Added Vector2

This commit is contained in:
Pascal Serrarens 2022-03-15 12:26:18 +01:00
parent 1ffbeaf854
commit 90da11db68
4 changed files with 774 additions and 1 deletions

View File

@ -15,12 +15,13 @@ set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
include_directories(include)
add_library(VectorAlgebra STATIC "src/Vector3.cpp" "src/Quaternion.cpp")
add_library(VectorAlgebra STATIC "src/Vector2.cpp" "src/Vector3.cpp" "src/Quaternion.cpp" )
enable_testing()
add_executable(
VectorAlgebraTest
"test/Vector2_test.cc"
"test/Vector3_test.cc"
"test/Quaternion_test.cc"
)

222
include/Vector2.h Normal file
View File

@ -0,0 +1,222 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef VECTOR2_H
#define VECTOR2_H
extern "C" {
/// <summary>
/// 2-dimensional Vector representation
/// </summary>
/// This is a C-style implementation
/// This uses the right-handed coordinate system.
typedef struct Vec2 {
/// <summary>
/// The right axis of the vector
/// </summary>
float x;
/// <summary>
/// The upward/forward axis of the vector
/// </summary>
float y;
} Vec2;
}
/// <summary>
/// A 2-dimensional vector
/// </summary>
/// This uses the right-handed coordinate system.
struct Vector2 : Vec2 {
public:
/// <summary>
/// Create a new 2-dimensinal zero vector
/// </summary>
Vector2();
/// <summary>
/// Create a new 2-dimensional vector
/// </summary>
/// <param name="x">x axis value</param>
/// <param name="y">y axis value</param>
Vector2(float x, float y);
/// <summary>
/// Create a vector from C-style Vec2
/// </summary>
/// <param name="v">The C-style Vec</param>
Vector2(Vec2 v);
~Vector2();
/// <summary>
/// A vector with zero for all axis
/// </summary>
const static Vector2 zero;
/// <summary>
/// A vector with values (1, 0)
/// </summary>
const static Vector2 right;
/// <summary>
/// A vector3 with values (-1, 0)
/// </summary>
const static Vector2 left;
/// <summary>
/// A vector with values (0, 1)
/// </summary>
const static Vector2 up;
/// <summary>
/// A vector with values (0, -1)
/// </summary>
const static Vector2 down;
/// <summary>
/// A vector with values (0, 1)
/// </summary>
const static Vector2 forward;
/// <summary>
/// A vector with values (0, -1)
/// </summary>
const static Vector2 back;
/// <summary>
/// The length of a vector
/// </summary>
/// <param name="vector">The vector for which you need the length</param>
/// <returns>The length of the given vector</returns>
static float Magnitude(const Vector2& vector);
/// <summary>
/// The length of this vector
/// </summary>
/// <returns>The length of this vector</returns>
float magnitude() const;
/// <summary>
/// The squared length of a vector
/// </summary>
/// <param name="vector">The vector for which you need the squared length</param>
/// <returns>The squatred length</returns>
/// The squared length is computationally simpler than the real length.
/// Think of Pythagoras A^2 + B^2 = C^2.
/// This leaves out the calculation of the squared root of C.
static float SqrMagnitude(const Vector2& vector);
/// <summary>
/// The squared length of this vector
/// </summary>
/// <returns>The squared length</returns>
/// The squared length is computationally simpler than the real length.
/// Think of Pythagoras A^2 + B^2 = C^2.
/// This leaves out the calculation of the squared root of C.
float sqrMagnitude() const;
/// <summary>
/// Connvert a vector to a length of 1
/// </summary>
/// <param name="vector">The vector to convert</param>
/// <returns>The vector with length 1</returns>
static Vector2 Normalize(Vector2 vector);
/// <summary>
/// Convert the vector to a length of a
/// </summary>
/// <returns>The vector with length 1</returns>
Vector2 normalized() const;
/// <summary>
/// Negate the vector
/// </summary>
/// <returns>The negated vector</returns>
/// This will result in a vector pointing in the opposite direction
Vector2 operator -();
/// <summary>
/// Subtract a vector from this vector
/// </summary>
/// <param name="vector">The vector to subtract from this vector</param>
/// <returns>The result of the subtraction</returns>
Vector2 operator -(const Vector2& vector) const;
/// <summary>
/// Add another vector to this vector
/// </summary>
/// <param name="vector2">The vector to add</param>
/// <returns>The result of adding the vector</returns>
Vector2 operator +(const Vector2& vector2) const;
/// <summary>
/// Scale a vector using another vector
/// </summary>
/// <param name="vector1">The vector to scale</param>
/// <param name="vector2">A vector with scaling factors</param>
/// <returns>The scaled vector</returns>
/// Each component of the vector v1 will be multiplied with the
/// component from the scaling vector v2.
static Vector2 Scale(const Vector2& vector1, const Vector2& vector2);
/// <summary>
/// Scale a vector uniformly up
/// </summary>
/// <param name="factor">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// Each component of the vector will be multipled with the same factor.
Vector2 operator *(float factor) const;
/// <summary>
/// Scale a vector uniformy down
/// </summary>
/// <param name="factor">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// Each componet of the vector will be divided by the same factor.
Vector2 operator /(const float& factor);
/// <summary>
/// The dot product of two vectors
/// </summary>
/// <param name="vector1">The first vector</param>
/// <param name="vector2">The second vector</param>
/// <returns>The dot product of the two vectors</returns>
static float Dot(const Vector2& vector1, const Vector2& vector2);
/// <summary>
/// Check is this vector is equal to the given vector
/// </summary>
/// <param name="vector">The vector to check against</param>
/// <returns>True if it is identical to the given vector</returns>
/// Note this uses float comparison to check equality which
/// may have strange effects. Equality on float should be avoided.
bool operator ==(const Vector2& vector);
/// <summary>
/// The distance between two vectors
/// </summary>
/// <param name="vector1">The first vector</param>
/// <param name="vector2">The second vectors</param>
/// <returns>The distance between the two vectors</returns>
static float Distance(const Vector2& vector1, const Vector2& vector2);
/// <summary>
/// Calculate the angle between two vectors
/// </summary>
/// <param name="vector1">The first vector</param>
/// <param name="vector2">The second vector</param>
/// <returns></returns>
/// This reterns an unsigned angle which is the shortest distance
/// between the two vectors. Use Vector3::SignedAngle if a
/// signed angle is needed.
static float Angle(Vector2 vector1, Vector2 vector2);
/// <summary>
/// Calculate the angle between two vectors rotation around an axis.
/// </summary>
/// <param name="from">The starting vector</param>
/// <param name="to">The ending vector</param>
/// <param name="axis">The axis to rotate around</param>
/// <returns>The signed angle</returns>
static float SignedAngle(Vector2 from, Vector2 to);
/// <summary>
/// Lerp between two vectors
/// </summary>
/// <param name="from">The from vector</param>
/// <param name="to">The to vector</param>
/// <param name="f">The interpolation distance (0..1)</param>
/// <returns>The lerped vector</returns>
/// The factor f is unclamped. Value 0 matches the *from* vector, Value 1 matches the *to* vector
/// Value -1 is *from* vector minus the difference between *from* and *to* etc.
static Vector2 Lerp(Vector2 from, Vector2 to, float f);
};
#endif

126
src/Vector2.cpp Normal file
View File

@ -0,0 +1,126 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include <math.h>
#include "Vector2.h"
const float Deg2Rad = 0.0174532924F;
const float Rad2Deg = 57.29578F;
const float epsilon = 1E-05f;
Vector2::Vector2() {
x = 0;
y = 0;
}
Vector2::Vector2(float _x, float _y) {
x = _x;
y = _y;
}
Vector2::Vector2(Vec2 v) {
x = v.x;
y = v.y;
}
Vector2::~Vector2() {
}
const Vector2 Vector2::zero = Vector2(0, 0);
const Vector2 Vector2::right = Vector2(1, 0);
const Vector2 Vector2::left = Vector2(-1, 0);
const Vector2 Vector2::up = Vector2(0, 1);
const Vector2 Vector2::down = Vector2(0, -1);
const Vector2 Vector2::forward = Vector2(0, 1);
const Vector2 Vector2::back = Vector2(0, -1);
float Vector2::Magnitude(const Vector2& a) {
return sqrtf(a.x * a.x + a.y * a.y);
}
float Vector2::magnitude() const {
return (float)sqrtf(x * x + y * y);
}
float Vector2::SqrMagnitude(const Vector2& a) {
return a.x * a.x + a.y * a.y;
}
float Vector2::sqrMagnitude() const {
return(x * x + y * y);
}
Vector2 Vector2::Normalize(Vector2 v) {
float num = Vector2::Magnitude(v);
Vector2 result = Vector2::zero;
if (num > epsilon) {
result = v / num;
}
return result;
}
Vector2 Vector2::normalized() const {
float num = this->magnitude();
Vector2 result = Vector2::zero;
if (num > epsilon) {
result = ((Vector2)*this) / num;
}
return result;
}
Vector2 Vector2::operator -(const Vector2& v2) const {
return Vector2(this->x - v2.x, this->y - v2.y);
}
Vector2 Vector2::operator -() {
return Vector2(-this->x, -this->y);
}
Vector2 Vector2::operator +(const Vector2& v2) const {
return Vector2(this->x + v2.x, this->y + v2.y);
}
Vector2 Vector2::Scale(const Vector2& p1, const Vector2& p2) {
return Vector2(p1.x * p2.x, p1.y * p2.y);
}
Vector2 Vector2::operator *(float f) const {
return Vector2(this->x * f, this->y * f);
}
Vector2 Vector2::operator/(const float& d) {
return Vector2(this->x / d, this->y / d);
}
float Vector2::Dot(const Vector2& v1, const Vector2& v2) {
return v1.x * v2.x + v1.y * v2.y;
}
bool Vector2::operator==(const Vector2& v) {
return (this->x == v.x && this->y == v.y);
}
float Vector2::Distance(const Vector2& p1, const Vector2& p2) {
return Magnitude(p1 - p2);
}
float Vector2::Angle(Vector2 from, Vector2 to) {
return (float) fabs(SignedAngle(from, to));
}
float Vector2::SignedAngle(Vector2 from, Vector2 to) {
float sqrMagFrom = from.sqrMagnitude();
float sqrMagTo = to.sqrMagnitude();
if (sqrMagFrom == 0 || sqrMagTo == 0)
return 0;
if (!isfinite(sqrMagFrom) || !isfinite(sqrMagTo))
return nanf("");
float angleFrom = atan2(from.y, from.x);
float angleTo = atan2(to.y, to.x);
return (angleTo - angleFrom) * Rad2Deg;
}
static Vector2 Lerp(Vector2 from, Vector2 to, float f) {
Vector2 v = from + (to - from) * f;
return v;
}

424
test/Vector2_test.cc Normal file
View File

@ -0,0 +1,424 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include "Vector2.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Vector2, Magnitude) {
Vector2 v = Vector2(1, 2);
float m = 0;
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude 1 2";
m = Vector2::Magnitude(v);
EXPECT_FLOAT_EQ(m, 2.236068F) << "Vector2::Magnitude 1 2";
v = Vector2(-1, -2);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude -1 -2";
v = Vector2(0, 0);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.magnitude 0 0 ";
if (std::numeric_limits<float>::is_iec559) {
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude INFINITY INFINITY ";
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude -INFINITY -INFINITY ";
}
}
TEST(Vector2, SqrMagnitude) {
Vector2 v = Vector2(1, 2);
float m = 0;
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 5) << "v.sqrMagnitude 1 2";
m = Vector2::SqrMagnitude(v);
EXPECT_FLOAT_EQ(m, 5) << "Vector2::SqrMagnitude 1 2";
v = Vector2(-1, -2);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 5) << "v.sqrMagnitude -1 -2";
v = Vector2(0, 0);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.sqrMagnitude 0 0 ";
if (std::numeric_limits<float>::is_iec559) {
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.sqrMagnitude INFINITY INFINITY ";
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.sqrMagnitude -INFINITY -INFINITY ";
}
}
TEST(Vector2, Normalize) {
bool r = false;
Vector2 v1 = Vector2(0, 2);
Vector2 v = Vector2::zero;
v = v1.normalized();
EXPECT_TRUE(v == Vector2(0, 1)) << "v.normalized 0 2";
v = Vector2::Normalize(v1);
EXPECT_TRUE(v == Vector2(0, 1)) << "Vector3::Normalize 0 2";
v1 = Vector2(0, -2);
v = v1.normalized();
EXPECT_TRUE(v == Vector2(0, -1)) << "v.normalized 0 -2";
v1 = Vector2(0, 0);
v = v1.normalized();
EXPECT_TRUE(v == Vector2(0, 0)) << "v.normalized 0 0";
if (std::numeric_limits<float>::is_iec559) {
v1 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = v1.normalized();
r = isnan(v.x) && isnan(v.y);
EXPECT_TRUE(r) << "v.normalized INFINITY INFINITY";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1.normalized();
r = isnan(v.x) && isnan(v.y);
EXPECT_TRUE(r) << "v.normalized -INFINITY -INFINITY";
}
}
TEST(Vector2, Negate) {
bool r = false;
Vector2 v1 = Vector2(4, 5);
Vector2 v = Vector2::zero;
v = -v1;
EXPECT_TRUE(v == Vector2(-4, -5)) << "- 4 5";
v1 = Vector2(-4, -5);
v = -v1;
EXPECT_TRUE(v == Vector2(4, 5)) << "- -4 -5";
v1 = Vector2(0, 0);
v = -v1;
EXPECT_TRUE(v == Vector2(0, 0)) << "- 0 0";
if (std::numeric_limits<float>::is_iec559) {
v1 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = -v1;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY)) << "- INFINITY INFINITY";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = -v1;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY)) << "- -INFINITY -INFINITY";
}
}
TEST(Vector2, Subtract) {
bool r = false;
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
Vector2 v = Vector2::zero;
v = v1 - v2;
EXPECT_TRUE(v == Vector2(3, 3)) << "4 5 - 1 2";
v2 = Vector2(-1, -2);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(5, 7)) << "4 5 - -1 -2";
v2 = Vector2(4, 5);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 - 4 5";
v2 = Vector2(0, 0);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(4, 5)) << "4 5 - 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY)) << "4 5 - INFINITY INFINITY";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY)) << "4 5 - -INFINITY -INFINITY";
}
}
TEST(Vector2, Addition) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
Vector2 v = Vector2::zero;
bool r = false;
v = v1 + v2;
EXPECT_TRUE(v == Vector2(5, 7)) << "4 5 + 1 2";
v2 = Vector2(-1, -2);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(3, 3)) << "4 5 + -1 -2";
v2 = Vector2(0, 0);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(4, 5)) << "4 5 + 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY)) << "4 5 + INFINITY INFINITY";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY)) << "4 5 + -INFINITY -INFINITY";
}
}
TEST(Vector2, Scale) {
bool r = false;
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
Vector2 v = Vector2::zero;
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(4, 10)) << "Scale 4 5 , 1 2";
v2 = Vector2(-1, -2);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(-4, -10)) << "Scale 4 5 , -1 -2";
v2 = Vector2(0, 0);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(0, 0)) << "Scale 4 5 , 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY)) << "4 5 + INFINITY INFINITY";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY)) << "4 5 + -INFINITY -INFINITY";
}
}
TEST(Vector2, Multiply) {
bool r = false;
Vector2 v1 = Vector2(4, 5);
float f = 3;
Vector2 v = Vector2::zero;
v = v1 * f;
EXPECT_TRUE(v == Vector2(12, 15)) << "4 5 * 3";
f = -3;
v = v1 * f;
EXPECT_TRUE(v == Vector2(-12, -15)) << "4 5 * -3";
f = 0;
v = v1 * f;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 * 0";
if (std::numeric_limits<float>::is_iec559) {
f = FLOAT_INFINITY;
v = v1 * f;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY)) << "4 5 * INFINITY";
f = -FLOAT_INFINITY;
v = v1 * f;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY)) << "4 5 * -INFINITY";
}
}
TEST(Vector2, Divide) {
bool r = false;
Vector2 v1 = Vector2(4, 5);
float f = 2;
Vector2 v = Vector2::zero;
v = v1 / f;
EXPECT_TRUE(v == Vector2(2, 2.5F)) << "4 5 / 3";
f = -2;
v = v1 / f;
EXPECT_TRUE(v == Vector2(-2, -2.5F)) << "4 5 / -3";
if (std::numeric_limits<float>::is_iec559) {
f = 0;
v = v1 / f;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY)) << "4 5 / 0";
f = FLOAT_INFINITY;
v = v1 / f;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 / INFINITY";
f = -FLOAT_INFINITY;
v = v1 / f;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 / -INFINITY";
}
}
TEST(Vector2, Dot) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 14) << "Dot(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -14) << "Dot(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "Dot(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Dot(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -FLOAT_INFINITY) << "Dot(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, Equality) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
bool r = false;
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == 1 2";
v2 = Vector2(4, 5);
r = v1 == v2;
EXPECT_TRUE(r) << "4 5 == 1 2";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == INFINITY INFINITY";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "-INFINITY -INFINITY == INFINITY INFINITY";
}
}
TEST(Vector2, Distance) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 4.24264F) << "Distance(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 8.602325F) << "Distance(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 6.403124F) << "Distance(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Distance(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Distance(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, Angle) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
bool r = false;
f = Vector2::Angle(v1, v2);
EXPECT_FLOAT_EQ(f, 12.09476F) << "Angle(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Angle(v1, v2);
EXPECT_FLOAT_EQ(f, 167.9052F) << "Angle(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Angle(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "Angle(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Angle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "Angle(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Angle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "Angle(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, SignedAngle) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
bool r = false;
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, 12.09476F) << "SignedAngle(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, -167.9052F) << "SignedAngle(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "SignedAngle(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::SignedAngle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "SignedAngle(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::SignedAngle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "SignedAngle(4 5, -INFINITY -INFINITY)";
}
}
//TEST(Vector2, DISABLED_Lerp) {
//
//}
#endif