LinearAlgebra-cpp/Vector3.cpp
Pascal Serrarens b555fb5d6a
All checks were successful
Build and Run C++ Unit Tests / build-and-test (push) Successful in 2m2s
Converted all unit tests to template form
2025-12-22 15:01:11 +01:00

478 lines
14 KiB
C++

// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Vector3.h"
#include "Angle.h"
#include "FloatSingle.h"
#include "Spherical.h"
// #include "TypeTraits.h"
#include <math.h>
const float Deg2Rad = 0.0174532924F;
const float Rad2Deg = 57.29578F;
const float epsilon = 1E-05f;
/*
Vector3::Vector3() {
this->x = 0;
this->y = 0;
this->z = 0;
}
Vector3::Vector3(float right, float up, float forward) {
this->x = right;
this->y = up;
this->z = forward;
}
// Vector3::Vector3(Vector2 v) {
// this->x = v.x;
// this->y = 0.0f;
// this->z = v.y;
// }
Vector3::Vector3(SphericalOf<float> s) {
float verticalRad = (90.0f - s.direction.vertical.InDegrees()) * Deg2Rad;
float horizontalRad = s.direction.horizontal.InDegrees() * Deg2Rad;
float cosVertical = cosf(verticalRad);
float sinVertical = sinf(verticalRad);
float cosHorizontal = cosf(horizontalRad);
float sinHorizontal = sinf(horizontalRad);
x = s.distance * sinVertical * sinHorizontal;
y = s.distance * cosVertical;
z = s.distance * sinVertical * cosHorizontal;
// Vector3 v = Vector3(s.distance * sinVertical * sinHorizontal,
// s.distance * cosVertical,
// );
// return v;
}
Vector3::~Vector3() {}
const Vector3 Vector3::zero = Vector3(0, 0, 0);
const Vector3 Vector3::one = Vector3(1, 1, 1);
const Vector3 Vector3::right = Vector3(1, 0, 0);
const Vector3 Vector3::left = Vector3(-1, 0, 0);
const Vector3 Vector3::up = Vector3(0, 1, 0);
const Vector3 Vector3::down = Vector3(0, -1, 0);
const Vector3 Vector3::forward = Vector3(0, 0, 1);
const Vector3 Vector3::back = Vector3(0, 0, -1);
// inline float Vector3::Forward() { return z; }
// inline float Vector3::Up() { return y; }
// inline float Vector3::Right() { return x; }
// Vector3 Vector3::FromHorizontal(const Vector2 &v) {
// return Vector3(v.x, 0, v.y);
// }
float Vector3::Magnitude(const Vector3& v) {
return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
}
float Vector3::magnitude() const {
return (float)sqrtf(x * x + y * y + z * z);
}
float Vector3::SqrMagnitude(const Vector3& v) {
return v.x * v.x + v.y * v.y + v.z * v.z;
}
float Vector3::sqrMagnitude() const {
return (x * x + y * y + z * z);
}
Vector3 Vector3::Normalize(const Vector3& v) {
float num = Vector3::Magnitude(v);
Vector3 result = Vector3::zero;
if (num > epsilon) {
result = v / num;
}
return result;
}
Vector3 Vector3::normalized() const {
float num = this->magnitude();
Vector3 result = Vector3::zero;
if (num > epsilon) {
result = ((Vector3) * this) / num;
}
return result;
}
Vector3 Vector3::operator-() const {
return Vector3(-this->x, -this->y, -this->z);
}
Vector3 Vector3::operator-(const Vector3& v) const {
return Vector3(this->x - v.x, this->y - v.y, this->z - v.z);
}
Vector3 Vector3::operator-=(const Vector3& v) {
this->x -= v.x;
this->y -= v.y;
this->z -= v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3& v) const {
return Vector3(this->x + v.x, this->y + v.y, this->z + v.z);
}
Vector3 Vector3::operator+=(const Vector3& v) {
this->x += v.x;
this->y += v.y;
this->z += v.z;
return *this;
}
Vector3 Vector3::Scale(const Vector3& v1, const Vector3& v2) {
return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);
}
// Vector3 Passer::LinearAlgebra::operator*(const Vector3 &v, float f) {
// return Vector3(v.x * f, v.y * f, v.z * f);
// }
// Vector3 Passer::LinearAlgebra::operator*(float f, const Vector3 &v) {
// return Vector3(v.x * f, v.y * f, v.z * f);
// }
Vector3 Vector3::operator*=(float f) {
this->x *= f;
this->y *= f;
this->z *= f;
return *this;
}
// Vector3 Passer::LinearAlgebra::operator/(const Vector3 &v, float f) {
// return Vector3(v.x / f, v.y / f, v.z / f);
// }
// Vector3 Passer::LinearAlgebra::operator/(float f, const Vector3 &v) {
// return Vector3(v.x / f, v.y / f, v.z / f);
// }
Vector3 Vector3::operator/=(float f) {
this->x /= f;
this->y /= f;
this->z /= f;
return *this;
}
float Vector3::Dot(const Vector3& v1, const Vector3& v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
bool Vector3::operator==(const Vector3& v) const {
return (this->x == v.x && this->y == v.y && this->z == v.z);
}
float Vector3::Distance(const Vector3& v1, const Vector3& v2) {
return Magnitude(v1 - v2);
}
Vector3 Vector3::Cross(const Vector3& v1, const Vector3& v2) {
return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, v1.x *
v2.y - v1.y * v2.x);
}
Vector3 Vector3::Project(const Vector3& v, const Vector3& n) {
float sqrMagnitude = Dot(n, n);
if (sqrMagnitude < epsilon)
return Vector3::zero;
else {
float dot = Dot(v, n);
Vector3 r = n * dot / sqrMagnitude;
return r;
}
}
Vector3 Vector3::ProjectOnPlane(const Vector3& v, const Vector3& n) {
Vector3 r = v - Project(v, n);
return r;
}
float clamp(float x, float lower, float upper) {
float lowerClamp = fmaxf(x, lower);
float upperClamp = fminf(upper, lowerClamp);
return upperClamp;
}
AngleOf<float> Vector3::Angle(const Vector3& v1, const Vector3& v2) {
float denominator = sqrtf(v1.sqrMagnitude() * v2.sqrMagnitude());
if (denominator < epsilon)
return AngleOf<float>();
float dot = Vector3::Dot(v1, v2);
float fraction = dot / denominator;
if (isnan(fraction))
return AngleOf<float>::Degrees(fraction); // short cut to returning NaN
universally
float cdot = clamp(fraction, -1.0, 1.0);
float r = ((float)acos(cdot));
return AngleOf<float>::Radians(r);
}
AngleOf<float> Vector3::SignedAngle(const Vector3& v1, const Vector3& v2, const
Vector3& axis) {
// angle in [0,180]
AngleOf<float> angle = Vector3::Angle(v1, v2);
Vector3 cross = Vector3::Cross(v1, v2);
float b = Vector3::Dot(axis, cross);
float signd = b < 0 ? -1.0F : (b > 0 ? 1.0F : 0.0F);
// angle in [-179,180]
AngleOf<float> signed_angle = angle * signd;
return AngleOf<float>(signed_angle);
}
Vector3 Vector3::Lerp(const Vector3& v1, const Vector3& v2, float f) {
Vector3 v = v1 + (v2 - v1) * f;
return v;
}
*/
#pragma region Vector3Of
namespace LinearAlgebra {
template <typename T>
Vector3Of<T>::Vector3Of() {}
template <typename T>
Vector3Of<T>::Vector3Of(T horizontal, T vertical, T depth)
: horizontal(horizontal), vertical(vertical), depth(depth) {}
template <typename T>
Vector3Of<T>::Vector3Of(Vector2Of<T> v)
: horizontal(v.horizontal), vertical(v.vertical) {}
template <typename T>
Vector3Of<T>::~Vector3Of() {}
template <>
Vector3Of<float> Vector3Of<float>::FromSpherical(SphericalOf<float> v) {
AngleOf<float> vertical = AngleOf<float>::Degrees(90) - v.direction.vertical;
AngleOf<float> horizontal = v.direction.horizontal;
float cosVertical = AngleOf<float>::Cos(vertical);
float sinVertical = AngleOf<float>::Sin(vertical);
float cosHorizontal = AngleOf<float>::Cos(horizontal);
float sinHorizontal = AngleOf<float>::Sin(horizontal);
Vector3Of<float> r = Vector3Of<float>();
r.horizontal = v.distance * sinVertical * sinHorizontal;
r.vertical = v.distance * cosVertical;
r.depth = v.distance * sinVertical * cosHorizontal;
return r;
}
template <typename T>
const Vector3Of<T> Vector3Of<T>::zero = Vector3Of(T{}, T{}, T{});
template <>
const Vector3Of<int> Vector3Of<int>::unit = Vector3Of<int>(1, 1, 1);
template <>
const Vector3Of<float> Vector3Of<float>::unit =
Vector3Of<float>(1.0f, 1.0f, 1.0f);
template <>
const Vector3Of<double> Vector3Of<double>::unit =
Vector3Of<double>(1.0f, 1.0f, 1.0f);
template <typename T>
const Vector3Of<T> Vector3Of<T>::forward = Vector3Of(T{}, T{}, 1);
// template <typename T>
// const Vector3Of<T> Vector3Of<T>::unit =
// Vector3Of(TypeTraits<T>::unit(), TypeTraits<T>::unit(),
// TypeTraits<T>::unit());
// const Vector3Of Vector3Of::right = Vector3Of(1, 0, 0);
// const Vector3Of Vector3Of::left = Vector3Of(-1, 0, 0);
// const Vector3Of Vector3Of::up = Vector3Of(0, 1, 0);
// const Vector3Of Vector3Of::down = Vector3Of(0, -1, 0);
// const Vector3Of Vector3Of::forward = Vector3Of(0, 0, 1);
// const Vector3Of Vector3Of::back = Vector3Of(0, 0, -1);
template <typename T>
bool Vector3Of<T>::operator==(const Vector3Of& v) const {
return (this->horizontal == v.horizontal && this->vertical == v.vertical &&
this->depth == v.depth);
}
template <typename T>
float Vector3Of<T>::MagnitudeOf(const Vector3Of& v) {
return sqrtf(v.horizontal * v.horizontal + v.vertical * v.vertical +
v.depth * v.depth);
}
template <typename T>
float Vector3Of<T>::Magnitude() const {
return sqrtf(this->horizontal * this->horizontal +
this->vertical * this->vertical + this->depth * this->depth);
}
template <typename T>
float Vector3Of<T>::SqrMagnitudeOf(const Vector3Of& v) {
return v.horizontal * v.horizontal + v.vertical * v.vertical +
v.depth * v.depth;
}
template <typename T>
float Vector3Of<T>::SqrMagnitude() const {
return (horizontal * horizontal + vertical * vertical + depth * depth);
}
template <typename T>
Vector3Of<T> Vector3Of<T>::Normalize(const Vector3Of& v) {
float num = Vector3Of<T>::MagnitudeOf(v);
Vector3Of<T> result = Vector3Of<T>::zero;
if (num > epsilon) {
result = v / num;
}
return result;
}
template <typename T>
Vector3Of<T> Vector3Of<T>::Normalized() const {
float num = this->Magnitude();
Vector3Of<T> result = Vector3Of<T>::zero;
if (num > epsilon) {
result = ((Vector3Of<T>)*this) / num;
}
return result;
}
template <typename T>
Vector3Of<T> Vector3Of<T>::operator-() const {
return Vector3Of<T>(-this->horizontal, -this->vertical, -this->depth);
}
template <typename T>
Vector3Of<T> Vector3Of<T>::operator-(const Vector3Of& v) const {
return Vector3Of<T>(this->horizontal - v.horizontal,
this->vertical - v.vertical, this->depth - v.depth);
}
template <typename T>
Vector3Of<T> Vector3Of<T>::operator-=(const Vector3Of& v) {
this->horizontal -= v.horizontal;
this->vertical -= v.vertical;
this->depth -= v.depth;
return *this;
}
template <typename T>
Vector3Of<T> Vector3Of<T>::operator+(const Vector3Of& v) const {
return Vector3Of<T>(this->horizontal + v.horizontal,
this->vertical + v.vertical, this->depth + v.depth);
}
template <typename T>
Vector3Of<T> Vector3Of<T>::operator+=(const Vector3Of& v) {
this->horizontal += v.horizontal;
this->vertical += v.vertical;
this->depth += v.depth;
return *this;
}
template <typename T>
Vector3Of<T> Vector3Of<T>::Scale(const Vector3Of& v1, const Vector3Of& v2) {
return Vector3Of<T>(v1.horizontal * v2.horizontal, v1.vertical * v2.vertical,
v1.depth * v2.depth);
}
template <typename T>
Vector3Of<T> Vector3Of<T>::operator*=(float f) {
this->horizontal *= f;
this->vertical *= f;
this->depth *= f;
return *this;
}
template <typename T>
Vector3Of<T> Vector3Of<T>::operator/=(float f) {
this->horizontal /= f;
this->vertical /= f;
this->depth /= f;
return *this;
}
template <typename T>
float Vector3Of<T>::Distance(const Vector3Of& v1, const Vector3Of& v2) {
return MagnitudeOf(v1 - v2);
}
template <typename T>
T Vector3Of<T>::Dot(const Vector3Of& v1, const Vector3Of& v2) {
return v1.horizontal * v2.horizontal + v1.vertical * v2.vertical +
v1.depth * v2.depth;
}
template <typename T>
Vector3Of<T> Vector3Of<T>::Cross(const Vector3Of& v1, const Vector3Of& v2) {
return Vector3Of<T>(
v1.vertical * v2.depth - v1.depth * v2.vertical,
v1.depth * v2.horizontal - v1.horizontal * v2.depth,
v1.horizontal * v2.vertical - v1.vertical * v2.horizontal);
}
template <typename T>
Vector3Of<float> Vector3Of<T>::Project(const Vector3Of& v, const Vector3Of& n) {
T sqrMagnitude = Dot(n, n);
if (sqrMagnitude < epsilon)
return Vector3Of<float>::zero;
else {
T dot = Dot(v, n);
Vector3Of<float> r = n * dot;
r /= sqrMagnitude;
return r;
}
}
template <typename T>
Vector3Of<float> Vector3Of<T>::ProjectOnPlane(const Vector3Of& v,
const Vector3Of& n) {
Vector3Of<float> r = (Vector3Of<float>)v - Project(v, n);
return r;
}
template <typename T>
AngleOf<float> Vector3Of<T>::SignedAngle(const Vector3Of& v1,
const Vector3Of& v2,
const Vector3Of& axis) {
// angle in [0,180]
AngleOf<float> angle = Vector3Of<T>::UnsignedAngle(v1, v2);
Vector3Of<T> cross = Vector3Of<T>::Cross(v1, v2);
float b = Vector3Of<T>::Dot(axis, cross);
float signd = b < 0 ? -1.0F : (b > 0 ? 1.0F : 0.0F);
// angle in [-179,180]
AngleOf<float> signed_angle = angle * signd;
return AngleOf<float>(signed_angle);
}
template <typename T>
AngleOf<float> Vector3Of<T>::UnsignedAngle(const Vector3Of& v1,
const Vector3Of& v2) {
float denominator = sqrtf(v1.SqrMagnitude() * v2.SqrMagnitude());
if (denominator < epsilon)
return AngleOf<float>();
float dot = Vector3Of::Dot(v1, v2);
float fraction = dot / denominator;
if (isnan(fraction))
return AngleOf<float>::Degrees(
fraction); // short cut to returning NaN universally
float cdot = Float::Clamp(fraction, -1.0, 1.0);
float r = ((float)acos(cdot));
return AngleOf<float>::Radians(r);
}
template <typename T>
Vector3Of<float> Vector3Of<T>::Lerp(const Vector3Of& v1,
const Vector3Of& v2,
float f) {
Vector3Of<float> v1f = v1;
Vector3Of<float> delta = v2 - v1;
Vector3Of<float> r = v1f + delta * f;
return r;
}
template class Vector3Of<float>;
template class Vector3Of<int>;
} // namespace LinearAlgebra
#pragma endregion Vector3Of