Cleanup Vector2 and Polar

This commit is contained in:
Pascal Serrarens 2024-05-12 21:35:44 +02:00
parent e922a017fa
commit 66e47d736f
6 changed files with 232 additions and 260 deletions

View File

@ -11,7 +11,7 @@ template <typename T> class AngleOf {
public:
AngleOf(){};
AngleOf(T v) : value(v) {}
operator T() { return value; }
operator T() const { return value; }
static AngleOf<T> Rad2Deg;
static AngleOf<T> Deg2Rad;

View File

@ -90,7 +90,7 @@ Polar Polar::operator/(const float &f) {
this->angle); // Polar(this->angle, this->distance / f);
}
float Polar::Distance(Polar &v1, Polar &v2) {
float Polar::Distance(const Polar &v1, const Polar &v2) {
float d = Angle::CosineRuleSide(v1.distance, v2.distance,
(float)v2.angle - (float)v1.angle);
return d;

78
Polar.h
View File

@ -12,18 +12,11 @@ namespace Passer {
struct Vector2;
struct Spherical;
/// <summary>
/// A polar vector
/// </summary>
/// @brief A polar vector
/// This will use the polar coordinate system consisting of a angle from a
/// reference direction and a distance.
struct Polar {
public:
/// <summary>
/// The distance in meters
/// </summary>
/// The distance should never be negative
/// @brief The distance in meters
/// @remark The distance shall never be negative
float distance;
@ -52,6 +45,11 @@ public:
/// @brief A polar vector with zero degrees and distance
const static Polar zero;
/// @brief Equality test to another vector
/// @param v The vector to check against
/// @return true: if it is identical to the given vector
/// @note This uses float comparison to check equality which may have strange
/// effects. Equality on floats should be avoided.
bool operator==(const Polar &v);
/// @brief Negate the vector
@ -62,48 +60,36 @@ public:
/// @param v The vector to subtract
/// @return The result of the subtraction
Polar operator-(Polar &v);
/// <summary>
/// Add another polar vector to this polar vector
/// </summary>
/// <param name="v">The vector to add</param>
/// <returns>The result of adding the vector</returns>
/// @brief Add a polar vector to this vector
/// @param v The vector to add
/// @return The result of the addition
Polar operator+(Polar &v);
/// @brief Scale the vector uniformly up
/// @param f The scaling factor
/// @return The scaled vector
/// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected.
Polar operator*(float f) const;
/// @brief Scale the vector uniformly down
/// @param f The scaling factor
/// @return The scaled factor
/// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected.
Polar operator/(const float &f);
/// <summary>
/// Scale the vector uniformly up
/// </summary>
/// <param name="factor">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// This operation will scale the distance of the vector. The angle will be
/// unaffected.
Polar operator*(float factor) const;
/// @brief The distance between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The distance between the two vectors
static float Distance(const Polar &v1, const Polar &v2);
/// <summary>
/// Scale the vector uniformly down
/// </summary>
/// <param name="factor">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// This operation will scale the distance of the vector. The angle will be
/// unaffected.
Polar operator/(const float &factor);
/// <summary>
/// The distance between two vectors
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns>The distance between the two vectors</returns>
static float Distance(Polar &v1, Polar &v2);
/// <summary>
/// Rotate the vector
/// </summary>
/// <param name="v">The vector to rotate</param>
/// <param name="angle">Angle in radias to rotate</param>
/// <returns>The rotated vector</returns>
static Polar Rotate(Polar v, Angle angle);
/// @brief Rotate a vector
/// @param v The vector to rotate
/// @param a The angle in degreesto rotate
/// @return The rotated vector
static Polar Rotate(Polar v, Angle a);
};
} // namespace Passer
using namespace Passer;

View File

@ -17,22 +17,18 @@ Vector2::Vector2() {
x = 0;
y = 0;
}
Vector2::Vector2(float _x, float _y) {
x = _x;
y = _y;
}
Vector2::Vector2(Vec2 v) {
x = v.x;
y = v.y;
}
Vector2::Vector2(Vector3 v) {
x = v.x;
y = v.z;
}
Vector2::Vector2(Polar p) {
float horizontalRad = p.angle * Angle::Deg2Rad;
float cosHorizontal = cosf(horizontalRad);
@ -61,7 +57,6 @@ float Vector2::Magnitude(const Vector2 &a) {
return sqrtf(a.x * a.x + a.y * a.y);
}
float Vector2::magnitude() const { return (float)sqrtf(x * x + y * y); }
float Vector2::SqrMagnitude(const Vector2 &a) { return a.x * a.x + a.y * a.y; }
float Vector2::sqrMagnitude() const { return (x * x + y * y); }
@ -82,12 +77,11 @@ Vector2 Vector2::normalized() const {
return result;
}
Vector2 Vector2::operator-() { return Vector2(-this->x, -this->y); }
Vector2 Vector2::operator-(const Vector2 &v2) const {
return Vector2(this->x - v2.x, this->y - v2.y);
}
Vector2 Vector2::operator-() { return Vector2(-this->x, -this->y); }
Vector2 Vector2::operator+(const Vector2 &v2) const {
return Vector2(this->x + v2.x, this->y + v2.y);
}
@ -95,30 +89,27 @@ Vector2 Vector2::operator+(const Vector2 &v2) const {
Vector2 Vector2::Scale(const Vector2 &p1, const Vector2 &p2) {
return Vector2(p1.x * p2.x, p1.y * p2.y);
}
Vector2 Vector2::operator*(float f) const {
Vector2 Vector2::operator*(const float &f) const {
return Vector2(this->x * f, this->y * f);
}
Vector2 Vector2::operator/(const float &d) {
return Vector2(this->x / d, this->y / d);
Vector2 Vector2::operator/(const float &f) const {
return Vector2(this->x / f, this->y / f);
}
float Vector2::Dot(const Vector2 &v1, const Vector2 &v2) {
return v1.x * v2.x + v1.y * v2.y;
}
float Vector2::Distance(const Vector2 &p1, const Vector2 &p2) {
return Magnitude(p1 - p2);
float Vector2::Distance(const Vector2 &v1, const Vector2 &v2) {
return Magnitude(v1 - v2);
}
float Vector2::Angle(Vector2 from, Vector2 to) {
return (float)fabs(SignedAngle(from, to));
float Vector2::Angle(const Vector2 &v1, const Vector2 &v2) {
return (float)fabs(SignedAngle(v1, v2));
}
float Vector2::SignedAngle(Vector2 from, Vector2 to) {
float sqrMagFrom = from.sqrMagnitude();
float sqrMagTo = to.sqrMagnitude();
float Vector2::SignedAngle(const Vector2 &v1, const Vector2 &v2) {
float sqrMagFrom = v1.sqrMagnitude();
float sqrMagTo = v2.sqrMagnitude();
if (sqrMagFrom == 0 || sqrMagTo == 0)
return 0;
@ -129,13 +120,13 @@ float Vector2::SignedAngle(Vector2 from, Vector2 to) {
return nanf("");
#endif
float angleFrom = atan2(from.y, from.x);
float angleTo = atan2(to.y, to.x);
float angleFrom = atan2(v1.y, v1.x);
float angleTo = atan2(v2.y, v2.x);
return -(angleTo - angleFrom) * Angle::Rad2Deg;
}
Vector2 Vector2::Rotate(Vector2 v, float angle) {
float angleRad = angle * Angle::Deg2Rad;
Vector2 Vector2::Rotate(const Vector2 &v, const float &a) {
float angleRad = a * Angle::Deg2Rad;
#if defined(AVR)
float sinValue = sin(angleRad);
float cosValue = cos(angleRad); // * Angle::Deg2Rad);
@ -146,12 +137,12 @@ Vector2 Vector2::Rotate(Vector2 v, float angle) {
float tx = v.x;
float ty = v.y;
v.x = (cosValue * tx) - (sinValue * ty);
v.y = (sinValue * tx) + (cosValue * ty);
return v;
Vector2 r = Vector2((cosValue * tx) - (sinValue * ty),
(sinValue * tx) + (cosValue * ty));
return r;
}
Vector2 Vector2::Lerp(Vector2 from, Vector2 to, float f) {
Vector2 v = from + (to - from) * f;
Vector2 Vector2::Lerp(const Vector2 &v1, const Vector2 &v2, const float f) {
Vector2 v = v1 + (v2 - v1) * f;
return v;
}

306
Vector2.h
View File

@ -29,221 +29,163 @@ namespace Passer {
struct Vector3;
struct Polar;
/// <summary>
/// A 2-dimensional vector
/// </summary>
/// This uses the right-handed coordinate system.
/// @brief A 2=dimensional vector
/// @remark This uses the right=handed carthesian coordinate system.
/// @note This implementation intentionally avoids the use of x and y
struct Vector2 : Vec2 {
public:
/// <summary>
/// Create a new 2-dimensinal zero vector
/// </summary>
/// @brief A new 2-dimensional zero vector
Vector2();
/// <summary>
/// Create a new 2-dimensional vector
/// </summary>
/// <param name="x">x axis value</param>
/// <param name="y">y axis value</param>
Vector2(float x, float y);
/// <summary>
/// Create a vector from C-style Vec2
/// </summary>
/// <param name="v">The C-style Vec</param>
/// @brief A new 2-dimensional vector
/// @param sideward The sideward value
/// @param forward The forward value
Vector2(float sideward, float forward);
/// @brief A vector created from a C-style Vec2
/// @param v The C-syle Vec2
Vector2(Vec2 v);
/// <summary>
/// Convert a Vector3 to a Vector3
/// </summary>
/// <param name="v">The 3D vector</param>
/// @brief Convert a Vector3 to a Vector2
/// @param v The 3D vector
/// @note This will project the vector to the horizontal plane
Vector2(Vector3 v);
/// @brief Convert a Polar vector to a 2-dimensional vector
/// @param v The vector in polar coordinates
Vector2(Polar v);
Vector2(Polar p);
/// <summary>
/// Vector2 destructor
/// </summary
/// @brief Vector2 destructor
~Vector2();
/// <summary>
/// A vector with zero for all axis
/// </summary>
/// @brief A vector with zero for all axis
const static Vector2 zero;
/// <summary>
/// A vector with values (1, 1)
/// </summary>
/// @brief A vector with one for all axis
const static Vector2 one;
/// <summary>
/// A vector with values (1, 0)
/// </summary>
///
/// @brief A normalized right-oriented vector
const static Vector2 right;
/// <summary>
/// A vector3 with values (-1, 0)
/// </summary>
/// @brief A normalized left-oriented vector
const static Vector2 left;
/// <summary>
/// A vector with values (0, 1)
/// </summary>
/// @brief A normalized up-oriented vector
/// @note This is equal to Vector2::forward
const static Vector2 up;
/// <summary>
/// A vector with values (0, -1)
/// </summary>
/// @brief A normalized down-oriented vector
/// @note This is equal to Vector2::down
const static Vector2 down;
/// <summary>
/// A vector with values (0, 1)
/// </summary>
/// @brief A normalized forward-oriented vector
/// @note This is equal to Vector2::up
const static Vector2 forward;
/// <summary>
/// A vector with values (0, -1)
/// </summary>
/// @brief A normalized back-oriented vector
/// @note This is equal to Vector2::down
const static Vector2 back;
/// @brief Check if this vector to the given vector
/// @param vector The vector to check against
/// @param v The vector to check against
/// @return true if it is identical to the given vector
/// @note This uses float comparison to check equality which may
/// have strange effects. Equality on floats should be avoided.
bool operator==(const Vector2 &vector);
/// @note This uses float comparison to check equality which may have strange
/// effects. Equality on floats should be avoided.
bool operator==(const Vector2 &v);
/// <summary>
/// The length of a vector
/// </summary>
/// <param name="vector">The vector for which you need the length</param>
/// <returns>The length of the given vector</returns>
static float Magnitude(const Vector2 &vector);
/// <summary>
/// The length of this vector
/// </summary>
/// <returns>The length of this vector</returns>
/// @brief The vector length
/// @param v The vector for which you need the length
/// @return The vector length
static float Magnitude(const Vector2 &v);
/// @brief The vector length
/// @return The vector length
float magnitude() const;
/// <summary>
/// The squared length of a vector
/// </summary>
/// <param name="vector">The vector for which you need the squared
/// length</param> <returns>The squatred length</returns> The squared length
/// is computationally simpler than the real length. Think of Pythagoras A^2 +
/// B^2 = C^2. This leaves out the calculation of the squared root of C.
static float SqrMagnitude(const Vector2 &vector);
/// <summary>
/// The squared length of this vector
/// </summary>
/// <returns>The squared length</returns>
/// The squared length is computationally simpler than the real length.
/// Think of Pythagoras A^2 + B^2 = C^2.
/// This leaves out the calculation of the squared root of C.
/// @brief The squared vector length
/// @param v The vector for which you need the squared length
/// @return The squared vector length
/// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This prevents the calculation
/// of the squared root of C.
static float SqrMagnitude(const Vector2 &v);
/// @brief The squared vector length
/// @return The squared vector length
/// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This prevents the calculation
/// of the squared root of C.
float sqrMagnitude() const;
/// <summary>
/// Connvert a vector to a length of 1
/// </summary>
/// <param name="vector">The vector to convert</param>
/// <returns>The vector with length 1</returns>
static Vector2 Normalize(Vector2 vector);
/// <summary>
/// Convert the vector to a length of a
/// </summary>
/// <returns>The vector with length 1</returns>
/// @brief Convert the vector to a length of 1
/// @param v The vector to convert
/// @return The vector normalized to a length of 1
static Vector2 Normalize(Vector2 v);
/// @brief Convert the vector to a length 1
/// @return The vector normalized to a length of 1
Vector2 normalized() const;
/// <summary>
/// Negate the vector
/// </summary>
/// <returns>The negated vector</returns>
/// This will result in a vector pointing in the opposite direction
/// @brief Negate the vector such that it points in the opposite direction
/// @return The negated vector
Vector2 operator-();
/// <summary>
/// Subtract a vector from this vector
/// </summary>
/// <param name="vector">The vector to subtract from this vector</param>
/// <returns>The result of the subtraction</returns>
Vector2 operator-(const Vector2 &vector) const;
/// <summary>
/// Add another vector to this vector
/// </summary>
/// <param name="vector2">The vector to add</param>
/// <returns>The result of adding the vector</returns>
Vector2 operator+(const Vector2 &vector2) const;
/// @brief Subtract a vector from this vector
/// @param v The vector to subtract from this vector
/// @return The result of the subtraction
Vector2 operator-(const Vector2 &v) const;
/// @brief Add a vector to this vector
/// @param v The vector to add to this vector
/// @return The result of the addition
Vector2 operator+(const Vector2 &v) const;
/// <summary>
/// Scale a vector using another vector
/// </summary>
/// <param name="vector1">The vector to scale</param>
/// <param name="vector2">A vector with scaling factors</param>
/// <returns>The scaled vector</returns>
/// Each component of the vector v1 will be multiplied with the
/// component from the scaling vector v2.
static Vector2 Scale(const Vector2 &vector1, const Vector2 &vector2);
/// <summary>
/// Scale a vector uniformly up
/// </summary>
/// <param name="factor">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// Each component of the vector will be multipled with the same factor.
Vector2 operator*(float factor) const;
/// <summary>
/// Scale a vector uniformy down
/// </summary>
/// <param name="factor">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// Each componet of the vector will be divided by the same factor.
Vector2 operator/(const float &factor);
/// @brief Scale a vector using another vector
/// @param v1 The vector to scale
/// @param v2 A vector with the scaling factors
/// @return The scaled vector
/// @remark Each component of the vector v1 will be multiplied with the
/// matching component from the scaling vector v2.
static Vector2 Scale(const Vector2 &v1, const Vector2 &v2);
/// @brief Scale the vector uniformly up
/// @param f The scaling factor
/// @return The scaled vector
/// @remark Each component of the vector will be multipled with the same
/// factor f.
Vector2 operator*(const float &f) const;
/// @brief Scale the vector uniformly down
/// @param f The scaling factor
/// @return The scaled vector
/// @remark Each componet of the vector will be divided by the same factor.
Vector2 operator/(const float &f) const;
/// <summary>
/// The dot product of two vectors
/// </summary>
/// <param name="vector1">The first vector</param>
/// <param name="vector2">The second vector</param>
/// <returns>The dot product of the two vectors</returns>
static float Dot(const Vector2 &vector1, const Vector2 &vector2);
/// @brief The dot product of two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The dot product of the two vectors
static float Dot(const Vector2 &v1, const Vector2 &v2);
/// <summary>
/// The distance between two vectors
/// </summary>
/// <param name="vector1">The first vector</param>
/// <param name="vector2">The second vectors</param>
/// <returns>The distance between the two vectors</returns>
static float Distance(const Vector2 &vector1, const Vector2 &vector2);
/// @brief The distance between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The distance between the two vectors
static float Distance(const Vector2 &v1, const Vector2 &v2);
/// <summary>
/// Calculate the angle between two vectors
/// </summary>
/// <param name="vector1">The first vector</param>
/// <param name="vector2">The second vector</param>
/// <returns>The angle</returns>
/// This reterns an unsigned angle which is the shortest distance
/// between the two vectors. Use Vector3::SignedAngle if a
/// signed angle is needed.
static float Angle(Vector2 vector1, Vector2 vector2);
/// @brief The angle between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The angle between the two vectors
/// @remark This reterns an unsigned angle which is the shortest distance
/// between the two vectors. Use Vector2::SignedAngle if a signed angle is
/// needed.
static float Angle(const Vector2 &v1, const Vector2 &v2);
/// @brief The signed angle between two vectors
/// @param v1 The starting vector
/// @param v2 The ending vector
/// @return The signed angle between the two vectors
static float SignedAngle(const Vector2 &v1, const Vector2 &v2);
/// <summary>
/// Calculate the angle between two vectors rotation around an axis.
/// </summary>
/// <param name="from">The starting vector</param>
/// <param name="to">The ending vector</param>
/// <param name="axis">The axis to rotate around</param>
/// <returns>The signed angle</returns>
static float SignedAngle(Vector2 from, Vector2 to);
/// @brief Rotate the vector
/// @param v The vector to rotate
/// @param a The angle in degrees to rotate
/// @return The rotated vector
static Vector2 Rotate(const Vector2 &v, const float &a);
/// <summary>
/// Rotate the vector
/// </summary>
/// <param name="v">The vector to rotate</param>
/// <param name="angle">Angle in radias to rotate</param>
/// <returns>The rotated vector</returns>
static Vector2 Rotate(Vector2 v, float angle);
/// <summary>
/// Lerp between two vectors
/// </summary>
/// <param name="from">The from vector</param>
/// <param name="to">The to vector</param>
/// <param name="f">The interpolation distance (0..1)</param>
/// <returns>The lerped vector</returns>
/// The factor f is unclamped. Value 0 matches the *from* vector, Value 1
/// matches the *to* vector Value -1 is *from* vector minus the difference
/// between *from* and *to* etc.
static Vector2 Lerp(Vector2 from, Vector2 to, float f);
/// @brief Lerp (linear interpolation) between two vectors
/// @param v1 The starting vector
/// @param v2 The end vector
/// @param f The interpolation distance
/// @return The lerped vector
/// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value
/// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference
/// between *v1* and *v2* etc.
static Vector2 Lerp(const Vector2 &v1, const Vector2 &v2, const float f);
};
} // namespace Passer
using namespace Passer;

View File

@ -105,4 +105,57 @@ TEST(Polar, Subtraction) {
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Subtraction(0 0)";
}
TEST(Polar, Addition) {
Polar v1 = Polar(4, 45);
Polar v2 = Polar(1, -90);
Polar r = Polar::zero;
r = v1 - v2;
// don't know what to expect yet
v2 = Polar::zero;
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0)";
}
TEST(Polar, Scale_Multiply) {
Polar v1 = Polar(4, 45);
Polar r = Polar::zero;
r = v1 * 2.0f;
EXPECT_FLOAT_EQ(r.distance, v1.distance * 2) << "ScaleMult(4 45, 2)";
EXPECT_FLOAT_EQ(r.angle, v1.angle) << "ScaleMult(4 45, 2)";
}
TEST(Polar, Scale_Divide) {
Polar v1 = Polar(4, 45);
Polar r = Polar::zero;
r = v1 / 2.0f;
EXPECT_FLOAT_EQ(r.distance, v1.distance / 2) << "ScaleDiv(4 45, 2)";
EXPECT_FLOAT_EQ(r.angle, v1.angle) << "ScaleDiv(4 45, 2)";
}
TEST(Polar, Distance) {
Polar v1 = Polar(4, 45);
Polar v2 = Polar(1, -90);
float d = 0;
d = Polar::Distance(v1, v2);
// don't know what to expect yet
v2 = Polar::zero;
d = Polar::Distance(v1, v2);
EXPECT_FLOAT_EQ(d, v1.distance) << "Distance(4 45, zero)";
}
TEST(Polar, Rotate) {
Polar v = Polar(4, 45);
Polar r = Polar::zero;
r = Polar::Rotate(v, 45);
EXPECT_FLOAT_EQ(r.distance, v.distance) << "Rotate(4 45, 45)";
EXPECT_FLOAT_EQ(r.angle, 90.0f) << "Rotate(4 45, 45)";
}
#endif