float>::operator-(const AngleOf<float> &angle) const {
|
||||
AngleOf<float> r = Binary(this->value - angle.value);
|
||||
r = Normalize(r);
|
||||
return r;
|
||||
}
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::operator-(const AngleOf<T>& angle) const {
|
||||
AngleOf<T> AngleOf<T>::operator-(const AngleOf<T> &angle) const {
|
||||
AngleOf<T> r = Binary(this->value - angle.value);
|
||||
return r;
|
||||
}
|
||||
|
||||
template <>
|
||||
AngleOf<float> AngleOf<float>::operator+(const AngleOf<float>& angle) const {
|
||||
AngleOf<float> AngleOf<float>::operator+(const AngleOf<float> &angle) const {
|
||||
AngleOf<float> r = Binary(this->value + angle.value);
|
||||
r = Normalize(r);
|
||||
return r;
|
||||
}
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::operator+(const AngleOf<T>& angle) const {
|
||||
AngleOf<T> AngleOf<T>::operator+(const AngleOf<T> &angle) const {
|
||||
AngleOf<T> r = Binary(this->value + angle.value);
|
||||
return r;
|
||||
}
|
||||
|
||||
template <>
|
||||
AngleOf<float> AngleOf<float>::operator+=(const AngleOf<float>& angle) {
|
||||
AngleOf<float> AngleOf<float>::operator+=(const AngleOf<float> &angle) {
|
||||
this->value += angle.value;
|
||||
this->Normalize();
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T>& angle) {
|
||||
AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T> &angle) {
|
||||
this->value += angle.value;
|
||||
return *this;
|
||||
}
|
||||
@ -230,8 +206,7 @@ AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T>& angle) {
|
||||
// return AngleOf::Degrees((float)factor * angle.InDegrees());
|
||||
// }
|
||||
|
||||
template <typename T>
|
||||
void AngleOf<T>::Normalize() {
|
||||
template <typename T> void AngleOf<T>::Normalize() {
|
||||
float angleValue = this->InDegrees();
|
||||
if (!isfinite(angleValue))
|
||||
return;
|
||||
@ -243,8 +218,7 @@ void AngleOf<T>::Normalize() {
|
||||
*this = AngleOf::Degrees(angleValue);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::Normalize(AngleOf<T> angle) {
|
||||
template <typename T> AngleOf<T> AngleOf<T>::Normalize(AngleOf<T> angle) {
|
||||
float angleValue = angle.InDegrees();
|
||||
if (!isfinite(angleValue))
|
||||
return angle;
|
||||
@ -263,10 +237,9 @@ AngleOf<T> AngleOf<T>::Clamp(AngleOf<T> angle, AngleOf<T> min, AngleOf<T> max) {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle,
|
||||
AngleOf<T> toAngle,
|
||||
AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle, AngleOf<T> toAngle,
|
||||
float maxDegrees) {
|
||||
maxDegrees = fmaxf(0, maxDegrees); // filter out negative distances
|
||||
maxDegrees = fmaxf(0, maxDegrees); // filter out negative distances
|
||||
AngleOf<T> d = toAngle - fromAngle;
|
||||
float dDegrees = Abs(d).InDegrees();
|
||||
d = AngleOf<T>::Degrees(Float::Clamp(dDegrees, 0, maxDegrees));
|
||||
@ -276,34 +249,28 @@ AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle,
|
||||
return fromAngle + d;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
float AngleOf<T>::Cos(AngleOf<T> angle) {
|
||||
template <typename T> float AngleOf<T>::Cos(AngleOf<T> angle) {
|
||||
return cosf(angle.InRadians());
|
||||
}
|
||||
template <typename T>
|
||||
float AngleOf<T>::Sin(AngleOf<T> angle) {
|
||||
template <typename T> float AngleOf<T>::Sin(AngleOf<T> angle) {
|
||||
return sinf(angle.InRadians());
|
||||
}
|
||||
template <typename T>
|
||||
float AngleOf<T>::Tan(AngleOf<T> angle) {
|
||||
template <typename T> float AngleOf<T>::Tan(AngleOf<T> angle) {
|
||||
return tanf(angle.InRadians());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::Acos(float f) {
|
||||
template <typename T> AngleOf<T> AngleOf<T>::Acos(float f) {
|
||||
return AngleOf<T>::Radians(acosf(f));
|
||||
}
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::Asin(float f) {
|
||||
template <typename T> AngleOf<T> AngleOf<T>::Asin(float f) {
|
||||
return AngleOf<T>::Radians(asinf(f));
|
||||
}
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::Atan(float f) {
|
||||
template <typename T> AngleOf<T> AngleOf<T>::Atan(float f) {
|
||||
return AngleOf<T>::Radians(atanf(f));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> AngleOf<T>::Atan2(float y, float x) {
|
||||
AngleOf<T> Passer::LinearAlgebra::AngleOf<T>::Atan2(float y, float x) {
|
||||
return AngleOf<T>::Radians(atan2f(y, x));
|
||||
}
|
||||
|
||||
@ -330,7 +297,7 @@ float AngleOf<T>::CosineRuleSide(float a, float b, AngleOf<T> gamma) {
|
||||
float b2 = b * b;
|
||||
float d =
|
||||
a2 + b2 -
|
||||
2 * a * b * Cos(gamma); // cosf(gamma * Passer::LinearAlgebra::Deg2Rad);
|
||||
2 * a * b * Cos(gamma); // cosf(gamma * Passer::LinearAlgebra::Deg2Rad);
|
||||
// Catch edge cases where float inacuracies lead tot nans
|
||||
if (d < 0)
|
||||
return 0;
|
||||
@ -387,8 +354,6 @@ AngleOf<T> AngleOf<T>::SineRuleAngle(float a, AngleOf<T> beta, float b) {
|
||||
return alpha;
|
||||
}
|
||||
|
||||
template class AngleOf<float>;
|
||||
template class AngleOf<signed char>;
|
||||
template class AngleOf<signed short>;
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
template class Passer::LinearAlgebra::AngleOf<float>;
|
||||
template class Passer::LinearAlgebra::AngleOf<signed char>;
|
||||
template class Passer::LinearAlgebra::AngleOf<signed short>;
|
31
Angle.h
31
Angle.h
@ -5,6 +5,7 @@
|
||||
#ifndef ANGLE_H
|
||||
#define ANGLE_H
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
static float pi = 3.1415927410125732421875F;
|
||||
@ -17,9 +18,8 @@ static float Deg2Rad = (pi * 2) / 360.0f;
|
||||
/// The angle is internally limited to (-180..180] degrees or (-PI...PI]
|
||||
/// radians. When an angle exceeds this range, it is normalized to a value
|
||||
/// within the range.
|
||||
template <typename T>
|
||||
class AngleOf {
|
||||
public:
|
||||
template <typename T> class AngleOf {
|
||||
public:
|
||||
/// @brief Create a new angle with a zero value
|
||||
AngleOf<T>();
|
||||
|
||||
@ -100,28 +100,28 @@ class AngleOf {
|
||||
/// @brief Substract another angle from this angle
|
||||
/// @param angle The angle to subtract from this angle
|
||||
/// @return The result of the subtraction
|
||||
AngleOf<T> operator-(const AngleOf<T>& angle) const;
|
||||
AngleOf<T> operator-(const AngleOf<T> &angle) const;
|
||||
/// @brief Add another angle from this angle
|
||||
/// @param angle The angle to add to this angle
|
||||
/// @return The result of the addition
|
||||
AngleOf<T> operator+(const AngleOf<T>& angle) const;
|
||||
AngleOf<T> operator+(const AngleOf<T> &angle) const;
|
||||
/// @brief Add another angle to this angle
|
||||
/// @param angle The angle to add to this angle
|
||||
/// @return The result of the addition
|
||||
AngleOf<T> operator+=(const AngleOf<T>& angle);
|
||||
AngleOf<T> operator+=(const AngleOf<T> &angle);
|
||||
|
||||
/// @brief Mutliplies the angle
|
||||
/// @param angle The angle to multiply
|
||||
/// @param factor The factor by which the angle is multiplied
|
||||
/// @return The multiplied angle
|
||||
friend AngleOf<T> operator*(const AngleOf<T>& angle, float factor) {
|
||||
friend AngleOf<T> operator*(const AngleOf<T> &angle, float factor) {
|
||||
return AngleOf::Degrees((float)angle.InDegrees() * factor);
|
||||
}
|
||||
/// @brief Multiplies the angle
|
||||
/// @param factor The factor by which the angle is multiplies
|
||||
/// @param angle The angle to multiply
|
||||
/// @return The multiplied angle
|
||||
friend AngleOf<T> operator*(float factor, const AngleOf<T>& angle) {
|
||||
friend AngleOf<T> operator*(float factor, const AngleOf<T> &angle) {
|
||||
return AngleOf::Degrees((float)factor * angle.InDegrees());
|
||||
}
|
||||
|
||||
@ -150,8 +150,7 @@ class AngleOf {
|
||||
/// @param toAngle The angle to rotate towards
|
||||
/// @param maxAngle The maximum angle to rotate
|
||||
/// @return The rotated angle
|
||||
static AngleOf<T> MoveTowards(AngleOf<T> fromAngle,
|
||||
AngleOf<T> toAngle,
|
||||
static AngleOf<T> MoveTowards(AngleOf<T> fromAngle, AngleOf<T> toAngle,
|
||||
float maxAngle);
|
||||
|
||||
/// @brief Calculates the cosine of an angle
|
||||
@ -206,7 +205,7 @@ class AngleOf {
|
||||
/// @return The angle of the corner opposing side A
|
||||
static AngleOf<T> SineRuleAngle(float a, AngleOf<T> beta, float c);
|
||||
|
||||
private:
|
||||
private:
|
||||
T value;
|
||||
|
||||
AngleOf<T>(T rawValue);
|
||||
@ -216,12 +215,8 @@ using AngleSingle = AngleOf<float>;
|
||||
using Angle16 = AngleOf<signed short>;
|
||||
using Angle8 = AngleOf<signed char>;
|
||||
|
||||
#if defined(ARDUINO)
|
||||
using Angle = Angle16;
|
||||
#else
|
||||
using Angle = AngleSingle;
|
||||
#endif
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#endif
|
@ -9,8 +9,7 @@
|
||||
|
||||
#include <math.h>
|
||||
|
||||
template <typename T>
|
||||
DirectionOf<T>::DirectionOf() {
|
||||
template <typename T> DirectionOf<T>::DirectionOf() {
|
||||
this->horizontal = AngleOf<T>();
|
||||
this->vertical = AngleOf<T>();
|
||||
}
|
||||
@ -42,7 +41,7 @@ const DirectionOf<T> DirectionOf<T>::right =
|
||||
DirectionOf<T>(AngleOf<T>::Degrees(90), AngleOf<T>());
|
||||
|
||||
template <typename T>
|
||||
Vector3 DirectionOf<T>::ToVector3() const {
|
||||
Vector3 Passer::LinearAlgebra::DirectionOf<T>::ToVector3() const {
|
||||
Quaternion q = Quaternion::Euler(-this->vertical.InDegrees(),
|
||||
this->horizontal.InDegrees(), 0);
|
||||
Vector3 v = q * Vector3::forward;
|
||||
@ -50,47 +49,49 @@ Vector3 DirectionOf<T>::ToVector3() const {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
DirectionOf<T> DirectionOf<T>::FromVector3(Vector3 vector) {
|
||||
DirectionOf<T>
|
||||
Passer::LinearAlgebra::DirectionOf<T>::FromVector3(Vector3 vector) {
|
||||
DirectionOf<T> d;
|
||||
d.horizontal = AngleOf<T>::Atan2(
|
||||
vector.Right(),
|
||||
vector
|
||||
.Forward()); // AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
|
||||
vector.Forward()); // AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
|
||||
d.vertical =
|
||||
AngleOf<T>::Degrees(-90) -
|
||||
AngleOf<T>::Acos(
|
||||
vector.Up()); // AngleOf<T>::Radians(-(0.5f * pi) - acosf(v.Up()));
|
||||
vector.Up()); // AngleOf<T>::Radians(-(0.5f * pi) - acosf(v.Up()));
|
||||
d.Normalize();
|
||||
return d;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
DirectionOf<T> DirectionOf<T>::Degrees(float horizontal, float vertical) {
|
||||
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::Degrees(float horizontal,
|
||||
float vertical) {
|
||||
return DirectionOf<T>(AngleOf<T>::Degrees(horizontal),
|
||||
AngleOf<T>::Degrees(vertical));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
DirectionOf<T> DirectionOf<T>::Radians(float horizontal, float vertical) {
|
||||
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::Radians(float horizontal,
|
||||
float vertical) {
|
||||
return DirectionOf<T>(AngleOf<T>::Radians(horizontal),
|
||||
AngleOf<T>::Radians(vertical));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool DirectionOf<T>::operator==(const DirectionOf<T> direction) const {
|
||||
bool Passer::LinearAlgebra::DirectionOf<T>::operator==(
|
||||
const DirectionOf<T> direction) const {
|
||||
return (this->horizontal == direction.horizontal) &&
|
||||
(this->vertical == direction.vertical);
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
DirectionOf<T> DirectionOf<T>::operator-() const {
|
||||
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::operator-() const {
|
||||
DirectionOf<T> r = DirectionOf<T>(this->horizontal + AngleOf<T>::Degrees(180),
|
||||
-this->vertical);
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void DirectionOf<T>::Normalize() {
|
||||
template <typename T> void DirectionOf<T>::Normalize() {
|
||||
if (this->vertical > AngleOf<T>::Degrees(90) ||
|
||||
this->vertical < AngleOf<T>::Degrees(-90)) {
|
||||
this->horizontal += AngleOf<T>::Degrees(180);
|
||||
@ -98,5 +99,5 @@ void DirectionOf<T>::Normalize() {
|
||||
}
|
||||
}
|
||||
|
||||
template class DirectionOf<float>;
|
||||
template class DirectionOf<signed short>;
|
||||
template class Passer::LinearAlgebra::DirectionOf<float>;
|
||||
template class Passer::LinearAlgebra::DirectionOf<signed short>;
|
||||
|
30
Direction.h
30
Direction.h
@ -7,6 +7,7 @@
|
||||
|
||||
#include "Angle.h"
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
struct Vector3;
|
||||
@ -21,14 +22,8 @@ struct Vector3;
|
||||
/// rotation has been applied.
|
||||
/// The angles are automatically normalized to stay within the abovenmentioned
|
||||
/// ranges.
|
||||
template <typename T>
|
||||
class DirectionOf {
|
||||
public:
|
||||
/// @brief horizontal angle, range= (-180..180]
|
||||
AngleOf<T> horizontal;
|
||||
/// @brief vertical angle, range in degrees = (-90..90]
|
||||
AngleOf<T> vertical;
|
||||
|
||||
template <typename T> class DirectionOf {
|
||||
public:
|
||||
/// @brief Create a new direction with zero angles
|
||||
DirectionOf<T>();
|
||||
/// @brief Create a new direction
|
||||
@ -36,6 +31,11 @@ class DirectionOf {
|
||||
/// @param vertical The vertical angle.
|
||||
DirectionOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical);
|
||||
|
||||
/// @brief horizontal angle, range= (-180..180]
|
||||
AngleOf<T> horizontal;
|
||||
/// @brief vertical angle, range in degrees = (-90..90]
|
||||
AngleOf<T> vertical;
|
||||
|
||||
/// @brief Convert the direction into a carthesian vector
|
||||
/// @return The carthesian vector corresponding to this direction.
|
||||
Vector3 ToVector3() const;
|
||||
@ -83,7 +83,7 @@ class DirectionOf {
|
||||
/// @return The reversed direction.
|
||||
DirectionOf<T> operator-() const;
|
||||
|
||||
protected:
|
||||
protected:
|
||||
/// @brief Normalize this vector to the specified ranges
|
||||
void Normalize();
|
||||
};
|
||||
@ -91,14 +91,8 @@ class DirectionOf {
|
||||
using DirectionSingle = DirectionOf<float>;
|
||||
using Direction16 = DirectionOf<signed short>;
|
||||
|
||||
#if defined(ARDUINO)
|
||||
using Direction = Direction16;
|
||||
#else
|
||||
using Direction = DirectionSingle;
|
||||
#endif
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#endif
|
@ -5,18 +5,19 @@
|
||||
#ifndef FLOAT_H
|
||||
#define FLOAT_H
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
class Float {
|
||||
public:
|
||||
public:
|
||||
static const float epsilon;
|
||||
static const float sqrEpsilon;
|
||||
|
||||
static float Clamp(float f, float min, float max);
|
||||
};
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#endif
|
||||
|
38
Matrix.h
38
Matrix.h
@ -3,18 +3,18 @@
|
||||
|
||||
#include "Vector3.h"
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
/// @brief Single precision float matrix
|
||||
template <typename T>
|
||||
class MatrixOf {
|
||||
public:
|
||||
template <typename T> class MatrixOf {
|
||||
public:
|
||||
MatrixOf(unsigned int rows, unsigned int cols);
|
||||
MatrixOf(unsigned int rows, unsigned int cols, const T* source)
|
||||
MatrixOf(unsigned int rows, unsigned int cols, const T *source)
|
||||
: MatrixOf(rows, cols) {
|
||||
Set(source);
|
||||
}
|
||||
MatrixOf(Vector3 v); // creates a 3,1 matrix
|
||||
MatrixOf(Vector3 v); // creates a 3,1 matrix
|
||||
|
||||
~MatrixOf() {
|
||||
if (this->data == nullptr)
|
||||
@ -25,7 +25,7 @@ class MatrixOf {
|
||||
|
||||
/// @brief Transpose with result in matrix m
|
||||
/// @param r The matrix in which the transposed matrix is stored
|
||||
void Transpose(MatrixOf<T>* r) const {
|
||||
void Transpose(MatrixOf<T> *r) const {
|
||||
// Check dimensions first
|
||||
// We dont care about the rows and cols (we overwrite them)
|
||||
// but the data size should be equal to avoid problems
|
||||
@ -54,14 +54,13 @@ class MatrixOf {
|
||||
}
|
||||
}
|
||||
|
||||
static void Multiply(const MatrixOf<T>* m1,
|
||||
const MatrixOf<T>* m2,
|
||||
MatrixOf<T>* r);
|
||||
void Multiply(const MatrixOf<T>* m, MatrixOf<T>* r) const {
|
||||
static void Multiply(const MatrixOf<T> *m1, const MatrixOf<T> *m2,
|
||||
MatrixOf<T> *r);
|
||||
void Multiply(const MatrixOf<T> *m, MatrixOf<T> *r) const {
|
||||
Multiply(this, m, r);
|
||||
}
|
||||
|
||||
static Vector3 Multiply(const MatrixOf<T>* m, Vector3 v);
|
||||
static Vector3 Multiply(const MatrixOf<T> *m, Vector3 v);
|
||||
Vector3 operator*(const Vector3 v) const;
|
||||
|
||||
T Get(unsigned int rowIx, unsigned int colIx) const {
|
||||
@ -75,28 +74,28 @@ class MatrixOf {
|
||||
}
|
||||
|
||||
// This function does not check on source size!
|
||||
void Set(const T* source) {
|
||||
void Set(const T *source) {
|
||||
unsigned int matrixSize = this->cols * this->rows;
|
||||
for (unsigned int dataIx = 0; dataIx < matrixSize; dataIx++)
|
||||
this->data[dataIx] = source[dataIx];
|
||||
}
|
||||
|
||||
// This function does not check on source size!
|
||||
void SetRow(unsigned int rowIx, const T* source) {
|
||||
void SetRow(unsigned int rowIx, const T *source) {
|
||||
unsigned int dataIx = rowIx * this->cols;
|
||||
for (unsigned int sourceIx = 0; sourceIx < this->cols; dataIx++, sourceIx++)
|
||||
this->data[dataIx] = source[sourceIx];
|
||||
}
|
||||
|
||||
// This function does not check on source size!
|
||||
void SetCol(unsigned int colIx, const T* source) {
|
||||
void SetCol(unsigned int colIx, const T *source) {
|
||||
unsigned int dataIx = colIx;
|
||||
for (unsigned int sourceIx = 0; sourceIx < this->cols;
|
||||
dataIx += this->cols, sourceIx++)
|
||||
this->data[dataIx] = source[sourceIx];
|
||||
}
|
||||
|
||||
void CopyFrom(const MatrixOf<T>* m) {
|
||||
void CopyFrom(const MatrixOf<T> *m) {
|
||||
unsigned int thisMatrixSize = this->cols * this->rows;
|
||||
unsigned int mMatrixSize = m->cols * m->rows;
|
||||
if (mMatrixSize != thisMatrixSize)
|
||||
@ -109,13 +108,14 @@ class MatrixOf {
|
||||
unsigned int RowCount() const { return rows; }
|
||||
unsigned int ColCount() const { return cols; }
|
||||
|
||||
private:
|
||||
private:
|
||||
unsigned int rows;
|
||||
unsigned int cols;
|
||||
T* data;
|
||||
T *data;
|
||||
};
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#endif
|
54
Polar.cpp
54
Polar.cpp
@ -3,13 +3,11 @@
|
||||
#include "Polar.h"
|
||||
#include "Vector2.h"
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T>::PolarOf() {
|
||||
template <typename T> PolarOf<T>::PolarOf() {
|
||||
this->distance = 0.0f;
|
||||
this->angle = AngleOf<T>();
|
||||
}
|
||||
template <typename T>
|
||||
PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) {
|
||||
template <typename T> PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) {
|
||||
// distance should always be 0 or greater
|
||||
if (distance < 0.0f) {
|
||||
this->distance = -distance;
|
||||
@ -36,18 +34,16 @@ PolarOf<T> PolarOf<T>::Radians(float distance, float radians) {
|
||||
return PolarOf<T>(distance, AngleOf<T>::Radians(radians));
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) {
|
||||
float distance = v.magnitude();
|
||||
AngleOf<T> angle =
|
||||
AngleOf<T>::Degrees(Vector2::SignedAngle(Vector2::forward, v));
|
||||
PolarOf<T> p = PolarOf(distance, angle);
|
||||
return p;
|
||||
}
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) {
|
||||
float distance =
|
||||
v.distance * cosf(v.direction.vertical.InDegrees() * Deg2Rad);
|
||||
template <typename T> PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) {
|
||||
float distance = v.distance * cosf(v.direction.vertical.InDegrees() *
|
||||
Passer::LinearAlgebra::Deg2Rad);
|
||||
AngleOf<T> angle = v.direction.horizontal;
|
||||
PolarOf<T> p = PolarOf(distance, angle);
|
||||
return p;
|
||||
@ -64,37 +60,31 @@ const PolarOf<T> PolarOf<T>::right = PolarOf(1.0, AngleOf<T>::Degrees(90));
|
||||
template <typename T>
|
||||
const PolarOf<T> PolarOf<T>::left = PolarOf(1.0, AngleOf<T>::Degrees(-90));
|
||||
|
||||
template <typename T>
|
||||
bool PolarOf<T>::operator==(const PolarOf& v) const {
|
||||
template <typename T> bool PolarOf<T>::operator==(const PolarOf &v) const {
|
||||
return (this->distance == v.distance &&
|
||||
this->angle.InDegrees() == v.angle.InDegrees());
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::Normalize(const PolarOf& v) {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::Normalize(const PolarOf &v) {
|
||||
PolarOf<T> r = PolarOf(1, v.angle);
|
||||
return r;
|
||||
}
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::normalized() const {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::normalized() const {
|
||||
PolarOf<T> r = PolarOf(1, this->angle);
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::operator-() const {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::operator-() const {
|
||||
PolarOf<T> v =
|
||||
PolarOf(this->distance, this->angle + AngleOf<T>::Degrees(180));
|
||||
return v;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::operator-(const PolarOf& v) const {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::operator-(const PolarOf &v) const {
|
||||
PolarOf<T> r = -v;
|
||||
return *this + r;
|
||||
}
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::operator-=(const PolarOf& v) {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::operator-=(const PolarOf &v) {
|
||||
*this = *this - v;
|
||||
return *this;
|
||||
// angle = AngleOf<T>::Normalize(newAngle);
|
||||
@ -115,8 +105,7 @@ PolarOf<T> PolarOf<T>::operator-=(const PolarOf& v) {
|
||||
// return d;
|
||||
// }
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::operator+(const PolarOf& v) const {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::operator+(const PolarOf &v) const {
|
||||
if (v.distance == 0)
|
||||
return PolarOf(this->distance, this->angle);
|
||||
if (this->distance == 0.0f)
|
||||
@ -144,36 +133,33 @@ PolarOf<T> PolarOf<T>::operator+(const PolarOf& v) const {
|
||||
PolarOf vector = PolarOf(newDistance, newAngleA);
|
||||
return vector;
|
||||
}
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::operator+=(const PolarOf& v) {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::operator+=(const PolarOf &v) {
|
||||
*this = *this + v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::operator*=(float f) {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::operator*=(float f) {
|
||||
this->distance *= f;
|
||||
return *this;
|
||||
}
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::operator/=(float f) {
|
||||
template <typename T> PolarOf<T> PolarOf<T>::operator/=(float f) {
|
||||
this->distance /= f;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
float PolarOf<T>::Distance(const PolarOf& v1, const PolarOf& v2) {
|
||||
float PolarOf<T>::Distance(const PolarOf &v1, const PolarOf &v2) {
|
||||
float d =
|
||||
AngleOf<T>::CosineRuleSide(v1.distance, v2.distance, v2.angle - v1.angle);
|
||||
return d;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
PolarOf<T> PolarOf<T>::Rotate(const PolarOf& v, AngleOf<T> angle) {
|
||||
PolarOf<T> PolarOf<T>::Rotate(const PolarOf &v, AngleOf<T> angle) {
|
||||
AngleOf<T> a = AngleOf<T>::Normalize(v.angle + angle);
|
||||
PolarOf<T> r = PolarOf(v.distance, a);
|
||||
return r;
|
||||
}
|
||||
|
||||
template class PolarOf<float>;
|
||||
template class PolarOf<signed short>;
|
||||
template class Passer::LinearAlgebra::PolarOf<float>;
|
||||
template class Passer::LinearAlgebra::PolarOf<signed short>;
|
40
Polar.h
40
Polar.h
@ -7,17 +7,16 @@
|
||||
|
||||
#include "Angle.h"
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
struct Vector2;
|
||||
template <typename T>
|
||||
class SphericalOf;
|
||||
template <typename T> class SphericalOf;
|
||||
|
||||
/// @brief A polar vector using an angle in various representations
|
||||
/// @tparam T The implementation type used for the representation of the angle
|
||||
template <typename T>
|
||||
class PolarOf {
|
||||
public:
|
||||
template <typename T> class PolarOf {
|
||||
public:
|
||||
/// @brief The distance in meters
|
||||
/// @remark The distance shall never be negative
|
||||
float distance;
|
||||
@ -77,12 +76,12 @@ class PolarOf {
|
||||
/// @return true: if it is identical to the given vector
|
||||
/// @note This uses float comparison to check equality which may have
|
||||
/// strange effects. Equality on floats should be avoided.
|
||||
bool operator==(const PolarOf& v) const;
|
||||
bool operator==(const PolarOf &v) const;
|
||||
|
||||
/// @brief The vector length
|
||||
/// @param v The vector for which you need the length
|
||||
/// @return The vector length;
|
||||
inline static float Magnitude(const PolarOf& v) { return v.distance; }
|
||||
inline static float Magnitude(const PolarOf &v) { return v.distance; }
|
||||
/// @brief The vector length
|
||||
/// @return The vector length
|
||||
inline float magnitude() const { return this->distance; }
|
||||
@ -90,7 +89,7 @@ class PolarOf {
|
||||
/// @brief Convert the vector to a length of 1
|
||||
/// @param v The vector to convert
|
||||
/// @return The vector normalized to a length of 1
|
||||
static PolarOf Normalize(const PolarOf& v);
|
||||
static PolarOf Normalize(const PolarOf &v);
|
||||
/// @brief Convert the vector to a length of a
|
||||
/// @return The vector normalized to a length of 1
|
||||
PolarOf normalized() const;
|
||||
@ -103,23 +102,23 @@ class PolarOf {
|
||||
/// @brief Subtract a polar vector from this vector
|
||||
/// @param v The vector to subtract
|
||||
/// @return The result of the subtraction
|
||||
PolarOf operator-(const PolarOf& v) const;
|
||||
PolarOf operator-=(const PolarOf& v);
|
||||
PolarOf operator-(const PolarOf &v) const;
|
||||
PolarOf operator-=(const PolarOf &v);
|
||||
/// @brief Add a polar vector to this vector
|
||||
/// @param v The vector to add
|
||||
/// @return The result of the addition
|
||||
PolarOf operator+(const PolarOf& v) const;
|
||||
PolarOf operator+=(const PolarOf& v);
|
||||
PolarOf operator+(const PolarOf &v) const;
|
||||
PolarOf operator+=(const PolarOf &v);
|
||||
|
||||
/// @brief Scale the vector uniformly up
|
||||
/// @param f The scaling factor
|
||||
/// @return The scaled vector
|
||||
/// @remark This operation will scale the distance of the vector. The angle
|
||||
/// will be unaffected.
|
||||
friend PolarOf operator*(const PolarOf& v, float f) {
|
||||
friend PolarOf operator*(const PolarOf &v, float f) {
|
||||
return PolarOf(v.distance * f, v.angle);
|
||||
}
|
||||
friend PolarOf operator*(float f, const PolarOf& v) {
|
||||
friend PolarOf operator*(float f, const PolarOf &v) {
|
||||
return PolarOf(f * v.distance, v.angle);
|
||||
}
|
||||
PolarOf operator*=(float f);
|
||||
@ -128,10 +127,10 @@ class PolarOf {
|
||||
/// @return The scaled factor
|
||||
/// @remark This operation will scale the distance of the vector. The angle
|
||||
/// will be unaffected.
|
||||
friend PolarOf operator/(const PolarOf& v, float f) {
|
||||
friend PolarOf operator/(const PolarOf &v, float f) {
|
||||
return PolarOf(v.distance / f, v.angle);
|
||||
}
|
||||
friend PolarOf operator/(float f, const PolarOf& v) {
|
||||
friend PolarOf operator/(float f, const PolarOf &v) {
|
||||
return PolarOf(f / v.distance, v.angle);
|
||||
}
|
||||
PolarOf operator/=(float f);
|
||||
@ -140,21 +139,22 @@ class PolarOf {
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @return The distance between the two vectors
|
||||
static float Distance(const PolarOf& v1, const PolarOf& v2);
|
||||
static float Distance(const PolarOf &v1, const PolarOf &v2);
|
||||
|
||||
/// @brief Rotate a vector
|
||||
/// @param v The vector to rotate
|
||||
/// @param a The angle in degreesto rotate
|
||||
/// @return The rotated vector
|
||||
static PolarOf Rotate(const PolarOf& v, AngleOf<T> a);
|
||||
static PolarOf Rotate(const PolarOf &v, AngleOf<T> a);
|
||||
};
|
||||
|
||||
using PolarSingle = PolarOf<float>;
|
||||
using Polar16 = PolarOf<signed short>;
|
||||
// using Polar = PolarSingle;
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#include "Spherical.h"
|
||||
#include "Vector2.h"
|
||||
|
53
Quaternion.h
53
Quaternion.h
@ -32,13 +32,14 @@ typedef struct Quat {
|
||||
} Quat;
|
||||
}
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
/// <summary>
|
||||
/// A quaternion
|
||||
/// </summary>
|
||||
struct Quaternion : Quat {
|
||||
public:
|
||||
public:
|
||||
/// <summary>
|
||||
/// Create a new identity quaternion
|
||||
/// </summary>
|
||||
@ -79,7 +80,7 @@ struct Quaternion : Quat {
|
||||
/// <returns>A unit quaternion</returns>
|
||||
/// This will preserve the orientation,
|
||||
/// but ensures that it is a unit quaternion.
|
||||
static Quaternion Normalize(const Quaternion& q);
|
||||
static Quaternion Normalize(const Quaternion &q);
|
||||
|
||||
/// <summary>
|
||||
/// Convert to euler angles
|
||||
@ -87,14 +88,14 @@ struct Quaternion : Quat {
|
||||
/// <param name="q">The quaternion to convert</param>
|
||||
/// <returns>A vector containing euler angles</returns>
|
||||
/// The euler angles performed in the order: Z, X, Y
|
||||
static Vector3 ToAngles(const Quaternion& q);
|
||||
static Vector3 ToAngles(const Quaternion &q);
|
||||
|
||||
/// <summary>
|
||||
/// Rotate a vector using this quaterion
|
||||
/// </summary>
|
||||
/// <param name="vector">The vector to rotate</param>
|
||||
/// <returns>The rotated vector</returns>
|
||||
Vector3 operator*(const Vector3& vector) const;
|
||||
Vector3 operator*(const Vector3 &vector) const;
|
||||
/// <summary>
|
||||
/// Multiply this quaternion with another quaternion
|
||||
/// </summary>
|
||||
@ -102,7 +103,7 @@ struct Quaternion : Quat {
|
||||
/// <returns>The resulting rotation</returns>
|
||||
/// The result will be this quaternion rotated according to
|
||||
/// the give rotation.
|
||||
Quaternion operator*(const Quaternion& rotation) const;
|
||||
Quaternion operator*(const Quaternion &rotation) const;
|
||||
|
||||
/// <summary>
|
||||
/// Check the equality of two quaternions
|
||||
@ -113,7 +114,7 @@ struct Quaternion : Quat {
|
||||
/// themselves. Two quaternions with the same rotational effect may have
|
||||
/// different components. Use Quaternion::Angle to check if the rotations are
|
||||
/// the same.
|
||||
bool operator==(const Quaternion& quaternion) const;
|
||||
bool operator==(const Quaternion &quaternion) const;
|
||||
|
||||
/// <summary>
|
||||
/// The inverse of quaterion
|
||||
@ -128,8 +129,8 @@ struct Quaternion : Quat {
|
||||
/// <param name="forward">The look direction</param>
|
||||
/// <param name="upwards">The up direction</param>
|
||||
/// <returns>The look rotation</returns>
|
||||
static Quaternion LookRotation(const Vector3& forward,
|
||||
const Vector3& upwards);
|
||||
static Quaternion LookRotation(const Vector3 &forward,
|
||||
const Vector3 &upwards);
|
||||
/// <summary>
|
||||
/// Creates a quaternion with the given forward direction with up =
|
||||
/// Vector3::up
|
||||
@ -139,7 +140,7 @@ struct Quaternion : Quat {
|
||||
/// For the rotation, Vector::up is used for the up direction.
|
||||
/// Note: if the forward direction == Vector3::up, the result is
|
||||
/// Quaternion::identity
|
||||
static Quaternion LookRotation(const Vector3& forward);
|
||||
static Quaternion LookRotation(const Vector3 &forward);
|
||||
|
||||
/// <summary>
|
||||
/// Calculat the rotation from on vector to another
|
||||
@ -156,8 +157,7 @@ struct Quaternion : Quat {
|
||||
/// <param name="to">The destination rotation</param>
|
||||
/// <param name="maxDegreesDelta">The maximum amount of degrees to
|
||||
/// rotate</param> <returns>The possibly limited rotation</returns>
|
||||
static Quaternion RotateTowards(const Quaternion& from,
|
||||
const Quaternion& to,
|
||||
static Quaternion RotateTowards(const Quaternion &from, const Quaternion &to,
|
||||
float maxDegreesDelta);
|
||||
|
||||
/// <summary>
|
||||
@ -166,13 +166,13 @@ struct Quaternion : Quat {
|
||||
/// <param name="angle">The angle</param>
|
||||
/// <param name="axis">The axis</param>
|
||||
/// <returns>The resulting quaternion</returns>
|
||||
static Quaternion AngleAxis(float angle, const Vector3& axis);
|
||||
static Quaternion AngleAxis(float angle, const Vector3 &axis);
|
||||
/// <summary>
|
||||
/// Convert this quaternion to angle/axis representation
|
||||
/// </summary>
|
||||
/// <param name="angle">A pointer to the angle for the result</param>
|
||||
/// <param name="axis">A pointer to the axis for the result</param>
|
||||
void ToAngleAxis(float* angle, Vector3* axis);
|
||||
void ToAngleAxis(float *angle, Vector3 *axis);
|
||||
|
||||
/// <summary>
|
||||
/// Get the angle between two orientations
|
||||
@ -190,9 +190,8 @@ struct Quaternion : Quat {
|
||||
/// <param name="factor">The factor between 0 and 1.</param>
|
||||
/// <returns>The resulting rotation</returns>
|
||||
/// A factor 0 returns rotation1, factor1 returns rotation2.
|
||||
static Quaternion Slerp(const Quaternion& rotation1,
|
||||
const Quaternion& rotation2,
|
||||
float factor);
|
||||
static Quaternion Slerp(const Quaternion &rotation1,
|
||||
const Quaternion &rotation2, float factor);
|
||||
/// <summary>
|
||||
/// Unclamped sherical lerp between two rotations
|
||||
/// </summary>
|
||||
@ -202,9 +201,8 @@ struct Quaternion : Quat {
|
||||
/// <returns>The resulting rotation</returns>
|
||||
/// A factor 0 returns rotation1, factor1 returns rotation2.
|
||||
/// Values outside the 0..1 range will result in extrapolated rotations
|
||||
static Quaternion SlerpUnclamped(const Quaternion& rotation1,
|
||||
const Quaternion& rotation2,
|
||||
float factor);
|
||||
static Quaternion SlerpUnclamped(const Quaternion &rotation1,
|
||||
const Quaternion &rotation2, float factor);
|
||||
|
||||
/// <summary>
|
||||
/// Create a rotation from euler angles
|
||||
@ -262,10 +260,8 @@ struct Quaternion : Quat {
|
||||
/// <param name="swing">A pointer to the quaternion for the swing
|
||||
/// result</param> <param name="twist">A pointer to the quaternion for the
|
||||
/// twist result</param>
|
||||
static void GetSwingTwist(Vector3 axis,
|
||||
Quaternion rotation,
|
||||
Quaternion* swing,
|
||||
Quaternion* twist);
|
||||
static void GetSwingTwist(Vector3 axis, Quaternion rotation,
|
||||
Quaternion *swing, Quaternion *twist);
|
||||
|
||||
/// <summary>
|
||||
/// Calculate the dot product of two quaternions
|
||||
@ -275,19 +271,20 @@ struct Quaternion : Quat {
|
||||
/// <returns></returns>
|
||||
static float Dot(Quaternion rotation1, Quaternion rotation2);
|
||||
|
||||
private:
|
||||
private:
|
||||
float GetLength() const;
|
||||
float GetLengthSquared() const;
|
||||
static float GetLengthSquared(const Quaternion& q);
|
||||
static float GetLengthSquared(const Quaternion &q);
|
||||
|
||||
void ToAxisAngleRad(const Quaternion& q, Vector3* const axis, float* angle);
|
||||
void ToAxisAngleRad(const Quaternion &q, Vector3 *const axis, float *angle);
|
||||
static Quaternion FromEulerRad(Vector3 euler);
|
||||
static Quaternion FromEulerRadXYZ(Vector3 euler);
|
||||
|
||||
Vector3 xyz() const;
|
||||
};
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#endif
|
||||
|
@ -5,15 +5,13 @@
|
||||
|
||||
#include <math.h>
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T>::SphericalOf() {
|
||||
template <typename T> SphericalOf<T>::SphericalOf() {
|
||||
this->distance = 0.0f;
|
||||
this->direction = DirectionOf<T>();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T>::SphericalOf(float distance,
|
||||
AngleOf<T> horizontal,
|
||||
SphericalOf<T>::SphericalOf(float distance, AngleOf<T> horizontal,
|
||||
AngleOf<T> vertical) {
|
||||
if (distance < 0) {
|
||||
this->distance = -distance;
|
||||
@ -36,8 +34,7 @@ SphericalOf<T>::SphericalOf(float distance, DirectionOf<T> direction) {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::Degrees(float distance,
|
||||
float horizontal,
|
||||
SphericalOf<T> SphericalOf<T>::Degrees(float distance, float horizontal,
|
||||
float vertical) {
|
||||
AngleOf<T> horizontalAngle = AngleOf<T>::Degrees(horizontal);
|
||||
AngleOf<T> verticalAngle = AngleOf<T>::Degrees(vertical);
|
||||
@ -46,8 +43,7 @@ SphericalOf<T> SphericalOf<T>::Degrees(float distance,
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::Radians(float distance,
|
||||
float horizontal,
|
||||
SphericalOf<T> SphericalOf<T>::Radians(float distance, float horizontal,
|
||||
float vertical) {
|
||||
return SphericalOf<T>(distance, AngleOf<T>::Radians(horizontal),
|
||||
AngleOf<T>::Radians(vertical));
|
||||
@ -61,8 +57,7 @@ SphericalOf<T> SphericalOf<T>::FromPolar(PolarOf<T> polar) {
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
|
||||
template <typename T> SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
|
||||
float distance = v.magnitude();
|
||||
if (distance == 0.0f) {
|
||||
return SphericalOf(distance, AngleOf<T>(), AngleOf<T>());
|
||||
@ -86,8 +81,7 @@ SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
|
||||
* @tparam T The type of the distance and direction values.
|
||||
* @return Vector3 The 3D vector representation of the spherical coordinates.
|
||||
*/
|
||||
template <typename T>
|
||||
Vector3 SphericalOf<T>::ToVector3() const {
|
||||
template <typename T> Vector3 SphericalOf<T>::ToVector3() const {
|
||||
float verticalRad = (pi / 2) - this->direction.vertical.InRadians();
|
||||
float horizontalRad = this->direction.horizontal.InRadians();
|
||||
|
||||
@ -132,8 +126,7 @@ SphericalOf<T> SphericalOf<T>::WithDistance(float distance) {
|
||||
return v;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::operator-() const {
|
||||
template <typename T> SphericalOf<T> SphericalOf<T>::operator-() const {
|
||||
SphericalOf<T> v = SphericalOf<T>(
|
||||
this->distance, this->direction.horizontal + AngleOf<T>::Degrees(180),
|
||||
this->direction.vertical + AngleOf<T>::Degrees(180));
|
||||
@ -141,7 +134,7 @@ SphericalOf<T> SphericalOf<T>::operator-() const {
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T>& s2) const {
|
||||
SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T> &s2) const {
|
||||
// let's do it the easy way...
|
||||
Vector3 v1 = this->ToVector3();
|
||||
Vector3 v2 = s2.ToVector3();
|
||||
@ -150,13 +143,13 @@ SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T>& s2) const {
|
||||
return r;
|
||||
}
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::operator-=(const SphericalOf<T>& v) {
|
||||
SphericalOf<T> SphericalOf<T>::operator-=(const SphericalOf<T> &v) {
|
||||
*this = *this - v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T>& s2) const {
|
||||
SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T> &s2) const {
|
||||
// let's do it the easy way...
|
||||
Vector3 v1 = this->ToVector3();
|
||||
Vector3 v2 = s2.ToVector3();
|
||||
@ -211,19 +204,17 @@ SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T>& s2) const {
|
||||
*/
|
||||
}
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::operator+=(const SphericalOf<T>& v) {
|
||||
SphericalOf<T> SphericalOf<T>::operator+=(const SphericalOf<T> &v) {
|
||||
*this = *this + v;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::operator*=(float f) {
|
||||
template <typename T> SphericalOf<T> SphericalOf<T>::operator*=(float f) {
|
||||
this->distance *= f;
|
||||
return *this;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::operator/=(float f) {
|
||||
template <typename T> SphericalOf<T> SphericalOf<T>::operator/=(float f) {
|
||||
this->distance /= f;
|
||||
return *this;
|
||||
}
|
||||
@ -234,8 +225,8 @@ SphericalOf<T> SphericalOf<T>::operator/=(float f) {
|
||||
const float epsilon = 1E-05f;
|
||||
|
||||
template <typename T>
|
||||
float SphericalOf<T>::DistanceBetween(const SphericalOf<T>& v1,
|
||||
const SphericalOf<T>& v2) {
|
||||
float SphericalOf<T>::DistanceBetween(const SphericalOf<T> &v1,
|
||||
const SphericalOf<T> &v2) {
|
||||
// SphericalOf<T> difference = v1 - v2;
|
||||
// return difference.distance;
|
||||
Vector3 vec1 = v1.ToVector3();
|
||||
@ -245,8 +236,8 @@ float SphericalOf<T>::DistanceBetween(const SphericalOf<T>& v1,
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf& v1,
|
||||
const SphericalOf& v2) {
|
||||
AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf &v1,
|
||||
const SphericalOf &v2) {
|
||||
// float denominator = v1.distance * v2.distance;
|
||||
// if (denominator < epsilon)
|
||||
// return 0.0f;
|
||||
@ -265,9 +256,9 @@ AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf& v1,
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
AngleOf<T> SphericalOf<T>::SignedAngleBetween(const SphericalOf<T>& v1,
|
||||
const SphericalOf<T>& v2,
|
||||
const SphericalOf<T>& axis) {
|
||||
AngleOf<T> Passer::LinearAlgebra::SphericalOf<T>::SignedAngleBetween(
|
||||
const SphericalOf<T> &v1, const SphericalOf<T> &v2,
|
||||
const SphericalOf<T> &axis) {
|
||||
Vector3 v1_vector = v1.ToVector3();
|
||||
Vector3 v2_vector = v2.ToVector3();
|
||||
Vector3 axis_vector = axis.ToVector3();
|
||||
@ -276,7 +267,7 @@ AngleOf<T> SphericalOf<T>::SignedAngleBetween(const SphericalOf<T>& v1,
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T>& v,
|
||||
SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T> &v,
|
||||
AngleOf<T> horizontalAngle,
|
||||
AngleOf<T> verticalAngle) {
|
||||
SphericalOf<T> r =
|
||||
@ -285,19 +276,19 @@ SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T>& v,
|
||||
return r;
|
||||
}
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::RotateHorizontal(const SphericalOf<T>& v,
|
||||
SphericalOf<T> SphericalOf<T>::RotateHorizontal(const SphericalOf<T> &v,
|
||||
AngleOf<T> a) {
|
||||
SphericalOf<T> r =
|
||||
SphericalOf(v.distance, v.direction.horizontal + a, v.direction.vertical);
|
||||
return r;
|
||||
}
|
||||
template <typename T>
|
||||
SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T>& v,
|
||||
SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T> &v,
|
||||
AngleOf<T> a) {
|
||||
SphericalOf<T> r =
|
||||
SphericalOf(v.distance, v.direction.horizontal, v.direction.vertical + a);
|
||||
return r;
|
||||
}
|
||||
|
||||
template class SphericalOf<float>;
|
||||
template class SphericalOf<signed short>;
|
||||
template class Passer::LinearAlgebra::SphericalOf<float>;
|
||||
template class Passer::LinearAlgebra::SphericalOf<signed short>;
|
||||
|
63
Spherical.h
63
Spherical.h
@ -7,17 +7,16 @@
|
||||
|
||||
#include "Direction.h"
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
struct Vector3;
|
||||
template <typename T>
|
||||
class PolarOf;
|
||||
template <typename T> class PolarOf;
|
||||
|
||||
/// @brief A spherical vector using angles in various representations
|
||||
/// @tparam T The implementation type used for the representations of the agles
|
||||
template <typename T>
|
||||
class SphericalOf {
|
||||
public:
|
||||
template <typename T> class SphericalOf {
|
||||
public:
|
||||
/// @brief The distance in meters
|
||||
/// @remark The distance should never be negative
|
||||
float distance;
|
||||
@ -39,8 +38,7 @@ class SphericalOf {
|
||||
/// @param horizontal The horizontal angle in degrees
|
||||
/// @param vertical The vertical angle in degrees
|
||||
/// @return The spherical vector
|
||||
static SphericalOf<T> Degrees(float distance,
|
||||
float horizontal,
|
||||
static SphericalOf<T> Degrees(float distance, float horizontal,
|
||||
float vertical);
|
||||
/// @brief Short-hand Deg alias for the Degrees function
|
||||
constexpr static auto Deg = Degrees;
|
||||
@ -50,8 +48,7 @@ class SphericalOf {
|
||||
/// @param horizontal The horizontal angle in radians
|
||||
/// @param vertical The vertical angle in radians
|
||||
/// @return The spherical vectpr
|
||||
static SphericalOf<T> Radians(float distance,
|
||||
float horizontal,
|
||||
static SphericalOf<T> Radians(float distance, float horizontal,
|
||||
float vertical);
|
||||
// Short-hand Rad alias for the Radians function
|
||||
constexpr static auto Rad = Radians;
|
||||
@ -98,23 +95,23 @@ class SphericalOf {
|
||||
/// @brief Subtract a spherical vector from this vector
|
||||
/// @param v The vector to subtract
|
||||
/// @return The result of the subtraction
|
||||
SphericalOf<T> operator-(const SphericalOf<T>& v) const;
|
||||
SphericalOf<T> operator-=(const SphericalOf<T>& v);
|
||||
SphericalOf<T> operator-(const SphericalOf<T> &v) const;
|
||||
SphericalOf<T> operator-=(const SphericalOf<T> &v);
|
||||
/// @brief Add a spherical vector to this vector
|
||||
/// @param v The vector to add
|
||||
/// @return The result of the addition
|
||||
SphericalOf<T> operator+(const SphericalOf<T>& v) const;
|
||||
SphericalOf<T> operator+=(const SphericalOf<T>& v);
|
||||
SphericalOf<T> operator+(const SphericalOf<T> &v) const;
|
||||
SphericalOf<T> operator+=(const SphericalOf<T> &v);
|
||||
|
||||
/// @brief Scale the vector uniformly up
|
||||
/// @param f The scaling factor
|
||||
/// @return The scaled vector
|
||||
/// @remark This operation will scale the distance of the vector. The angle
|
||||
/// will be unaffected.
|
||||
friend SphericalOf<T> operator*(const SphericalOf<T>& v, float f) {
|
||||
friend SphericalOf<T> operator*(const SphericalOf<T> &v, float f) {
|
||||
return SphericalOf<T>(v.distance * f, v.direction);
|
||||
}
|
||||
friend SphericalOf<T> operator*(float f, const SphericalOf<T>& v) {
|
||||
friend SphericalOf<T> operator*(float f, const SphericalOf<T> &v) {
|
||||
return SphericalOf<T>(f * v.distance, v.direction);
|
||||
}
|
||||
SphericalOf<T> operator*=(float f);
|
||||
@ -123,10 +120,10 @@ class SphericalOf {
|
||||
/// @return The scaled factor
|
||||
/// @remark This operation will scale the distance of the vector. The angle
|
||||
/// will be unaffected.
|
||||
friend SphericalOf<T> operator/(const SphericalOf<T>& v, float f) {
|
||||
friend SphericalOf<T> operator/(const SphericalOf<T> &v, float f) {
|
||||
return SphericalOf<T>(v.distance / f, v.direction);
|
||||
}
|
||||
friend SphericalOf<T> operator/(float f, const SphericalOf<T>& v) {
|
||||
friend SphericalOf<T> operator/(float f, const SphericalOf<T> &v) {
|
||||
return SphericalOf<T>(f / v.distance, v.direction);
|
||||
}
|
||||
SphericalOf<T> operator/=(float f);
|
||||
@ -135,42 +132,41 @@ class SphericalOf {
|
||||
/// @param v1 The first coordinate
|
||||
/// @param v2 The second coordinate
|
||||
/// @return The distance between the coordinates in meters
|
||||
static float DistanceBetween(const SphericalOf<T>& v1,
|
||||
const SphericalOf<T>& v2);
|
||||
static float DistanceBetween(const SphericalOf<T> &v1,
|
||||
const SphericalOf<T> &v2);
|
||||
/// @brief Calculate the unsigned angle between two spherical vectors
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @return The unsigned angle between the vectors
|
||||
static AngleOf<T> AngleBetween(const SphericalOf<T>& v1,
|
||||
const SphericalOf<T>& v2);
|
||||
static AngleOf<T> AngleBetween(const SphericalOf<T> &v1,
|
||||
const SphericalOf<T> &v2);
|
||||
/// @brief Calculate the signed angle between two spherical vectors
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @param axis The axis are which the angle is calculated
|
||||
/// @return The signed angle between the vectors
|
||||
static AngleOf<T> SignedAngleBetween(const SphericalOf<T>& v1,
|
||||
const SphericalOf<T>& v2,
|
||||
const SphericalOf<T>& axis);
|
||||
static AngleOf<T> SignedAngleBetween(const SphericalOf<T> &v1,
|
||||
const SphericalOf<T> &v2,
|
||||
const SphericalOf<T> &axis);
|
||||
|
||||
/// @brief Rotate a spherical vector
|
||||
/// @param v The vector to rotate
|
||||
/// @param horizontalAngle The horizontal rotation angle in local space
|
||||
/// @param verticalAngle The vertical rotation angle in local space
|
||||
/// @return The rotated vector
|
||||
static SphericalOf<T> Rotate(const SphericalOf& v,
|
||||
AngleOf<T> horizontalAngle,
|
||||
static SphericalOf<T> Rotate(const SphericalOf &v, AngleOf<T> horizontalAngle,
|
||||
AngleOf<T> verticalAngle);
|
||||
/// @brief Rotate a spherical vector horizontally
|
||||
/// @param v The vector to rotate
|
||||
/// @param angle The horizontal rotation angle in local space
|
||||
/// @return The rotated vector
|
||||
static SphericalOf<T> RotateHorizontal(const SphericalOf<T>& v,
|
||||
static SphericalOf<T> RotateHorizontal(const SphericalOf<T> &v,
|
||||
AngleOf<T> angle);
|
||||
/// @brief Rotate a spherical vector vertically
|
||||
/// @param v The vector to rotate
|
||||
/// @param angle The vertical rotation angle in local space
|
||||
/// @return The rotated vector
|
||||
static SphericalOf<T> RotateVertical(const SphericalOf<T>& v,
|
||||
static SphericalOf<T> RotateVertical(const SphericalOf<T> &v,
|
||||
AngleOf<T> angle);
|
||||
};
|
||||
|
||||
@ -184,14 +180,9 @@ using SphericalSingle = SphericalOf<float>;
|
||||
/// hardware
|
||||
using Spherical16 = SphericalOf<signed short>;
|
||||
|
||||
#if defined(ARDUINO)
|
||||
using Spherical = Spherical16;
|
||||
#else
|
||||
using Spherical = SphericalSingle;
|
||||
#endif
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#include "Polar.h"
|
||||
#include "Vector3.h"
|
||||
|
@ -164,5 +164,5 @@ void SwingTwistOf<T>::Normalize() {
|
||||
}
|
||||
}
|
||||
|
||||
template class SwingTwistOf<float>;
|
||||
template class SwingTwistOf<signed short>;
|
||||
template class Passer::LinearAlgebra::SwingTwistOf<float>;
|
||||
template class Passer::LinearAlgebra::SwingTwistOf<signed short>;
|
30
SwingTwist.h
30
SwingTwist.h
@ -10,14 +10,14 @@
|
||||
#include "Quaternion.h"
|
||||
#include "Spherical.h"
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
/// @brief An orientation using swing and twist angles in various
|
||||
/// representations
|
||||
/// @tparam T The implmentation type used for the representation of the angles
|
||||
template <typename T>
|
||||
class SwingTwistOf {
|
||||
public:
|
||||
template <typename T> class SwingTwistOf {
|
||||
public:
|
||||
DirectionOf<T> swing;
|
||||
AngleOf<T> twist;
|
||||
|
||||
@ -25,8 +25,7 @@ class SwingTwistOf {
|
||||
SwingTwistOf<T>(DirectionOf<T> swing, AngleOf<T> twist);
|
||||
SwingTwistOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist);
|
||||
|
||||
static SwingTwistOf<T> Degrees(float horizontal,
|
||||
float vertical = 0,
|
||||
static SwingTwistOf<T> Degrees(float horizontal, float vertical = 0,
|
||||
float twist = 0);
|
||||
|
||||
Quaternion ToQuaternion() const;
|
||||
@ -44,7 +43,7 @@ class SwingTwistOf {
|
||||
/// </summary>
|
||||
/// <param name="vector">The vector to rotate</param>
|
||||
/// <returns>The rotated vector</returns>
|
||||
SphericalOf<T> operator*(const SphericalOf<T>& vector) const;
|
||||
SphericalOf<T> operator*(const SphericalOf<T> &vector) const;
|
||||
/// <summary>
|
||||
/// Multiply this rotation with another rotation
|
||||
/// </summary>
|
||||
@ -52,8 +51,8 @@ class SwingTwistOf {
|
||||
/// <returns>The resulting swing/twist rotation</returns>
|
||||
/// The result will be this rotation rotated according to
|
||||
/// the give rotation.
|
||||
SwingTwistOf<T> operator*(const SwingTwistOf<T>& rotation) const;
|
||||
SwingTwistOf<T> operator*=(const SwingTwistOf<T>& rotation);
|
||||
SwingTwistOf<T> operator*(const SwingTwistOf<T> &rotation) const;
|
||||
SwingTwistOf<T> operator*=(const SwingTwistOf<T> &rotation);
|
||||
|
||||
static SwingTwistOf<T> Inverse(SwingTwistOf<T> rotation);
|
||||
|
||||
@ -63,9 +62,9 @@ class SwingTwistOf {
|
||||
/// <param name="angle">The angle</param>
|
||||
/// <param name="axis">The axis</param>
|
||||
/// <returns>The resulting quaternion</returns>
|
||||
static SwingTwistOf<T> AngleAxis(float angle, const DirectionOf<T>& axis);
|
||||
static SwingTwistOf<T> AngleAxis(float angle, const DirectionOf<T> &axis);
|
||||
|
||||
static AngleOf<T> Angle(const SwingTwistOf<T>& r1, const SwingTwistOf<T>& r2);
|
||||
static AngleOf<T> Angle(const SwingTwistOf<T> &r1, const SwingTwistOf<T> &r2);
|
||||
|
||||
void Normalize();
|
||||
};
|
||||
@ -73,13 +72,8 @@ class SwingTwistOf {
|
||||
using SwingTwistSingle = SwingTwistOf<float>;
|
||||
using SwingTwist16 = SwingTwistOf<signed short>;
|
||||
|
||||
#if defined(ARDUINO)
|
||||
using SwingTwist = SwingTwist16;
|
||||
#else
|
||||
using SwingTwist = SwingTwistSingle;
|
||||
#endif
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#endif
|
||||
|
57
Vector2.cpp
57
Vector2.cpp
@ -26,11 +26,11 @@ Vector2::Vector2(float _x, float _y) {
|
||||
// y = v.y;
|
||||
// }
|
||||
Vector2::Vector2(Vector3 v) {
|
||||
x = v.Right(); // x;
|
||||
y = v.Forward(); // z;
|
||||
x = v.Right(); // x;
|
||||
y = v.Forward(); // z;
|
||||
}
|
||||
Vector2::Vector2(PolarSingle p) {
|
||||
float horizontalRad = p.angle.InDegrees() * Deg2Rad;
|
||||
float horizontalRad = p.angle.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
|
||||
float cosHorizontal = cosf(horizontalRad);
|
||||
float sinHorizontal = sinf(horizontalRad);
|
||||
|
||||
@ -49,24 +49,18 @@ const Vector2 Vector2::down = Vector2(0, -1);
|
||||
const Vector2 Vector2::forward = Vector2(0, 1);
|
||||
const Vector2 Vector2::back = Vector2(0, -1);
|
||||
|
||||
bool Vector2::operator==(const Vector2& v) {
|
||||
bool Vector2::operator==(const Vector2 &v) {
|
||||
return (this->x == v.x && this->y == v.y);
|
||||
}
|
||||
|
||||
float Vector2::Magnitude(const Vector2& v) {
|
||||
float Vector2::Magnitude(const Vector2 &v) {
|
||||
return sqrtf(v.x * v.x + v.y * v.y);
|
||||
}
|
||||
float Vector2::magnitude() const {
|
||||
return (float)sqrtf(x * x + y * y);
|
||||
}
|
||||
float Vector2::SqrMagnitude(const Vector2& v) {
|
||||
return v.x * v.x + v.y * v.y;
|
||||
}
|
||||
float Vector2::sqrMagnitude() const {
|
||||
return (x * x + y * y);
|
||||
}
|
||||
float Vector2::magnitude() const { return (float)sqrtf(x * x + y * y); }
|
||||
float Vector2::SqrMagnitude(const Vector2 &v) { return v.x * v.x + v.y * v.y; }
|
||||
float Vector2::sqrMagnitude() const { return (x * x + y * y); }
|
||||
|
||||
Vector2 Vector2::Normalize(const Vector2& v) {
|
||||
Vector2 Vector2::Normalize(const Vector2 &v) {
|
||||
float num = Vector2::Magnitude(v);
|
||||
Vector2 result = Vector2::zero;
|
||||
if (num > Float::epsilon) {
|
||||
@ -83,28 +77,26 @@ Vector2 Vector2::normalized() const {
|
||||
return result;
|
||||
}
|
||||
|
||||
Vector2 Vector2::operator-() {
|
||||
return Vector2(-this->x, -this->y);
|
||||
}
|
||||
Vector2 Vector2::operator-() { return Vector2(-this->x, -this->y); }
|
||||
|
||||
Vector2 Vector2::operator-(const Vector2& v) const {
|
||||
Vector2 Vector2::operator-(const Vector2 &v) const {
|
||||
return Vector2(this->x - v.x, this->y - v.y);
|
||||
}
|
||||
Vector2 Vector2::operator-=(const Vector2& v) {
|
||||
Vector2 Vector2::operator-=(const Vector2 &v) {
|
||||
this->x -= v.x;
|
||||
this->y -= v.y;
|
||||
return *this;
|
||||
}
|
||||
Vector2 Vector2::operator+(const Vector2& v) const {
|
||||
Vector2 Vector2::operator+(const Vector2 &v) const {
|
||||
return Vector2(this->x + v.x, this->y + v.y);
|
||||
}
|
||||
Vector2 Vector2::operator+=(const Vector2& v) {
|
||||
Vector2 Vector2::operator+=(const Vector2 &v) {
|
||||
this->x += v.x;
|
||||
this->y += v.y;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector2 Vector2::Scale(const Vector2& v1, const Vector2& v2) {
|
||||
Vector2 Vector2::Scale(const Vector2 &v1, const Vector2 &v2) {
|
||||
return Vector2(v1.x * v2.x, v1.y * v2.y);
|
||||
}
|
||||
// Vector2 Passer::LinearAlgebra::operator*(const Vector2 &v, float f) {
|
||||
@ -130,18 +122,18 @@ Vector2 Vector2::operator/=(float f) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
float Vector2::Dot(const Vector2& v1, const Vector2& v2) {
|
||||
float Vector2::Dot(const Vector2 &v1, const Vector2 &v2) {
|
||||
return v1.x * v2.x + v1.y * v2.y;
|
||||
}
|
||||
|
||||
float Vector2::Distance(const Vector2& v1, const Vector2& v2) {
|
||||
float Vector2::Distance(const Vector2 &v1, const Vector2 &v2) {
|
||||
return Magnitude(v1 - v2);
|
||||
}
|
||||
|
||||
float Vector2::Angle(const Vector2& v1, const Vector2& v2) {
|
||||
float Vector2::Angle(const Vector2 &v1, const Vector2 &v2) {
|
||||
return (float)fabs(SignedAngle(v1, v2));
|
||||
}
|
||||
float Vector2::SignedAngle(const Vector2& v1, const Vector2& v2) {
|
||||
float Vector2::SignedAngle(const Vector2 &v1, const Vector2 &v2) {
|
||||
float sqrMagFrom = v1.sqrMagnitude();
|
||||
float sqrMagTo = v2.sqrMagnitude();
|
||||
|
||||
@ -156,14 +148,15 @@ float Vector2::SignedAngle(const Vector2& v1, const Vector2& v2) {
|
||||
|
||||
float angleFrom = atan2f(v1.y, v1.x);
|
||||
float angleTo = atan2f(v2.y, v2.x);
|
||||
return -(angleTo - angleFrom) * Rad2Deg;
|
||||
return -(angleTo - angleFrom) * Passer::LinearAlgebra::Rad2Deg;
|
||||
}
|
||||
|
||||
Vector2 Vector2::Rotate(const Vector2& v, AngleSingle a) {
|
||||
float angleRad = a.InDegrees() * Deg2Rad;
|
||||
Vector2 Vector2::Rotate(const Vector2 &v,
|
||||
Passer::LinearAlgebra::AngleSingle a) {
|
||||
float angleRad = a.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
|
||||
#if defined(AVR)
|
||||
float sinValue = sin(angleRad);
|
||||
float cosValue = cos(angleRad); // * Angle::Deg2Rad);
|
||||
float cosValue = cos(angleRad); // * Angle::Deg2Rad);
|
||||
#else
|
||||
float sinValue = (float)sinf(angleRad);
|
||||
float cosValue = (float)cosf(angleRad);
|
||||
@ -176,7 +169,7 @@ Vector2 Vector2::Rotate(const Vector2& v, AngleSingle a) {
|
||||
return r;
|
||||
}
|
||||
|
||||
Vector2 Vector2::Lerp(const Vector2& v1, const Vector2& v2, float f) {
|
||||
Vector2 Vector2::Lerp(const Vector2 &v1, const Vector2 &v2, float f) {
|
||||
Vector2 v = v1 + (v2 - v1) * f;
|
||||
return v;
|
||||
}
|
||||
|
49
Vector2.h
49
Vector2.h
@ -26,11 +26,11 @@ typedef struct Vec2 {
|
||||
} Vec2;
|
||||
}
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
struct Vector3;
|
||||
template <typename T>
|
||||
class PolarOf;
|
||||
template <typename T> class PolarOf;
|
||||
|
||||
/// @brief A 2-dimensional vector
|
||||
/// @remark This uses the right=handed carthesian coordinate system.
|
||||
@ -38,7 +38,7 @@ class PolarOf;
|
||||
struct Vector2 : Vec2 {
|
||||
friend struct Vec2;
|
||||
|
||||
public:
|
||||
public:
|
||||
/// @brief A new 2-dimensional zero vector
|
||||
Vector2();
|
||||
/// @brief A new 2-dimensional vector
|
||||
@ -80,12 +80,12 @@ struct Vector2 : Vec2 {
|
||||
/// @return true if it is identical to the given vector
|
||||
/// @note This uses float comparison to check equality which may have strange
|
||||
/// effects. Equality on floats should be avoided.
|
||||
bool operator==(const Vector2& v);
|
||||
bool operator==(const Vector2 &v);
|
||||
|
||||
/// @brief The vector length
|
||||
/// @param v The vector for which you need the length
|
||||
/// @return The vector length
|
||||
static float Magnitude(const Vector2& v);
|
||||
static float Magnitude(const Vector2 &v);
|
||||
/// @brief The vector length
|
||||
/// @return The vector length
|
||||
float magnitude() const;
|
||||
@ -95,7 +95,7 @@ struct Vector2 : Vec2 {
|
||||
/// @remark The squared length is computationally simpler than the real
|
||||
/// length. Think of Pythagoras A^2 + B^2 = C^2. This prevents the calculation
|
||||
/// of the squared root of C.
|
||||
static float SqrMagnitude(const Vector2& v);
|
||||
static float SqrMagnitude(const Vector2 &v);
|
||||
/// @brief The squared vector length
|
||||
/// @return The squared vector length
|
||||
/// @remark The squared length is computationally simpler than the real
|
||||
@ -106,7 +106,7 @@ struct Vector2 : Vec2 {
|
||||
/// @brief Convert the vector to a length of 1
|
||||
/// @param v The vector to convert
|
||||
/// @return The vector normalized to a length of 1
|
||||
static Vector2 Normalize(const Vector2& v);
|
||||
static Vector2 Normalize(const Vector2 &v);
|
||||
/// @brief Convert the vector to a length 1
|
||||
/// @return The vector normalized to a length of 1
|
||||
Vector2 normalized() const;
|
||||
@ -118,13 +118,13 @@ struct Vector2 : Vec2 {
|
||||
/// @brief Subtract a vector from this vector
|
||||
/// @param v The vector to subtract from this vector
|
||||
/// @return The result of the subtraction
|
||||
Vector2 operator-(const Vector2& v) const;
|
||||
Vector2 operator-=(const Vector2& v);
|
||||
Vector2 operator-(const Vector2 &v) const;
|
||||
Vector2 operator-=(const Vector2 &v);
|
||||
/// @brief Add a vector to this vector
|
||||
/// @param v The vector to add to this vector
|
||||
/// @return The result of the addition
|
||||
Vector2 operator+(const Vector2& v) const;
|
||||
Vector2 operator+=(const Vector2& v);
|
||||
Vector2 operator+(const Vector2 &v) const;
|
||||
Vector2 operator+=(const Vector2 &v);
|
||||
|
||||
/// @brief Scale the vector using another vector
|
||||
/// @param v1 The vector to scale
|
||||
@ -132,16 +132,16 @@ struct Vector2 : Vec2 {
|
||||
/// @return The scaled vector
|
||||
/// @remark Each component of the vector v1 will be multiplied with the
|
||||
/// matching component from the scaling vector v2.
|
||||
static Vector2 Scale(const Vector2& v1, const Vector2& v2);
|
||||
static Vector2 Scale(const Vector2 &v1, const Vector2 &v2);
|
||||
/// @brief Scale the vector uniformly up
|
||||
/// @param f The scaling factor
|
||||
/// @return The scaled vector
|
||||
/// @remark Each component of the vector will be multipled with the same
|
||||
/// factor f.
|
||||
friend Vector2 operator*(const Vector2& v, float f) {
|
||||
friend Vector2 operator*(const Vector2 &v, float f) {
|
||||
return Vector2(v.x * f, v.y * f);
|
||||
}
|
||||
friend Vector2 operator*(float f, const Vector2& v) {
|
||||
friend Vector2 operator*(float f, const Vector2 &v) {
|
||||
return Vector2(v.x * f, v.y * f);
|
||||
// return Vector2(f * v.x, f * v.y);
|
||||
}
|
||||
@ -150,10 +150,10 @@ struct Vector2 : Vec2 {
|
||||
/// @param f The scaling factor
|
||||
/// @return The scaled vector
|
||||
/// @remark Each componet of the vector will be divided by the same factor.
|
||||
friend Vector2 operator/(const Vector2& v, float f) {
|
||||
friend Vector2 operator/(const Vector2 &v, float f) {
|
||||
return Vector2(v.x / f, v.y / f);
|
||||
}
|
||||
friend Vector2 operator/(float f, const Vector2& v) {
|
||||
friend Vector2 operator/(float f, const Vector2 &v) {
|
||||
return Vector2(f / v.x, f / v.y);
|
||||
}
|
||||
Vector2 operator/=(float f);
|
||||
@ -162,13 +162,13 @@ struct Vector2 : Vec2 {
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @return The dot product of the two vectors
|
||||
static float Dot(const Vector2& v1, const Vector2& v2);
|
||||
static float Dot(const Vector2 &v1, const Vector2 &v2);
|
||||
|
||||
/// @brief The distance between two vectors
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @return The distance between the two vectors
|
||||
static float Distance(const Vector2& v1, const Vector2& v2);
|
||||
static float Distance(const Vector2 &v1, const Vector2 &v2);
|
||||
|
||||
/// @brief The angle between two vectors
|
||||
/// @param v1 The first vector
|
||||
@ -177,18 +177,18 @@ struct Vector2 : Vec2 {
|
||||
/// @remark This reterns an unsigned angle which is the shortest distance
|
||||
/// between the two vectors. Use Vector2::SignedAngle if a signed angle is
|
||||
/// needed.
|
||||
static float Angle(const Vector2& v1, const Vector2& v2);
|
||||
static float Angle(const Vector2 &v1, const Vector2 &v2);
|
||||
/// @brief The signed angle between two vectors
|
||||
/// @param v1 The starting vector
|
||||
/// @param v2 The ending vector
|
||||
/// @return The signed angle between the two vectors
|
||||
static float SignedAngle(const Vector2& v1, const Vector2& v2);
|
||||
static float SignedAngle(const Vector2 &v1, const Vector2 &v2);
|
||||
|
||||
/// @brief Rotate the vector
|
||||
/// @param v The vector to rotate
|
||||
/// @param a The angle in degrees to rotate
|
||||
/// @return The rotated vector
|
||||
static Vector2 Rotate(const Vector2& v, AngleSingle a);
|
||||
static Vector2 Rotate(const Vector2 &v, Passer::LinearAlgebra::AngleSingle a);
|
||||
|
||||
/// @brief Lerp (linear interpolation) between two vectors
|
||||
/// @param v1 The starting vector
|
||||
@ -198,11 +198,12 @@ struct Vector2 : Vec2 {
|
||||
/// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value
|
||||
/// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference
|
||||
/// between *v1* and *v2* etc.
|
||||
static Vector2 Lerp(const Vector2& v1, const Vector2& v2, float f);
|
||||
static Vector2 Lerp(const Vector2 &v1, const Vector2 &v2, float f);
|
||||
};
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#include "Polar.h"
|
||||
|
||||
|
53
Vector3.cpp
53
Vector3.cpp
@ -31,8 +31,10 @@ Vector3::Vector3(Vector2 v) {
|
||||
}
|
||||
|
||||
Vector3::Vector3(SphericalOf<float> s) {
|
||||
float verticalRad = (90.0f - s.direction.vertical.InDegrees()) * Deg2Rad;
|
||||
float horizontalRad = s.direction.horizontal.InDegrees() * Deg2Rad;
|
||||
float verticalRad = (90.0f - s.direction.vertical.InDegrees()) *
|
||||
Passer::LinearAlgebra::Deg2Rad;
|
||||
float horizontalRad =
|
||||
s.direction.horizontal.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
|
||||
float cosVertical = cosf(verticalRad);
|
||||
float sinVertical = sinf(verticalRad);
|
||||
float cosHorizontal = cosf(horizontalRad);
|
||||
@ -65,21 +67,17 @@ const Vector3 Vector3::back = Vector3(0, 0, -1);
|
||||
// return Vector3(v.x, 0, v.y);
|
||||
// }
|
||||
|
||||
float Vector3::Magnitude(const Vector3& v) {
|
||||
float Vector3::Magnitude(const Vector3 &v) {
|
||||
return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
|
||||
}
|
||||
float Vector3::magnitude() const {
|
||||
return (float)sqrtf(x * x + y * y + z * z);
|
||||
}
|
||||
float Vector3::magnitude() const { return (float)sqrtf(x * x + y * y + z * z); }
|
||||
|
||||
float Vector3::SqrMagnitude(const Vector3& v) {
|
||||
float Vector3::SqrMagnitude(const Vector3 &v) {
|
||||
return v.x * v.x + v.y * v.y + v.z * v.z;
|
||||
}
|
||||
float Vector3::sqrMagnitude() const {
|
||||
return (x * x + y * y + z * z);
|
||||
}
|
||||
float Vector3::sqrMagnitude() const { return (x * x + y * y + z * z); }
|
||||
|
||||
Vector3 Vector3::Normalize(const Vector3& v) {
|
||||
Vector3 Vector3::Normalize(const Vector3 &v) {
|
||||
float num = Vector3::Magnitude(v);
|
||||
Vector3 result = Vector3::zero;
|
||||
if (num > epsilon) {
|
||||
@ -100,26 +98,26 @@ Vector3 Vector3::operator-() const {
|
||||
return Vector3(-this->x, -this->y, -this->z);
|
||||
}
|
||||
|
||||
Vector3 Vector3::operator-(const Vector3& v) const {
|
||||
Vector3 Vector3::operator-(const Vector3 &v) const {
|
||||
return Vector3(this->x - v.x, this->y - v.y, this->z - v.z);
|
||||
}
|
||||
Vector3 Vector3::operator-=(const Vector3& v) {
|
||||
Vector3 Vector3::operator-=(const Vector3 &v) {
|
||||
this->x -= v.x;
|
||||
this->y -= v.y;
|
||||
this->z -= v.z;
|
||||
return *this;
|
||||
}
|
||||
Vector3 Vector3::operator+(const Vector3& v) const {
|
||||
Vector3 Vector3::operator+(const Vector3 &v) const {
|
||||
return Vector3(this->x + v.x, this->y + v.y, this->z + v.z);
|
||||
}
|
||||
Vector3 Vector3::operator+=(const Vector3& v) {
|
||||
Vector3 Vector3::operator+=(const Vector3 &v) {
|
||||
this->x += v.x;
|
||||
this->y += v.y;
|
||||
this->z += v.z;
|
||||
return *this;
|
||||
}
|
||||
|
||||
Vector3 Vector3::Scale(const Vector3& v1, const Vector3& v2) {
|
||||
Vector3 Vector3::Scale(const Vector3 &v1, const Vector3 &v2) {
|
||||
return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);
|
||||
}
|
||||
// Vector3 Passer::LinearAlgebra::operator*(const Vector3 &v, float f) {
|
||||
@ -147,24 +145,24 @@ Vector3 Vector3::operator/=(float f) {
|
||||
return *this;
|
||||
}
|
||||
|
||||
float Vector3::Dot(const Vector3& v1, const Vector3& v2) {
|
||||
float Vector3::Dot(const Vector3 &v1, const Vector3 &v2) {
|
||||
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
||||
}
|
||||
|
||||
bool Vector3::operator==(const Vector3& v) const {
|
||||
bool Vector3::operator==(const Vector3 &v) const {
|
||||
return (this->x == v.x && this->y == v.y && this->z == v.z);
|
||||
}
|
||||
|
||||
float Vector3::Distance(const Vector3& v1, const Vector3& v2) {
|
||||
float Vector3::Distance(const Vector3 &v1, const Vector3 &v2) {
|
||||
return Magnitude(v1 - v2);
|
||||
}
|
||||
|
||||
Vector3 Vector3::Cross(const Vector3& v1, const Vector3& v2) {
|
||||
Vector3 Vector3::Cross(const Vector3 &v1, const Vector3 &v2) {
|
||||
return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z,
|
||||
v1.x * v2.y - v1.y * v2.x);
|
||||
}
|
||||
|
||||
Vector3 Vector3::Project(const Vector3& v, const Vector3& n) {
|
||||
Vector3 Vector3::Project(const Vector3 &v, const Vector3 &n) {
|
||||
float sqrMagnitude = Dot(n, n);
|
||||
if (sqrMagnitude < epsilon)
|
||||
return Vector3::zero;
|
||||
@ -175,7 +173,7 @@ Vector3 Vector3::Project(const Vector3& v, const Vector3& n) {
|
||||
}
|
||||
}
|
||||
|
||||
Vector3 Vector3::ProjectOnPlane(const Vector3& v, const Vector3& n) {
|
||||
Vector3 Vector3::ProjectOnPlane(const Vector3 &v, const Vector3 &n) {
|
||||
Vector3 r = v - Project(v, n);
|
||||
return r;
|
||||
}
|
||||
@ -186,7 +184,7 @@ float clamp(float x, float lower, float upper) {
|
||||
return upperClamp;
|
||||
}
|
||||
|
||||
AngleOf<float> Vector3::Angle(const Vector3& v1, const Vector3& v2) {
|
||||
AngleOf<float> Vector3::Angle(const Vector3 &v1, const Vector3 &v2) {
|
||||
float denominator = sqrtf(v1.sqrMagnitude() * v2.sqrMagnitude());
|
||||
if (denominator < epsilon)
|
||||
return AngleOf<float>();
|
||||
@ -195,16 +193,15 @@ AngleOf<float> Vector3::Angle(const Vector3& v1, const Vector3& v2) {
|
||||
float fraction = dot / denominator;
|
||||
if (isnan(fraction))
|
||||
return AngleOf<float>::Degrees(
|
||||
fraction); // short cut to returning NaN universally
|
||||
fraction); // short cut to returning NaN universally
|
||||
|
||||
float cdot = clamp(fraction, -1.0, 1.0);
|
||||
float r = ((float)acos(cdot));
|
||||
return AngleOf<float>::Radians(r);
|
||||
}
|
||||
|
||||
AngleOf<float> Vector3::SignedAngle(const Vector3& v1,
|
||||
const Vector3& v2,
|
||||
const Vector3& axis) {
|
||||
AngleOf<float> Vector3::SignedAngle(const Vector3 &v1, const Vector3 &v2,
|
||||
const Vector3 &axis) {
|
||||
// angle in [0,180]
|
||||
AngleOf<float> angle = Vector3::Angle(v1, v2);
|
||||
|
||||
@ -218,7 +215,7 @@ AngleOf<float> Vector3::SignedAngle(const Vector3& v1,
|
||||
return AngleOf<float>(signed_angle);
|
||||
}
|
||||
|
||||
Vector3 Vector3::Lerp(const Vector3& v1, const Vector3& v2, float f) {
|
||||
Vector3 Vector3::Lerp(const Vector3 &v1, const Vector3 &v2, float f) {
|
||||
Vector3 v = v1 + (v2 - v1) * f;
|
||||
return v;
|
||||
}
|
||||
|
58
Vector3.h
58
Vector3.h
@ -14,7 +14,7 @@ extern "C" {
|
||||
/// This is a C-style implementation
|
||||
/// This uses the right-handed coordinate system.
|
||||
typedef struct Vec3 {
|
||||
protected:
|
||||
protected:
|
||||
/// <summary>
|
||||
/// The right axis of the vector
|
||||
/// </summary>
|
||||
@ -31,10 +31,10 @@ typedef struct Vec3 {
|
||||
} Vec3;
|
||||
}
|
||||
|
||||
namespace Passer {
|
||||
namespace LinearAlgebra {
|
||||
|
||||
template <typename T>
|
||||
class SphericalOf;
|
||||
template <typename T> class SphericalOf;
|
||||
|
||||
/// @brief A 3-dimensional vector
|
||||
/// @remark This uses a right-handed carthesian coordinate system.
|
||||
@ -42,7 +42,7 @@ class SphericalOf;
|
||||
struct Vector3 : Vec3 {
|
||||
friend struct Vec3;
|
||||
|
||||
public:
|
||||
public:
|
||||
/// @brief A new 3-dimensional zero vector
|
||||
Vector3();
|
||||
/// @brief A new 3-dimensional vector
|
||||
@ -88,12 +88,12 @@ struct Vector3 : Vec3 {
|
||||
/// @return true if it is identical to the given vector
|
||||
/// @note This uses float comparison to check equality which may have strange
|
||||
/// effects. Equality on floats should be avoided.
|
||||
bool operator==(const Vector3& v) const;
|
||||
bool operator==(const Vector3 &v) const;
|
||||
|
||||
/// @brief The vector length
|
||||
/// @param v The vector for which you need the length
|
||||
/// @return The vector length
|
||||
static float Magnitude(const Vector3& v);
|
||||
static float Magnitude(const Vector3 &v);
|
||||
/// @brief The vector length
|
||||
/// @return The vector length
|
||||
float magnitude() const;
|
||||
@ -103,7 +103,7 @@ struct Vector3 : Vec3 {
|
||||
/// @remark The squared length is computationally simpler than the real
|
||||
/// length. Think of Pythagoras A^2 + B^2 = C^2. This leaves out the
|
||||
/// calculation of the squared root of C.
|
||||
static float SqrMagnitude(const Vector3& v);
|
||||
static float SqrMagnitude(const Vector3 &v);
|
||||
/// @brief The squared vector length
|
||||
/// @return The squared vector length
|
||||
/// @remark The squared length is computationally simpler than the real
|
||||
@ -114,7 +114,7 @@ struct Vector3 : Vec3 {
|
||||
/// @brief Convert the vector to a length of 1
|
||||
/// @param v The vector to convert
|
||||
/// @return The vector normalized to a length of 1
|
||||
static Vector3 Normalize(const Vector3& v);
|
||||
static Vector3 Normalize(const Vector3 &v);
|
||||
/// @brief Convert the vector to a length of 1
|
||||
/// @return The vector normalized to a length of 1
|
||||
Vector3 normalized() const;
|
||||
@ -126,13 +126,13 @@ struct Vector3 : Vec3 {
|
||||
/// @brief Subtract a vector from this vector
|
||||
/// @param v The vector to subtract from this vector
|
||||
/// @return The result of this subtraction
|
||||
Vector3 operator-(const Vector3& v) const;
|
||||
Vector3 operator-=(const Vector3& v);
|
||||
Vector3 operator-(const Vector3 &v) const;
|
||||
Vector3 operator-=(const Vector3 &v);
|
||||
/// @brief Add a vector to this vector
|
||||
/// @param v The vector to add to this vector
|
||||
/// @return The result of the addition
|
||||
Vector3 operator+(const Vector3& v) const;
|
||||
Vector3 operator+=(const Vector3& v);
|
||||
Vector3 operator+(const Vector3 &v) const;
|
||||
Vector3 operator+=(const Vector3 &v);
|
||||
|
||||
/// @brief Scale the vector using another vector
|
||||
/// @param v1 The vector to scale
|
||||
@ -140,16 +140,16 @@ struct Vector3 : Vec3 {
|
||||
/// @return The scaled vector
|
||||
/// @remark Each component of the vector v1 will be multiplied with the
|
||||
/// matching component from the scaling vector v2.
|
||||
static Vector3 Scale(const Vector3& v1, const Vector3& v2);
|
||||
static Vector3 Scale(const Vector3 &v1, const Vector3 &v2);
|
||||
/// @brief Scale the vector uniformly up
|
||||
/// @param f The scaling factor
|
||||
/// @return The scaled vector
|
||||
/// @remark Each component of the vector will be multipled with the same
|
||||
/// factor f.
|
||||
friend Vector3 operator*(const Vector3& v, float f) {
|
||||
friend Vector3 operator*(const Vector3 &v, float f) {
|
||||
return Vector3(v.x * f, v.y * f, v.z * f);
|
||||
}
|
||||
friend Vector3 operator*(float f, const Vector3& v) {
|
||||
friend Vector3 operator*(float f, const Vector3 &v) {
|
||||
// return Vector3(f * v.x, f * v.y, f * v.z);
|
||||
return Vector3(v.x * f, v.y * f, v.z * f);
|
||||
}
|
||||
@ -158,10 +158,10 @@ struct Vector3 : Vec3 {
|
||||
/// @param f The scaling factor
|
||||
/// @return The scaled vector
|
||||
/// @remark Each componet of the vector will be divided by the same factor.
|
||||
friend Vector3 operator/(const Vector3& v, float f) {
|
||||
friend Vector3 operator/(const Vector3 &v, float f) {
|
||||
return Vector3(v.x / f, v.y / f, v.z / f);
|
||||
}
|
||||
friend Vector3 operator/(float f, const Vector3& v) {
|
||||
friend Vector3 operator/(float f, const Vector3 &v) {
|
||||
// return Vector3(f / v.x, f / v.y, f / v.z);
|
||||
return Vector3(v.x / f, v.y / f, v.z / f);
|
||||
}
|
||||
@ -171,31 +171,31 @@ struct Vector3 : Vec3 {
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @return The distance between the two vectors
|
||||
static float Distance(const Vector3& v1, const Vector3& v2);
|
||||
static float Distance(const Vector3 &v1, const Vector3 &v2);
|
||||
|
||||
/// @brief The dot product of two vectors
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @return The dot product of the two vectors
|
||||
static float Dot(const Vector3& v1, const Vector3& v2);
|
||||
static float Dot(const Vector3 &v1, const Vector3 &v2);
|
||||
|
||||
/// @brief The cross product of two vectors
|
||||
/// @param v1 The first vector
|
||||
/// @param v2 The second vector
|
||||
/// @return The cross product of the two vectors
|
||||
static Vector3 Cross(const Vector3& v1, const Vector3& v2);
|
||||
static Vector3 Cross(const Vector3 &v1, const Vector3 &v2);
|
||||
|
||||
/// @brief Project the vector on another vector
|
||||
/// @param v The vector to project
|
||||
/// @param n The normal vecto to project on
|
||||
/// @return The projected vector
|
||||
static Vector3 Project(const Vector3& v, const Vector3& n);
|
||||
static Vector3 Project(const Vector3 &v, const Vector3 &n);
|
||||
/// @brief Project the vector on a plane defined by a normal orthogonal to the
|
||||
/// plane.
|
||||
/// @param v The vector to project
|
||||
/// @param n The normal of the plane to project on
|
||||
/// @return Teh projected vector
|
||||
static Vector3 ProjectOnPlane(const Vector3& v, const Vector3& n);
|
||||
static Vector3 ProjectOnPlane(const Vector3 &v, const Vector3 &n);
|
||||
|
||||
/// @brief The angle between two vectors
|
||||
/// @param v1 The first vector
|
||||
@ -204,15 +204,14 @@ struct Vector3 : Vec3 {
|
||||
/// @remark This reterns an unsigned angle which is the shortest distance
|
||||
/// between the two vectors. Use Vector3::SignedAngle if a signed angle is
|
||||
/// needed.
|
||||
static AngleOf<float> Angle(const Vector3& v1, const Vector3& v2);
|
||||
static AngleOf<float> Angle(const Vector3 &v1, const Vector3 &v2);
|
||||
/// @brief The signed angle between two vectors
|
||||
/// @param v1 The starting vector
|
||||
/// @param v2 The ending vector
|
||||
/// @param axis The axis to rotate around
|
||||
/// @return The signed angle between the two vectors
|
||||
static AngleOf<float> SignedAngle(const Vector3& v1,
|
||||
const Vector3& v2,
|
||||
const Vector3& axis);
|
||||
static AngleOf<float> SignedAngle(const Vector3 &v1, const Vector3 &v2,
|
||||
const Vector3 &axis);
|
||||
|
||||
/// @brief Lerp (linear interpolation) between two vectors
|
||||
/// @param v1 The starting vector
|
||||
@ -222,11 +221,12 @@ struct Vector3 : Vec3 {
|
||||
/// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value
|
||||
/// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference
|
||||
/// between *v1* and *v2* etc.
|
||||
static Vector3 Lerp(const Vector3& v1, const Vector3& v2, float f);
|
||||
static Vector3 Lerp(const Vector3 &v1, const Vector3 &v2, float f);
|
||||
};
|
||||
|
||||
} // namespace LinearAlgebra
|
||||
using namespace LinearAlgebra;
|
||||
} // namespace LinearAlgebra
|
||||
} // namespace Passer
|
||||
using namespace Passer::LinearAlgebra;
|
||||
|
||||
#include "Spherical.h"
|
||||
|
||||
|
@ -1,13 +1,11 @@
|
||||
#if GTEST
|
||||
#include "gtest/gtest.h"
|
||||
|
||||
#include <math.h>
|
||||
#include <limits>
|
||||
#include <math.h>
|
||||
|
||||
#include "Angle.h"
|
||||
|
||||
using namespace LinearAlgebra;
|
||||
|
||||
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
|
||||
|
||||
TEST(Angle16, Construct) {
|
||||
@ -88,7 +86,7 @@ TEST(Angle16, Normalize) {
|
||||
r = Angle16::Normalize(Angle16::Degrees(0));
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0";
|
||||
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
// Infinites are not supported
|
||||
r = Angle16::Normalize(Angle16::Degrees(FLOAT_INFINITY));
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY";
|
||||
@ -127,7 +125,7 @@ TEST(Angle16, Clamp) {
|
||||
Angle16::Degrees(-10));
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10";
|
||||
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
// Infinites are not supported
|
||||
r = Angle16::Clamp(Angle16::Degrees(10), Angle16::Degrees(0),
|
||||
Angle16::Degrees(FLOAT_INFINITY));
|
||||
@ -218,7 +216,7 @@ TEST(Angle16, MoveTowards) {
|
||||
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(0), 30);
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30";
|
||||
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
// infinites are not supported
|
||||
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90),
|
||||
FLOAT_INFINITY);
|
||||
|
@ -1,13 +1,11 @@
|
||||
#if GTEST
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <math.h>
|
||||
#include <limits>
|
||||
#include <math.h>
|
||||
|
||||
#include "Angle.h"
|
||||
|
||||
using namespace LinearAlgebra;
|
||||
|
||||
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
|
||||
|
||||
TEST(Angle8, Construct) {
|
||||
@ -88,7 +86,7 @@ TEST(Angle8, Normalize) {
|
||||
r = Angle8::Normalize(Angle8::Degrees(0));
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0";
|
||||
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
// Infinites are not supported
|
||||
r = Angle8::Normalize(Angle8::Degrees(FLOAT_INFINITY));
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY";
|
||||
@ -126,7 +124,7 @@ TEST(Angle8, Clamp) {
|
||||
Angle8::Degrees(-10));
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10";
|
||||
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
// Infinites are not supported
|
||||
r = Angle8::Clamp(Angle8::Degrees(10), Angle8::Degrees(0),
|
||||
Angle8::Degrees(FLOAT_INFINITY));
|
||||
@ -217,7 +215,7 @@ TEST(Angle8, MoveTowards) {
|
||||
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(0), 30);
|
||||
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30";
|
||||
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
if (false) { // std::numeric_limits<float>::is_iec559) {
|
||||
// infinites are not supported
|
||||
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90),
|
||||
FLOAT_INFINITY);
|
||||
|
@ -1,13 +1,11 @@
|
||||
#if GTEST
|
||||
#include <gtest/gtest.h>
|
||||
|
||||
#include <math.h>
|
||||
#include <limits>
|
||||
#include <math.h>
|
||||
|
||||
#include "Angle.h"
|
||||
|
||||
using namespace LinearAlgebra;
|
||||
|
||||
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
|
||||
|
||||
TEST(AngleSingle, Construct) {
|
||||
|
@ -34,32 +34,26 @@ TEST(Vector2, FromPolar) {
|
||||
EXPECT_FLOAT_EQ(r.y, 0.0F) << "FromPolar(0 0)";
|
||||
}
|
||||
|
||||
TEST(Vector2, Magnitude) {
|
||||
Vector2 v = Vector2(1, 2);
|
||||
float m = 0;
|
||||
TEST(Vector2, Equality) {
|
||||
Vector2 v1 = Vector2(4, 5);
|
||||
Vector2 v2 = Vector2(1, 2);
|
||||
bool r = false;
|
||||
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude 1 2";
|
||||
r = v1 == v2;
|
||||
EXPECT_FALSE(r) << "4 5 == 1 2";
|
||||
|
||||
m = Vector2::Magnitude(v);
|
||||
EXPECT_FLOAT_EQ(m, 2.236068F) << "Vector2::Magnitude 1 2";
|
||||
|
||||
v = Vector2(-1, -2);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude -1 -2";
|
||||
|
||||
v = Vector2(0, 0);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, 0) << "v.magnitude 0 0 ";
|
||||
v2 = Vector2(4, 5);
|
||||
r = v1 == v2;
|
||||
EXPECT_TRUE(r) << "4 5 == 1 2";
|
||||
|
||||
if (std::numeric_limits<float>::is_iec559) {
|
||||
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude INFINITY INFINITY ";
|
||||
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
|
||||
r = v1 == v2;
|
||||
EXPECT_FALSE(r) << "4 5 == INFINITY INFINITY";
|
||||
|
||||
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude -INFINITY -INFINITY ";
|
||||
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
|
||||
r = v1 == v2;
|
||||
EXPECT_FALSE(r) << "-INFINITY -INFINITY == INFINITY INFINITY";
|
||||
}
|
||||
}
|
||||
|
||||
@ -92,6 +86,35 @@ TEST(Vector2, SqrMagnitude) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Vector2, Magnitude) {
|
||||
Vector2 v = Vector2(1, 2);
|
||||
float m = 0;
|
||||
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude 1 2";
|
||||
|
||||
m = Vector2::Magnitude(v);
|
||||
EXPECT_FLOAT_EQ(m, 2.236068F) << "Vector2::Magnitude 1 2";
|
||||
|
||||
v = Vector2(-1, -2);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude -1 -2";
|
||||
|
||||
v = Vector2(0, 0);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, 0) << "v.magnitude 0 0 ";
|
||||
|
||||
if (std::numeric_limits<float>::is_iec559) {
|
||||
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude INFINITY INFINITY ";
|
||||
|
||||
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
|
||||
m = v.magnitude();
|
||||
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude -INFINITY -INFINITY ";
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Vector2, Normalize) {
|
||||
bool r = false;
|
||||
|
||||
@ -311,56 +334,6 @@ TEST(Vector2, Divide) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Vector2, Dot) {
|
||||
Vector2 v1 = Vector2(4, 5);
|
||||
Vector2 v2 = Vector2(1, 2);
|
||||
float f = 0;
|
||||
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, 14) << "Dot(4 5, 1 2)";
|
||||
|
||||
v2 = Vector2(-1, -2);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, -14) << "Dot(4 5, -1 -2)";
|
||||
|
||||
v2 = Vector2(0, 0);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, 0) << "Dot(4 5, 0 0)";
|
||||
|
||||
if (std::numeric_limits<float>::is_iec559) {
|
||||
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Dot(4 5, INFINITY INFINITY)";
|
||||
|
||||
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, -FLOAT_INFINITY) << "Dot(4 5, -INFINITY -INFINITY)";
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Vector2, Equality) {
|
||||
Vector2 v1 = Vector2(4, 5);
|
||||
Vector2 v2 = Vector2(1, 2);
|
||||
bool r = false;
|
||||
|
||||
r = v1 == v2;
|
||||
EXPECT_FALSE(r) << "4 5 == 1 2";
|
||||
|
||||
v2 = Vector2(4, 5);
|
||||
r = v1 == v2;
|
||||
EXPECT_TRUE(r) << "4 5 == 1 2";
|
||||
|
||||
if (std::numeric_limits<float>::is_iec559) {
|
||||
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
|
||||
r = v1 == v2;
|
||||
EXPECT_FALSE(r) << "4 5 == INFINITY INFINITY";
|
||||
|
||||
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
|
||||
r = v1 == v2;
|
||||
EXPECT_FALSE(r) << "-INFINITY -INFINITY == INFINITY INFINITY";
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Vector2, Distance) {
|
||||
Vector2 v1 = Vector2(4, 5);
|
||||
Vector2 v2 = Vector2(1, 2);
|
||||
@ -388,6 +361,33 @@ TEST(Vector2, Distance) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Vector2, Dot) {
|
||||
Vector2 v1 = Vector2(4, 5);
|
||||
Vector2 v2 = Vector2(1, 2);
|
||||
float f = 0;
|
||||
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, 14) << "Dot(4 5, 1 2)";
|
||||
|
||||
v2 = Vector2(-1, -2);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, -14) << "Dot(4 5, -1 -2)";
|
||||
|
||||
v2 = Vector2(0, 0);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, 0) << "Dot(4 5, 0 0)";
|
||||
|
||||
if (std::numeric_limits<float>::is_iec559) {
|
||||
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Dot(4 5, INFINITY INFINITY)";
|
||||
|
||||
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
|
||||
f = Vector2::Dot(v1, v2);
|
||||
EXPECT_FLOAT_EQ(f, -FLOAT_INFINITY) << "Dot(4 5, -INFINITY -INFINITY)";
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Vector2, Angle) {
|
||||
Vector2 v1 = Vector2(4, 5);
|
||||
Vector2 v2 = Vector2(1, 2);
|
||||
|
Loading…
x
Reference in New Issue
Block a user