Compare commits

..

1 Commits

Author SHA1 Message Date
Pascal Serrarens
54634f0582 Backporting some style changes from Python 2025-03-31 08:45:39 +02:00
21 changed files with 427 additions and 527 deletions

113
Angle.cpp
View File

@ -3,15 +3,15 @@
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Angle.h"
#include <math.h>
#include "FloatSingle.h"
#include <math.h>
namespace LinearAlgebra {
const float Rad2Deg = 57.29578F;
const float Deg2Rad = 0.0174532924F;
//===== AngleSingle, AngleOf<float>
template <>
AngleOf<float> AngleOf<float>::Degrees(float degrees) {
template <> AngleOf<float> Passer::LinearAlgebra::AngleOf<float>::Degrees(float degrees) {
if (isfinite(degrees)) {
while (degrees < -180)
degrees += 360;
@ -22,8 +22,7 @@ AngleOf<float> AngleOf<float>::Degrees(float degrees) {
return AngleOf<float>(degrees);
}
template <>
AngleOf<float> AngleOf<float>::Radians(float radians) {
template <> AngleOf<float> AngleOf<float>::Radians(float radians) {
if (isfinite(radians)) {
while (radians <= -pi)
radians += 2 * pi;
@ -34,13 +33,9 @@ AngleOf<float> AngleOf<float>::Radians(float radians) {
return Binary(radians * Rad2Deg);
}
template <>
float AngleOf<float>::InDegrees() const {
return this->value;
}
template <> float AngleOf<float>::InDegrees() const { return this->value; }
template <>
float AngleOf<float>::InRadians() const {
template <> float AngleOf<float>::InRadians() const {
return this->value * Deg2Rad;
}
@ -63,29 +58,25 @@ AngleOf<signed short> AngleOf<signed short>::Radians(float radians) {
return Binary(value);
}
template <>
float AngleOf<signed short>::InDegrees() const {
template <> float AngleOf<signed short>::InDegrees() const {
float degrees = this->value / 65536.0f * 360.0f;
return degrees;
}
template <>
float AngleOf<signed short>::InRadians() const {
template <> float AngleOf<signed short>::InRadians() const {
float radians = this->value / 65536.0f * (2 * pi);
return radians;
}
//===== Angle8, AngleOf<signed char>
template <>
AngleOf<signed char> AngleOf<signed char>::Degrees(float degrees) {
template <> AngleOf<signed char> AngleOf<signed char>::Degrees(float degrees) {
// map float [-180..180) to integer [-128..127)
signed char value = (signed char)roundf(degrees / 360.0F * 256.0F);
return Binary(value);
}
template <>
AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
template <> AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
if (!isfinite(radians))
return AngleOf<signed char>::zero;
@ -94,42 +85,32 @@ AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
return Binary(value);
}
template <>
float AngleOf<signed char>::InDegrees() const {
template <> float AngleOf<signed char>::InDegrees() const {
float degrees = this->value / 256.0f * 360.0f;
return degrees;
}
template <>
float AngleOf<signed char>::InRadians() const {
template <> float AngleOf<signed char>::InRadians() const {
float radians = this->value / 128.0f * pi;
return radians;
}
//===== Generic
template <typename T>
AngleOf<T>::AngleOf() : value(0) {}
template <typename T> AngleOf<T>::AngleOf() : value(0) {}
template <typename T>
AngleOf<T>::AngleOf(T rawValue) : value(rawValue) {}
template <typename T> AngleOf<T>::AngleOf(T rawValue) : value(rawValue) {}
template <typename T>
const AngleOf<T> AngleOf<T>::zero = AngleOf<T>();
template <typename T> const AngleOf<T> AngleOf<T>::zero = AngleOf<T>();
template <typename T>
AngleOf<T> AngleOf<T>::Binary(T rawValue) {
template <typename T> AngleOf<T> AngleOf<T>::Binary(T rawValue) {
AngleOf<T> angle = AngleOf<T>();
angle.SetBinary(rawValue);
return angle;
}
template <typename T>
T AngleOf<T>::GetBinary() const {
return this->value;
}
template <typename T>
void AngleOf<T>::SetBinary(T rawValue) {
template <typename T> T AngleOf<T>::GetBinary() const { return this->value; }
template <typename T> void AngleOf<T>::SetBinary(T rawValue) {
this->value = rawValue;
}
@ -138,28 +119,24 @@ bool AngleOf<T>::operator==(const AngleOf<T> angle) const {
return this->value == angle.value;
}
template <typename T>
bool AngleOf<T>::operator>(AngleOf<T> angle) const {
template <typename T> bool AngleOf<T>::operator>(AngleOf<T> angle) const {
return this->value > angle.value;
}
template <typename T>
bool AngleOf<T>::operator>=(AngleOf<T> angle) const {
template <typename T> bool AngleOf<T>::operator>=(AngleOf<T> angle) const {
return this->value >= angle.value;
}
template <typename T>
bool AngleOf<T>::operator<(AngleOf<T> angle) const {
template <typename T> bool AngleOf<T>::operator<(AngleOf<T> angle) const {
return this->value < angle.value;
}
template <typename T>
bool AngleOf<T>::operator<=(AngleOf<T> angle) const {
template <typename T> bool AngleOf<T>::operator<=(AngleOf<T> angle) const {
return this->value <= angle.value;
}
template <typename T>
signed int AngleOf<T>::Sign(AngleOf<T> angle) {
signed int Passer::LinearAlgebra::AngleOf<T>::Sign(AngleOf<T> angle) {
if (angle.value < 0)
return -1;
if (angle.value > 0)
@ -168,15 +145,14 @@ signed int AngleOf<T>::Sign(AngleOf<T> angle) {
}
template <typename T>
AngleOf<T> AngleOf<T>::Abs(AngleOf<T> angle) {
AngleOf<T> Passer::LinearAlgebra::AngleOf<T>::Abs(AngleOf<T> angle) {
if (Sign(angle) < 0)
return -angle;
else
return angle;
}
template <typename T>
AngleOf<T> AngleOf<T>::operator-() const {
template <typename T> AngleOf<T> AngleOf<T>::operator-() const {
AngleOf<T> angle = Binary(-this->value);
return angle;
}
@ -230,8 +206,7 @@ AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T>& angle) {
// return AngleOf::Degrees((float)factor * angle.InDegrees());
// }
template <typename T>
void AngleOf<T>::Normalize() {
template <typename T> void AngleOf<T>::Normalize() {
float angleValue = this->InDegrees();
if (!isfinite(angleValue))
return;
@ -243,8 +218,7 @@ void AngleOf<T>::Normalize() {
*this = AngleOf::Degrees(angleValue);
}
template <typename T>
AngleOf<T> AngleOf<T>::Normalize(AngleOf<T> angle) {
template <typename T> AngleOf<T> AngleOf<T>::Normalize(AngleOf<T> angle) {
float angleValue = angle.InDegrees();
if (!isfinite(angleValue))
return angle;
@ -263,8 +237,7 @@ AngleOf<T> AngleOf<T>::Clamp(AngleOf<T> angle, AngleOf<T> min, AngleOf<T> max) {
}
template <typename T>
AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle,
AngleOf<T> toAngle,
AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle, AngleOf<T> toAngle,
float maxDegrees) {
maxDegrees = fmaxf(0, maxDegrees); // filter out negative distances
AngleOf<T> d = toAngle - fromAngle;
@ -276,34 +249,28 @@ AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle,
return fromAngle + d;
}
template <typename T>
float AngleOf<T>::Cos(AngleOf<T> angle) {
template <typename T> float AngleOf<T>::Cos(AngleOf<T> angle) {
return cosf(angle.InRadians());
}
template <typename T>
float AngleOf<T>::Sin(AngleOf<T> angle) {
template <typename T> float AngleOf<T>::Sin(AngleOf<T> angle) {
return sinf(angle.InRadians());
}
template <typename T>
float AngleOf<T>::Tan(AngleOf<T> angle) {
template <typename T> float AngleOf<T>::Tan(AngleOf<T> angle) {
return tanf(angle.InRadians());
}
template <typename T>
AngleOf<T> AngleOf<T>::Acos(float f) {
template <typename T> AngleOf<T> AngleOf<T>::Acos(float f) {
return AngleOf<T>::Radians(acosf(f));
}
template <typename T>
AngleOf<T> AngleOf<T>::Asin(float f) {
template <typename T> AngleOf<T> AngleOf<T>::Asin(float f) {
return AngleOf<T>::Radians(asinf(f));
}
template <typename T>
AngleOf<T> AngleOf<T>::Atan(float f) {
template <typename T> AngleOf<T> AngleOf<T>::Atan(float f) {
return AngleOf<T>::Radians(atanf(f));
}
template <typename T>
AngleOf<T> AngleOf<T>::Atan2(float y, float x) {
AngleOf<T> Passer::LinearAlgebra::AngleOf<T>::Atan2(float y, float x) {
return AngleOf<T>::Radians(atan2f(y, x));
}
@ -387,8 +354,6 @@ AngleOf<T> AngleOf<T>::SineRuleAngle(float a, AngleOf<T> beta, float b) {
return alpha;
}
template class AngleOf<float>;
template class AngleOf<signed char>;
template class AngleOf<signed short>;
} // namespace LinearAlgebra
template class Passer::LinearAlgebra::AngleOf<float>;
template class Passer::LinearAlgebra::AngleOf<signed char>;
template class Passer::LinearAlgebra::AngleOf<signed short>;

15
Angle.h
View File

@ -5,6 +5,7 @@
#ifndef ANGLE_H
#define ANGLE_H
namespace Passer {
namespace LinearAlgebra {
static float pi = 3.1415927410125732421875F;
@ -17,8 +18,7 @@ static float Deg2Rad = (pi * 2) / 360.0f;
/// The angle is internally limited to (-180..180] degrees or (-PI...PI]
/// radians. When an angle exceeds this range, it is normalized to a value
/// within the range.
template <typename T>
class AngleOf {
template <typename T> class AngleOf {
public:
/// @brief Create a new angle with a zero value
AngleOf<T>();
@ -150,8 +150,7 @@ class AngleOf {
/// @param toAngle The angle to rotate towards
/// @param maxAngle The maximum angle to rotate
/// @return The rotated angle
static AngleOf<T> MoveTowards(AngleOf<T> fromAngle,
AngleOf<T> toAngle,
static AngleOf<T> MoveTowards(AngleOf<T> fromAngle, AngleOf<T> toAngle,
float maxAngle);
/// @brief Calculates the cosine of an angle
@ -216,12 +215,8 @@ using AngleSingle = AngleOf<float>;
using Angle16 = AngleOf<signed short>;
using Angle8 = AngleOf<signed char>;
#if defined(ARDUINO)
using Angle = Angle16;
#else
using Angle = AngleSingle;
#endif
} // namespace LinearAlgebra
} // namespace Passer
using namespace Passer::LinearAlgebra;
#endif

View File

@ -9,8 +9,7 @@
#include <math.h>
template <typename T>
DirectionOf<T>::DirectionOf() {
template <typename T> DirectionOf<T>::DirectionOf() {
this->horizontal = AngleOf<T>();
this->vertical = AngleOf<T>();
}
@ -42,7 +41,7 @@ const DirectionOf<T> DirectionOf<T>::right =
DirectionOf<T>(AngleOf<T>::Degrees(90), AngleOf<T>());
template <typename T>
Vector3 DirectionOf<T>::ToVector3() const {
Vector3 Passer::LinearAlgebra::DirectionOf<T>::ToVector3() const {
Quaternion q = Quaternion::Euler(-this->vertical.InDegrees(),
this->horizontal.InDegrees(), 0);
Vector3 v = q * Vector3::forward;
@ -50,12 +49,12 @@ Vector3 DirectionOf<T>::ToVector3() const {
}
template <typename T>
DirectionOf<T> DirectionOf<T>::FromVector3(Vector3 vector) {
DirectionOf<T>
Passer::LinearAlgebra::DirectionOf<T>::FromVector3(Vector3 vector) {
DirectionOf<T> d;
d.horizontal = AngleOf<T>::Atan2(
vector.Right(),
vector
.Forward()); // AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
vector.Forward()); // AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
d.vertical =
AngleOf<T>::Degrees(-90) -
AngleOf<T>::Acos(
@ -65,32 +64,34 @@ DirectionOf<T> DirectionOf<T>::FromVector3(Vector3 vector) {
}
template <typename T>
DirectionOf<T> DirectionOf<T>::Degrees(float horizontal, float vertical) {
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::Degrees(float horizontal,
float vertical) {
return DirectionOf<T>(AngleOf<T>::Degrees(horizontal),
AngleOf<T>::Degrees(vertical));
}
template <typename T>
DirectionOf<T> DirectionOf<T>::Radians(float horizontal, float vertical) {
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::Radians(float horizontal,
float vertical) {
return DirectionOf<T>(AngleOf<T>::Radians(horizontal),
AngleOf<T>::Radians(vertical));
}
template <typename T>
bool DirectionOf<T>::operator==(const DirectionOf<T> direction) const {
bool Passer::LinearAlgebra::DirectionOf<T>::operator==(
const DirectionOf<T> direction) const {
return (this->horizontal == direction.horizontal) &&
(this->vertical == direction.vertical);
}
template <typename T>
DirectionOf<T> DirectionOf<T>::operator-() const {
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::operator-() const {
DirectionOf<T> r = DirectionOf<T>(this->horizontal + AngleOf<T>::Degrees(180),
-this->vertical);
return r;
}
template <typename T>
void DirectionOf<T>::Normalize() {
template <typename T> void DirectionOf<T>::Normalize() {
if (this->vertical > AngleOf<T>::Degrees(90) ||
this->vertical < AngleOf<T>::Degrees(-90)) {
this->horizontal += AngleOf<T>::Degrees(180);
@ -98,5 +99,5 @@ void DirectionOf<T>::Normalize() {
}
}
template class DirectionOf<float>;
template class DirectionOf<signed short>;
template class Passer::LinearAlgebra::DirectionOf<float>;
template class Passer::LinearAlgebra::DirectionOf<signed short>;

View File

@ -7,6 +7,7 @@
#include "Angle.h"
namespace Passer {
namespace LinearAlgebra {
struct Vector3;
@ -21,14 +22,8 @@ struct Vector3;
/// rotation has been applied.
/// The angles are automatically normalized to stay within the abovenmentioned
/// ranges.
template <typename T>
class DirectionOf {
template <typename T> class DirectionOf {
public:
/// @brief horizontal angle, range= (-180..180]
AngleOf<T> horizontal;
/// @brief vertical angle, range in degrees = (-90..90]
AngleOf<T> vertical;
/// @brief Create a new direction with zero angles
DirectionOf<T>();
/// @brief Create a new direction
@ -36,6 +31,11 @@ class DirectionOf {
/// @param vertical The vertical angle.
DirectionOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical);
/// @brief horizontal angle, range= (-180..180]
AngleOf<T> horizontal;
/// @brief vertical angle, range in degrees = (-90..90]
AngleOf<T> vertical;
/// @brief Convert the direction into a carthesian vector
/// @return The carthesian vector corresponding to this direction.
Vector3 ToVector3() const;
@ -91,14 +91,8 @@ class DirectionOf {
using DirectionSingle = DirectionOf<float>;
using Direction16 = DirectionOf<signed short>;
#if defined(ARDUINO)
using Direction = Direction16;
#else
using Direction = DirectionSingle;
#endif
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#endif

View File

@ -5,6 +5,7 @@
#ifndef FLOAT_H
#define FLOAT_H
namespace Passer {
namespace LinearAlgebra {
class Float {
@ -16,7 +17,7 @@ class Float {
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#endif

View File

@ -3,11 +3,11 @@
#include "Vector3.h"
namespace Passer {
namespace LinearAlgebra {
/// @brief Single precision float matrix
template <typename T>
class MatrixOf {
template <typename T> class MatrixOf {
public:
MatrixOf(unsigned int rows, unsigned int cols);
MatrixOf(unsigned int rows, unsigned int cols, const T *source)
@ -54,8 +54,7 @@ class MatrixOf {
}
}
static void Multiply(const MatrixOf<T>* m1,
const MatrixOf<T>* m2,
static void Multiply(const MatrixOf<T> *m1, const MatrixOf<T> *m2,
MatrixOf<T> *r);
void Multiply(const MatrixOf<T> *m, MatrixOf<T> *r) const {
Multiply(this, m, r);
@ -116,6 +115,7 @@ class MatrixOf {
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#endif

View File

@ -3,13 +3,11 @@
#include "Polar.h"
#include "Vector2.h"
template <typename T>
PolarOf<T>::PolarOf() {
template <typename T> PolarOf<T>::PolarOf() {
this->distance = 0.0f;
this->angle = AngleOf<T>();
}
template <typename T>
PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) {
template <typename T> PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) {
// distance should always be 0 or greater
if (distance < 0.0f) {
this->distance = -distance;
@ -36,18 +34,16 @@ PolarOf<T> PolarOf<T>::Radians(float distance, float radians) {
return PolarOf<T>(distance, AngleOf<T>::Radians(radians));
}
template <typename T>
PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) {
template <typename T> PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) {
float distance = v.magnitude();
AngleOf<T> angle =
AngleOf<T>::Degrees(Vector2::SignedAngle(Vector2::forward, v));
PolarOf<T> p = PolarOf(distance, angle);
return p;
}
template <typename T>
PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) {
float distance =
v.distance * cosf(v.direction.vertical.InDegrees() * Deg2Rad);
template <typename T> PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) {
float distance = v.distance * cosf(v.direction.vertical.InDegrees() *
Passer::LinearAlgebra::Deg2Rad);
AngleOf<T> angle = v.direction.horizontal;
PolarOf<T> p = PolarOf(distance, angle);
return p;
@ -64,37 +60,31 @@ const PolarOf<T> PolarOf<T>::right = PolarOf(1.0, AngleOf<T>::Degrees(90));
template <typename T>
const PolarOf<T> PolarOf<T>::left = PolarOf(1.0, AngleOf<T>::Degrees(-90));
template <typename T>
bool PolarOf<T>::operator==(const PolarOf& v) const {
template <typename T> bool PolarOf<T>::operator==(const PolarOf &v) const {
return (this->distance == v.distance &&
this->angle.InDegrees() == v.angle.InDegrees());
}
template <typename T>
PolarOf<T> PolarOf<T>::Normalize(const PolarOf& v) {
template <typename T> PolarOf<T> PolarOf<T>::Normalize(const PolarOf &v) {
PolarOf<T> r = PolarOf(1, v.angle);
return r;
}
template <typename T>
PolarOf<T> PolarOf<T>::normalized() const {
template <typename T> PolarOf<T> PolarOf<T>::normalized() const {
PolarOf<T> r = PolarOf(1, this->angle);
return r;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-() const {
template <typename T> PolarOf<T> PolarOf<T>::operator-() const {
PolarOf<T> v =
PolarOf(this->distance, this->angle + AngleOf<T>::Degrees(180));
return v;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-(const PolarOf& v) const {
template <typename T> PolarOf<T> PolarOf<T>::operator-(const PolarOf &v) const {
PolarOf<T> r = -v;
return *this + r;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-=(const PolarOf& v) {
template <typename T> PolarOf<T> PolarOf<T>::operator-=(const PolarOf &v) {
*this = *this - v;
return *this;
// angle = AngleOf<T>::Normalize(newAngle);
@ -115,8 +105,7 @@ PolarOf<T> PolarOf<T>::operator-=(const PolarOf& v) {
// return d;
// }
template <typename T>
PolarOf<T> PolarOf<T>::operator+(const PolarOf& v) const {
template <typename T> PolarOf<T> PolarOf<T>::operator+(const PolarOf &v) const {
if (v.distance == 0)
return PolarOf(this->distance, this->angle);
if (this->distance == 0.0f)
@ -144,19 +133,16 @@ PolarOf<T> PolarOf<T>::operator+(const PolarOf& v) const {
PolarOf vector = PolarOf(newDistance, newAngleA);
return vector;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator+=(const PolarOf& v) {
template <typename T> PolarOf<T> PolarOf<T>::operator+=(const PolarOf &v) {
*this = *this + v;
return *this;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator*=(float f) {
template <typename T> PolarOf<T> PolarOf<T>::operator*=(float f) {
this->distance *= f;
return *this;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator/=(float f) {
template <typename T> PolarOf<T> PolarOf<T>::operator/=(float f) {
this->distance /= f;
return *this;
}
@ -175,5 +161,5 @@ PolarOf<T> PolarOf<T>::Rotate(const PolarOf& v, AngleOf<T> angle) {
return r;
}
template class PolarOf<float>;
template class PolarOf<signed short>;
template class Passer::LinearAlgebra::PolarOf<float>;
template class Passer::LinearAlgebra::PolarOf<signed short>;

10
Polar.h
View File

@ -7,16 +7,15 @@
#include "Angle.h"
namespace Passer {
namespace LinearAlgebra {
struct Vector2;
template <typename T>
class SphericalOf;
template <typename T> class SphericalOf;
/// @brief A polar vector using an angle in various representations
/// @tparam T The implementation type used for the representation of the angle
template <typename T>
class PolarOf {
template <typename T> class PolarOf {
public:
/// @brief The distance in meters
/// @remark The distance shall never be negative
@ -154,7 +153,8 @@ using Polar16 = PolarOf<signed short>;
// using Polar = PolarSingle;
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#include "Spherical.h"
#include "Vector2.h"

View File

@ -32,6 +32,7 @@ typedef struct Quat {
} Quat;
}
namespace Passer {
namespace LinearAlgebra {
/// <summary>
@ -156,8 +157,7 @@ struct Quaternion : Quat {
/// <param name="to">The destination rotation</param>
/// <param name="maxDegreesDelta">The maximum amount of degrees to
/// rotate</param> <returns>The possibly limited rotation</returns>
static Quaternion RotateTowards(const Quaternion& from,
const Quaternion& to,
static Quaternion RotateTowards(const Quaternion &from, const Quaternion &to,
float maxDegreesDelta);
/// <summary>
@ -191,8 +191,7 @@ struct Quaternion : Quat {
/// <returns>The resulting rotation</returns>
/// A factor 0 returns rotation1, factor1 returns rotation2.
static Quaternion Slerp(const Quaternion &rotation1,
const Quaternion& rotation2,
float factor);
const Quaternion &rotation2, float factor);
/// <summary>
/// Unclamped sherical lerp between two rotations
/// </summary>
@ -203,8 +202,7 @@ struct Quaternion : Quat {
/// A factor 0 returns rotation1, factor1 returns rotation2.
/// Values outside the 0..1 range will result in extrapolated rotations
static Quaternion SlerpUnclamped(const Quaternion &rotation1,
const Quaternion& rotation2,
float factor);
const Quaternion &rotation2, float factor);
/// <summary>
/// Create a rotation from euler angles
@ -262,10 +260,8 @@ struct Quaternion : Quat {
/// <param name="swing">A pointer to the quaternion for the swing
/// result</param> <param name="twist">A pointer to the quaternion for the
/// twist result</param>
static void GetSwingTwist(Vector3 axis,
Quaternion rotation,
Quaternion* swing,
Quaternion* twist);
static void GetSwingTwist(Vector3 axis, Quaternion rotation,
Quaternion *swing, Quaternion *twist);
/// <summary>
/// Calculate the dot product of two quaternions
@ -288,6 +284,7 @@ struct Quaternion : Quat {
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#endif

View File

@ -5,15 +5,13 @@
#include <math.h>
template <typename T>
SphericalOf<T>::SphericalOf() {
template <typename T> SphericalOf<T>::SphericalOf() {
this->distance = 0.0f;
this->direction = DirectionOf<T>();
}
template <typename T>
SphericalOf<T>::SphericalOf(float distance,
AngleOf<T> horizontal,
SphericalOf<T>::SphericalOf(float distance, AngleOf<T> horizontal,
AngleOf<T> vertical) {
if (distance < 0) {
this->distance = -distance;
@ -36,8 +34,7 @@ SphericalOf<T>::SphericalOf(float distance, DirectionOf<T> direction) {
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Degrees(float distance,
float horizontal,
SphericalOf<T> SphericalOf<T>::Degrees(float distance, float horizontal,
float vertical) {
AngleOf<T> horizontalAngle = AngleOf<T>::Degrees(horizontal);
AngleOf<T> verticalAngle = AngleOf<T>::Degrees(vertical);
@ -46,8 +43,7 @@ SphericalOf<T> SphericalOf<T>::Degrees(float distance,
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Radians(float distance,
float horizontal,
SphericalOf<T> SphericalOf<T>::Radians(float distance, float horizontal,
float vertical) {
return SphericalOf<T>(distance, AngleOf<T>::Radians(horizontal),
AngleOf<T>::Radians(vertical));
@ -61,8 +57,7 @@ SphericalOf<T> SphericalOf<T>::FromPolar(PolarOf<T> polar) {
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
template <typename T> SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
float distance = v.magnitude();
if (distance == 0.0f) {
return SphericalOf(distance, AngleOf<T>(), AngleOf<T>());
@ -86,8 +81,7 @@ SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
* @tparam T The type of the distance and direction values.
* @return Vector3 The 3D vector representation of the spherical coordinates.
*/
template <typename T>
Vector3 SphericalOf<T>::ToVector3() const {
template <typename T> Vector3 SphericalOf<T>::ToVector3() const {
float verticalRad = (pi / 2) - this->direction.vertical.InRadians();
float horizontalRad = this->direction.horizontal.InRadians();
@ -132,8 +126,7 @@ SphericalOf<T> SphericalOf<T>::WithDistance(float distance) {
return v;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator-() const {
template <typename T> SphericalOf<T> SphericalOf<T>::operator-() const {
SphericalOf<T> v = SphericalOf<T>(
this->distance, this->direction.horizontal + AngleOf<T>::Degrees(180),
this->direction.vertical + AngleOf<T>::Degrees(180));
@ -216,14 +209,12 @@ SphericalOf<T> SphericalOf<T>::operator+=(const SphericalOf<T>& v) {
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator*=(float f) {
template <typename T> SphericalOf<T> SphericalOf<T>::operator*=(float f) {
this->distance *= f;
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator/=(float f) {
template <typename T> SphericalOf<T> SphericalOf<T>::operator/=(float f) {
this->distance /= f;
return *this;
}
@ -265,8 +256,8 @@ AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf& v1,
}
template <typename T>
AngleOf<T> SphericalOf<T>::SignedAngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2,
AngleOf<T> Passer::LinearAlgebra::SphericalOf<T>::SignedAngleBetween(
const SphericalOf<T> &v1, const SphericalOf<T> &v2,
const SphericalOf<T> &axis) {
Vector3 v1_vector = v1.ToVector3();
Vector3 v2_vector = v2.ToVector3();
@ -299,5 +290,5 @@ SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T>& v,
return r;
}
template class SphericalOf<float>;
template class SphericalOf<signed short>;
template class Passer::LinearAlgebra::SphericalOf<float>;
template class Passer::LinearAlgebra::SphericalOf<signed short>;

View File

@ -7,16 +7,15 @@
#include "Direction.h"
namespace Passer {
namespace LinearAlgebra {
struct Vector3;
template <typename T>
class PolarOf;
template <typename T> class PolarOf;
/// @brief A spherical vector using angles in various representations
/// @tparam T The implementation type used for the representations of the agles
template <typename T>
class SphericalOf {
template <typename T> class SphericalOf {
public:
/// @brief The distance in meters
/// @remark The distance should never be negative
@ -39,8 +38,7 @@ class SphericalOf {
/// @param horizontal The horizontal angle in degrees
/// @param vertical The vertical angle in degrees
/// @return The spherical vector
static SphericalOf<T> Degrees(float distance,
float horizontal,
static SphericalOf<T> Degrees(float distance, float horizontal,
float vertical);
/// @brief Short-hand Deg alias for the Degrees function
constexpr static auto Deg = Degrees;
@ -50,8 +48,7 @@ class SphericalOf {
/// @param horizontal The horizontal angle in radians
/// @param vertical The vertical angle in radians
/// @return The spherical vectpr
static SphericalOf<T> Radians(float distance,
float horizontal,
static SphericalOf<T> Radians(float distance, float horizontal,
float vertical);
// Short-hand Rad alias for the Radians function
constexpr static auto Rad = Radians;
@ -157,8 +154,7 @@ class SphericalOf {
/// @param horizontalAngle The horizontal rotation angle in local space
/// @param verticalAngle The vertical rotation angle in local space
/// @return The rotated vector
static SphericalOf<T> Rotate(const SphericalOf& v,
AngleOf<T> horizontalAngle,
static SphericalOf<T> Rotate(const SphericalOf &v, AngleOf<T> horizontalAngle,
AngleOf<T> verticalAngle);
/// @brief Rotate a spherical vector horizontally
/// @param v The vector to rotate
@ -184,14 +180,9 @@ using SphericalSingle = SphericalOf<float>;
/// hardware
using Spherical16 = SphericalOf<signed short>;
#if defined(ARDUINO)
using Spherical = Spherical16;
#else
using Spherical = SphericalSingle;
#endif
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#include "Polar.h"
#include "Vector3.h"

View File

@ -164,5 +164,5 @@ void SwingTwistOf<T>::Normalize() {
}
}
template class SwingTwistOf<float>;
template class SwingTwistOf<signed short>;
template class Passer::LinearAlgebra::SwingTwistOf<float>;
template class Passer::LinearAlgebra::SwingTwistOf<signed short>;

View File

@ -10,13 +10,13 @@
#include "Quaternion.h"
#include "Spherical.h"
namespace Passer {
namespace LinearAlgebra {
/// @brief An orientation using swing and twist angles in various
/// representations
/// @tparam T The implmentation type used for the representation of the angles
template <typename T>
class SwingTwistOf {
template <typename T> class SwingTwistOf {
public:
DirectionOf<T> swing;
AngleOf<T> twist;
@ -25,8 +25,7 @@ class SwingTwistOf {
SwingTwistOf<T>(DirectionOf<T> swing, AngleOf<T> twist);
SwingTwistOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist);
static SwingTwistOf<T> Degrees(float horizontal,
float vertical = 0,
static SwingTwistOf<T> Degrees(float horizontal, float vertical = 0,
float twist = 0);
Quaternion ToQuaternion() const;
@ -73,13 +72,8 @@ class SwingTwistOf {
using SwingTwistSingle = SwingTwistOf<float>;
using SwingTwist16 = SwingTwistOf<signed short>;
#if defined(ARDUINO)
using SwingTwist = SwingTwist16;
#else
using SwingTwist = SwingTwistSingle;
#endif
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#endif

View File

@ -30,7 +30,7 @@ Vector2::Vector2(Vector3 v) {
y = v.Forward(); // z;
}
Vector2::Vector2(PolarSingle p) {
float horizontalRad = p.angle.InDegrees() * Deg2Rad;
float horizontalRad = p.angle.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
float cosHorizontal = cosf(horizontalRad);
float sinHorizontal = sinf(horizontalRad);
@ -56,15 +56,9 @@ bool Vector2::operator==(const Vector2& v) {
float Vector2::Magnitude(const Vector2 &v) {
return sqrtf(v.x * v.x + v.y * v.y);
}
float Vector2::magnitude() const {
return (float)sqrtf(x * x + y * y);
}
float Vector2::SqrMagnitude(const Vector2& v) {
return v.x * v.x + v.y * v.y;
}
float Vector2::sqrMagnitude() const {
return (x * x + y * y);
}
float Vector2::magnitude() const { return (float)sqrtf(x * x + y * y); }
float Vector2::SqrMagnitude(const Vector2 &v) { return v.x * v.x + v.y * v.y; }
float Vector2::sqrMagnitude() const { return (x * x + y * y); }
Vector2 Vector2::Normalize(const Vector2 &v) {
float num = Vector2::Magnitude(v);
@ -83,9 +77,7 @@ Vector2 Vector2::normalized() const {
return result;
}
Vector2 Vector2::operator-() {
return Vector2(-this->x, -this->y);
}
Vector2 Vector2::operator-() { return Vector2(-this->x, -this->y); }
Vector2 Vector2::operator-(const Vector2 &v) const {
return Vector2(this->x - v.x, this->y - v.y);
@ -156,11 +148,12 @@ float Vector2::SignedAngle(const Vector2& v1, const Vector2& v2) {
float angleFrom = atan2f(v1.y, v1.x);
float angleTo = atan2f(v2.y, v2.x);
return -(angleTo - angleFrom) * Rad2Deg;
return -(angleTo - angleFrom) * Passer::LinearAlgebra::Rad2Deg;
}
Vector2 Vector2::Rotate(const Vector2& v, AngleSingle a) {
float angleRad = a.InDegrees() * Deg2Rad;
Vector2 Vector2::Rotate(const Vector2 &v,
Passer::LinearAlgebra::AngleSingle a) {
float angleRad = a.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
#if defined(AVR)
float sinValue = sin(angleRad);
float cosValue = cos(angleRad); // * Angle::Deg2Rad);

View File

@ -26,11 +26,11 @@ typedef struct Vec2 {
} Vec2;
}
namespace Passer {
namespace LinearAlgebra {
struct Vector3;
template <typename T>
class PolarOf;
template <typename T> class PolarOf;
/// @brief A 2-dimensional vector
/// @remark This uses the right=handed carthesian coordinate system.
@ -188,7 +188,7 @@ struct Vector2 : Vec2 {
/// @param v The vector to rotate
/// @param a The angle in degrees to rotate
/// @return The rotated vector
static Vector2 Rotate(const Vector2& v, AngleSingle a);
static Vector2 Rotate(const Vector2 &v, Passer::LinearAlgebra::AngleSingle a);
/// @brief Lerp (linear interpolation) between two vectors
/// @param v1 The starting vector
@ -202,7 +202,8 @@ struct Vector2 : Vec2 {
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#include "Polar.h"

View File

@ -31,8 +31,10 @@ Vector3::Vector3(Vector2 v) {
}
Vector3::Vector3(SphericalOf<float> s) {
float verticalRad = (90.0f - s.direction.vertical.InDegrees()) * Deg2Rad;
float horizontalRad = s.direction.horizontal.InDegrees() * Deg2Rad;
float verticalRad = (90.0f - s.direction.vertical.InDegrees()) *
Passer::LinearAlgebra::Deg2Rad;
float horizontalRad =
s.direction.horizontal.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
float cosVertical = cosf(verticalRad);
float sinVertical = sinf(verticalRad);
float cosHorizontal = cosf(horizontalRad);
@ -68,16 +70,12 @@ const Vector3 Vector3::back = Vector3(0, 0, -1);
float Vector3::Magnitude(const Vector3 &v) {
return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
}
float Vector3::magnitude() const {
return (float)sqrtf(x * x + y * y + z * z);
}
float Vector3::magnitude() const { return (float)sqrtf(x * x + y * y + z * z); }
float Vector3::SqrMagnitude(const Vector3 &v) {
return v.x * v.x + v.y * v.y + v.z * v.z;
}
float Vector3::sqrMagnitude() const {
return (x * x + y * y + z * z);
}
float Vector3::sqrMagnitude() const { return (x * x + y * y + z * z); }
Vector3 Vector3::Normalize(const Vector3 &v) {
float num = Vector3::Magnitude(v);
@ -202,8 +200,7 @@ AngleOf<float> Vector3::Angle(const Vector3& v1, const Vector3& v2) {
return AngleOf<float>::Radians(r);
}
AngleOf<float> Vector3::SignedAngle(const Vector3& v1,
const Vector3& v2,
AngleOf<float> Vector3::SignedAngle(const Vector3 &v1, const Vector3 &v2,
const Vector3 &axis) {
// angle in [0,180]
AngleOf<float> angle = Vector3::Angle(v1, v2);

View File

@ -31,10 +31,10 @@ typedef struct Vec3 {
} Vec3;
}
namespace Passer {
namespace LinearAlgebra {
template <typename T>
class SphericalOf;
template <typename T> class SphericalOf;
/// @brief A 3-dimensional vector
/// @remark This uses a right-handed carthesian coordinate system.
@ -210,8 +210,7 @@ struct Vector3 : Vec3 {
/// @param v2 The ending vector
/// @param axis The axis to rotate around
/// @return The signed angle between the two vectors
static AngleOf<float> SignedAngle(const Vector3& v1,
const Vector3& v2,
static AngleOf<float> SignedAngle(const Vector3 &v1, const Vector3 &v2,
const Vector3 &axis);
/// @brief Lerp (linear interpolation) between two vectors
@ -226,7 +225,8 @@ struct Vector3 : Vec3 {
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
} // namespace Passer
using namespace Passer::LinearAlgebra;
#include "Spherical.h"

View File

@ -1,13 +1,11 @@
#if GTEST
#include "gtest/gtest.h"
#include <math.h>
#include <limits>
#include <math.h>
#include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Angle16, Construct) {

View File

@ -1,13 +1,11 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include <math.h>
#include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Angle8, Construct) {

View File

@ -1,13 +1,11 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include <math.h>
#include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(AngleSingle, Construct) {

View File

@ -34,32 +34,26 @@ TEST(Vector2, FromPolar) {
EXPECT_FLOAT_EQ(r.y, 0.0F) << "FromPolar(0 0)";
}
TEST(Vector2, Magnitude) {
Vector2 v = Vector2(1, 2);
float m = 0;
TEST(Vector2, Equality) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
bool r = false;
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude 1 2";
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == 1 2";
m = Vector2::Magnitude(v);
EXPECT_FLOAT_EQ(m, 2.236068F) << "Vector2::Magnitude 1 2";
v = Vector2(-1, -2);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude -1 -2";
v = Vector2(0, 0);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.magnitude 0 0 ";
v2 = Vector2(4, 5);
r = v1 == v2;
EXPECT_TRUE(r) << "4 5 == 1 2";
if (std::numeric_limits<float>::is_iec559) {
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude INFINITY INFINITY ";
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == INFINITY INFINITY";
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude -INFINITY -INFINITY ";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "-INFINITY -INFINITY == INFINITY INFINITY";
}
}
@ -92,6 +86,35 @@ TEST(Vector2, SqrMagnitude) {
}
}
TEST(Vector2, Magnitude) {
Vector2 v = Vector2(1, 2);
float m = 0;
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude 1 2";
m = Vector2::Magnitude(v);
EXPECT_FLOAT_EQ(m, 2.236068F) << "Vector2::Magnitude 1 2";
v = Vector2(-1, -2);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude -1 -2";
v = Vector2(0, 0);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.magnitude 0 0 ";
if (std::numeric_limits<float>::is_iec559) {
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude INFINITY INFINITY ";
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude -INFINITY -INFINITY ";
}
}
TEST(Vector2, Normalize) {
bool r = false;
@ -311,56 +334,6 @@ TEST(Vector2, Divide) {
}
}
TEST(Vector2, Dot) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 14) << "Dot(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -14) << "Dot(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "Dot(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Dot(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -FLOAT_INFINITY) << "Dot(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, Equality) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
bool r = false;
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == 1 2";
v2 = Vector2(4, 5);
r = v1 == v2;
EXPECT_TRUE(r) << "4 5 == 1 2";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == INFINITY INFINITY";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "-INFINITY -INFINITY == INFINITY INFINITY";
}
}
TEST(Vector2, Distance) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
@ -388,6 +361,33 @@ TEST(Vector2, Distance) {
}
}
TEST(Vector2, Dot) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 14) << "Dot(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -14) << "Dot(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "Dot(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Dot(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -FLOAT_INFINITY) << "Dot(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, Angle) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);