Compare commits
3 Commits
Author | SHA1 | Date | |
---|---|---|---|
![]() |
2a49d50844 | ||
![]() |
91ff401ecf | ||
![]() |
fdf4d3aff6 |
@ -1,8 +1,8 @@
|
||||
cmake_minimum_required(VERSION 3.13) # CMake version check
|
||||
if(ESP_PLATFORM)
|
||||
idf_component_register(
|
||||
SRC_DIRS "."
|
||||
INCLUDE_DIRS "."
|
||||
SRC_DIRS "." "LinearAlgebra"
|
||||
INCLUDE_DIRS "." "LinearAlgebra"
|
||||
)
|
||||
else()
|
||||
project(RoboidControl)
|
||||
|
@ -1,6 +1,135 @@
|
||||
#include "Matrix.h"
|
||||
#include <iostream>
|
||||
|
||||
template <> MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
|
||||
#pragma region Matrix2
|
||||
|
||||
Matrix2::Matrix2(int nRows, int nCols) : nRows(nRows), nCols(nCols) {
|
||||
this->nValues = nRows * nCols;
|
||||
if (this->nValues == 0)
|
||||
data = nullptr;
|
||||
else {
|
||||
this->data = new float[nValues]();
|
||||
this->externalData = false;
|
||||
}
|
||||
}
|
||||
|
||||
Matrix2::Matrix2(float* data, int nRows, int nCols)
|
||||
: nRows(nRows), nCols(nCols), data(data){
|
||||
this->nValues = nRows * nCols;
|
||||
this->externalData = true;
|
||||
}
|
||||
|
||||
Matrix2::~Matrix2() {
|
||||
if (data != nullptr && !this->externalData)
|
||||
delete[] data;
|
||||
}
|
||||
|
||||
// Move constructor
|
||||
Matrix2::Matrix2(Matrix2&& other) noexcept
|
||||
: nRows(other.nRows), nCols(other.nCols), nValues(other.nValues), data(other.data) {
|
||||
other.data = nullptr; // Set the other object's pointer to nullptr to avoid double deletion
|
||||
}
|
||||
|
||||
// Move assignment operator
|
||||
Matrix2& Matrix2::operator=(Matrix2&& other) noexcept {
|
||||
if (this != &other) {
|
||||
delete[] data; // Clean up current data
|
||||
nRows = other.nRows;
|
||||
nCols = other.nCols;
|
||||
nValues = other.nValues;
|
||||
data = other.data;
|
||||
other.data = nullptr; // Avoid double deletion
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
Matrix2 Matrix2::Zero(int nRows, int nCols) {
|
||||
Matrix2 r = Matrix2(nRows, nCols);
|
||||
for (int ix = 0; ix < r.nValues; ix++)
|
||||
r.data[ix] = 0;
|
||||
return r;
|
||||
}
|
||||
|
||||
Matrix2 Matrix2::Identity(int size) {
|
||||
return Diagonal(1, size);
|
||||
}
|
||||
|
||||
Matrix2 Matrix2::Diagonal(float f, int size) {
|
||||
Matrix2 r = Matrix2(size, size);
|
||||
float* data = r.data;
|
||||
int valueIx = 0;
|
||||
for (int ix = 0; ix < size; ix++) {
|
||||
data[valueIx] = f;
|
||||
valueIx += size + 1;
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
Matrix2 Matrix2::SkewMatrix(const Vector3& v) {
|
||||
Matrix2 r = Matrix2(3, 3);
|
||||
float* data = r.data;
|
||||
data[0 * 3 + 1] = -v.z; // result(0, 1)
|
||||
data[0 * 3 + 2] = v.y; // result(0, 2)
|
||||
data[1 * 3 + 0] = v.z; // result(1, 0)
|
||||
data[1 * 3 + 2] = -v.x; // result(1, 2)
|
||||
data[2 * 3 + 0] = -v.y; // result(2, 0)
|
||||
data[2 * 3 + 1] = v.x; // result(2, 1)
|
||||
return r;
|
||||
}
|
||||
|
||||
Matrix2 LinearAlgebra::Matrix2::operator-() const {
|
||||
Matrix2 r = Matrix2(this->nRows, this->nCols);
|
||||
for (int ix = 0; ix < r.nValues; ix++)
|
||||
r.data[ix] = -this->data[ix];
|
||||
return r;
|
||||
}
|
||||
|
||||
Matrix2 LinearAlgebra::Matrix2::operator*(const Matrix2& B) const {
|
||||
Matrix2 r = Matrix2(this->nRows, B.nCols);
|
||||
|
||||
int ACols = this->nCols;
|
||||
int BCols = B.nCols;
|
||||
int ARows = this->nRows;
|
||||
//int BRows = B.nRows;
|
||||
|
||||
for (int i = 0; i < ARows; ++i) {
|
||||
// Pre-compute row offsets
|
||||
int ARowOffset = i * ACols; // ARowOffset is constant for each row of A
|
||||
int BColOffset = i * BCols; // BColOffset is constant for each row of B
|
||||
for (int j = 0; j < BCols; ++j) {
|
||||
float sum = 0;
|
||||
std::cout << " 0";
|
||||
int BIndex = j;
|
||||
for (int k = 0; k < ACols; ++k) {
|
||||
std::cout << " + " << this->data[ARowOffset + k] << " * " << B.data[BIndex];
|
||||
sum += this->data[ARowOffset + k] * B.data[BIndex];
|
||||
BIndex += BCols;
|
||||
}
|
||||
r.data[BColOffset + j] = sum;
|
||||
std::cout << " = " << sum << " ix: " << BColOffset + j << "\n";
|
||||
}
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
void LinearAlgebra::Matrix2::SetSlice(int rowStart,
|
||||
int rowStop,
|
||||
int colStart,
|
||||
int colStop,
|
||||
const Matrix2& m) const {
|
||||
for (int i = rowStart; i < rowStop; i++) {
|
||||
for (int j = colStart; j < colStop; j++)
|
||||
this->data[i * this->nCols + j] =
|
||||
m.data[(i - rowStart) * m.nCols + (j - colStart)];
|
||||
// this->data[i, j] = m.data[i - rowStart, j - colStart];
|
||||
}
|
||||
}
|
||||
|
||||
// Matrix2
|
||||
#pragma endregion
|
||||
|
||||
template <>
|
||||
MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
|
||||
if (rows <= 0 || cols <= 0) {
|
||||
this->rows = 0;
|
||||
this->cols = 0;
|
||||
@ -14,15 +143,17 @@ template <> MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
|
||||
this->data = new float[matrixSize]{0.0f};
|
||||
}
|
||||
|
||||
template <> MatrixOf<float>::MatrixOf(Vector3 v) : MatrixOf(3, 1) {
|
||||
template <>
|
||||
MatrixOf<float>::MatrixOf(Vector3 v) : MatrixOf(3, 1) {
|
||||
Set(0, 0, v.Right());
|
||||
Set(1, 0, v.Up());
|
||||
Set(2, 0, v.Forward());
|
||||
}
|
||||
|
||||
template <>
|
||||
void MatrixOf<float>::Multiply(const MatrixOf<float> *m1,
|
||||
const MatrixOf<float> *m2, MatrixOf<float> *r) {
|
||||
void MatrixOf<float>::Multiply(const MatrixOf<float>* m1,
|
||||
const MatrixOf<float>* m2,
|
||||
MatrixOf<float>* r) {
|
||||
for (unsigned int rowIx1 = 0; rowIx1 < m1->rows; rowIx1++) {
|
||||
for (unsigned int colIx2 = 0; colIx2 < m2->cols; colIx2++) {
|
||||
unsigned int rDataIx = colIx2 * m2->cols + rowIx1;
|
||||
@ -37,7 +168,7 @@ void MatrixOf<float>::Multiply(const MatrixOf<float> *m1,
|
||||
}
|
||||
|
||||
template <>
|
||||
Vector3 MatrixOf<float>::Multiply(const MatrixOf<float> *m, Vector3 v) {
|
||||
Vector3 MatrixOf<float>::Multiply(const MatrixOf<float>* m, Vector3 v) {
|
||||
MatrixOf<float> v_m = MatrixOf<float>(v);
|
||||
MatrixOf<float> r_m = MatrixOf<float>(3, 1);
|
||||
|
||||
@ -47,10 +178,11 @@ Vector3 MatrixOf<float>::Multiply(const MatrixOf<float> *m, Vector3 v) {
|
||||
return r;
|
||||
}
|
||||
|
||||
template <typename T> Vector3 MatrixOf<T>::operator*(const Vector3 v) const {
|
||||
float *vData = new float[3]{v.Right(), v.Up(), v.Forward()};
|
||||
template <typename T>
|
||||
Vector3 MatrixOf<T>::operator*(const Vector3 v) const {
|
||||
float* vData = new float[3]{v.Right(), v.Up(), v.Forward()};
|
||||
MatrixOf<float> v_m = MatrixOf<float>(3, 1, vData);
|
||||
float *rData = new float[3]{};
|
||||
float* rData = new float[3]{};
|
||||
MatrixOf<float> r_m = MatrixOf<float>(3, 1, rData);
|
||||
|
||||
Multiply(this, &v_m, &r_m);
|
||||
|
@ -5,6 +5,38 @@
|
||||
|
||||
namespace LinearAlgebra {
|
||||
|
||||
class Matrix2 {
|
||||
public:
|
||||
int nRows = 0;
|
||||
int nCols = 0;
|
||||
int nValues = 0;
|
||||
float* data = nullptr;
|
||||
bool externalData = true;
|
||||
|
||||
Matrix2(int nRows, int nCols);
|
||||
Matrix2(float* data, int nRows, int nCols);
|
||||
|
||||
~Matrix2();
|
||||
|
||||
static Matrix2 Zero(int nRows, int nCols);
|
||||
|
||||
static Matrix2 Identity(int size);
|
||||
|
||||
static Matrix2 Diagonal(float f, int size);
|
||||
|
||||
static Matrix2 SkewMatrix(const Vector3& v);
|
||||
|
||||
Matrix2 operator-() const;
|
||||
|
||||
Matrix2 operator*(const Matrix2& m) const;
|
||||
|
||||
void SetSlice(int rowStart, int rowStop, int colStart, int colStop, const Matrix2& m) const;
|
||||
//private:
|
||||
// move constructor and move assignment operator
|
||||
Matrix2(Matrix2&& other) noexcept;
|
||||
Matrix2& operator=(Matrix2&& other) noexcept;
|
||||
};
|
||||
|
||||
/// @brief Single precision float matrix
|
||||
template <typename T>
|
||||
class MatrixOf {
|
||||
|
@ -6,6 +6,7 @@
|
||||
#include <float.h>
|
||||
#include <math.h>
|
||||
#include "Angle.h"
|
||||
#include "Matrix.h"
|
||||
#include "Vector3.h"
|
||||
|
||||
void CopyQuat(const Quat& q1, Quat& q2) {
|
||||
@ -97,6 +98,28 @@ Vector3 Quaternion::ToAngles(const Quaternion& q1) {
|
||||
}
|
||||
}
|
||||
|
||||
Matrix2 LinearAlgebra::Quaternion::ToRotationMatrix() {
|
||||
Matrix2 r = Matrix2(3, 3);
|
||||
|
||||
float x = this->x;
|
||||
float y = this->y;
|
||||
float z = this->z;
|
||||
float w = this->w;
|
||||
|
||||
float* data = r.data;
|
||||
data[0 * 3 + 0] = 1 - 2 * (y * y + z * z);
|
||||
data[0 * 3 + 1] = 2 * (x * y - w * z);
|
||||
data[0 * 3 + 2] = 2 * (x * z + w * y);
|
||||
data[1 * 3 + 0] = 2 * (x * y + w * z);
|
||||
data[1 * 3 + 1] = 1 - 2 * (x * x + z * z);
|
||||
data[1 * 3 + 2] = 2 * (y * z - w * x);
|
||||
data[2 * 3 + 0] = 2 * (x * z - w * y);
|
||||
data[2 * 3 + 1] = 2 * (y * z + w * x);
|
||||
data[2 * 3 + 2] = 1 - 2 * (x * x + y * y);
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
Quaternion Quaternion::operator*(const Quaternion& r2) const {
|
||||
return Quaternion(
|
||||
this->x * r2.w + this->y * r2.z - this->z * r2.y + this->w * r2.x,
|
||||
|
@ -34,6 +34,8 @@ typedef struct Quat {
|
||||
|
||||
namespace LinearAlgebra {
|
||||
|
||||
class Matrix2;
|
||||
|
||||
/// <summary>
|
||||
/// A quaternion
|
||||
/// </summary>
|
||||
@ -89,6 +91,8 @@ struct Quaternion : Quat {
|
||||
/// The euler angles performed in the order: Z, X, Y
|
||||
static Vector3 ToAngles(const Quaternion& q);
|
||||
|
||||
Matrix2 ToRotationMatrix();
|
||||
|
||||
/// <summary>
|
||||
/// Rotate a vector using this quaterion
|
||||
/// </summary>
|
||||
|
@ -14,7 +14,7 @@ extern "C" {
|
||||
/// This is a C-style implementation
|
||||
/// This uses the right-handed coordinate system.
|
||||
typedef struct Vec3 {
|
||||
protected:
|
||||
public:
|
||||
/// <summary>
|
||||
/// The right axis of the vector
|
||||
/// </summary>
|
||||
|
@ -1,10 +1,90 @@
|
||||
#if GTEST
|
||||
#include <gtest/gtest.h>
|
||||
#include <limits>
|
||||
#include <math.h>
|
||||
#include <limits>
|
||||
|
||||
#include "Matrix.h"
|
||||
|
||||
TEST(Matrix2, Zero) {
|
||||
// Test case 1: 2x2 zero matrix
|
||||
Matrix2 zeroMatrix = Matrix2::Zero(2, 2);
|
||||
EXPECT_TRUE(zeroMatrix.nRows == 2);
|
||||
EXPECT_TRUE(zeroMatrix.nCols == 2);
|
||||
for (int i = 0; i < zeroMatrix.nValues; ++i) {
|
||||
EXPECT_TRUE(zeroMatrix.data[i] == 0.0f);
|
||||
}
|
||||
std::cout << "Test case 1 passed: 2x2 zero matrix\n";
|
||||
|
||||
// Test case 2: 3x3 zero matrix
|
||||
zeroMatrix = Matrix2::Zero(3, 3);
|
||||
EXPECT_TRUE(zeroMatrix.nRows == 3);
|
||||
EXPECT_TRUE(zeroMatrix.nCols == 3);
|
||||
for (int i = 0; i < zeroMatrix.nValues; ++i) {
|
||||
EXPECT_TRUE(zeroMatrix.data[i] == 0.0f);
|
||||
}
|
||||
std::cout << "Test case 2 passed: 3x3 zero matrix\n";
|
||||
|
||||
// Test case 3: 1x1 zero matrix
|
||||
zeroMatrix = Matrix2::Zero(1, 1);
|
||||
EXPECT_TRUE(zeroMatrix.nRows == 1);
|
||||
EXPECT_TRUE(zeroMatrix.nCols == 1);
|
||||
EXPECT_TRUE(zeroMatrix.data[0] == 0.0f);
|
||||
std::cout << "Test case 3 passed: 1x1 zero matrix\n";
|
||||
|
||||
// Test case 4: 0x0 matrix (edge case)
|
||||
zeroMatrix = Matrix2::Zero(0, 0);
|
||||
EXPECT_TRUE(zeroMatrix.nRows == 0);
|
||||
EXPECT_TRUE(zeroMatrix.nCols == 0);
|
||||
EXPECT_TRUE(zeroMatrix.data == nullptr);
|
||||
std::cout << "Test case 4 passed: 0x0 matrix\n";
|
||||
}
|
||||
|
||||
TEST(Matrix2, Multiplication) {
|
||||
// Test 1: Multiplying two 2x2 matrices
|
||||
float dataA[] = {1, 2, 3, 4};
|
||||
float dataB[] = {5, 6, 7, 8};
|
||||
Matrix2 A(dataA, 2, 2);
|
||||
Matrix2 B(dataB, 2, 2);
|
||||
|
||||
Matrix2 result = A * B;
|
||||
|
||||
float expectedData[] = {19, 22, 43, 50};
|
||||
for (int i = 0; i < 4; ++i)
|
||||
EXPECT_TRUE(result.data[i] == expectedData[i]);
|
||||
std::cout << "Test 1 passed: 2x2 matrix multiplication.\n";
|
||||
|
||||
|
||||
// Test 2: Multiplying a 3x2 matrix with a 2x3 matrix
|
||||
float dataC[] = {1, 2, 3, 4, 5, 6};
|
||||
float dataD[] = {7, 8, 9, 10, 11, 12};
|
||||
Matrix2 C(dataC, 3, 2);
|
||||
Matrix2 D(dataD, 2, 3);
|
||||
|
||||
Matrix2 result2 = C * D;
|
||||
|
||||
float expectedData2[] = {27, 30, 33, 61, 68, 75, 95, 106, 117};
|
||||
for (int i = 0; i < 9; ++i)
|
||||
EXPECT_TRUE(result2.data[i] == expectedData2[i]);
|
||||
std::cout << "Test 2 passed: 3x2 * 2x3 matrix multiplication.\n";
|
||||
|
||||
// Test 3: Multiplying with a zero matrix
|
||||
Matrix2 zeroMatrix = Matrix2::Zero(2, 2);
|
||||
Matrix2 result3 = A * zeroMatrix;
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
EXPECT_TRUE(result3.data[i] == 0);
|
||||
std::cout << "Test 3 passed: Multiplication with zero matrix.\n";
|
||||
|
||||
// Test 4: Multiplying with an identity matrix
|
||||
Matrix2 identityMatrix = Matrix2::Identity(2);
|
||||
Matrix2 result4 = A * identityMatrix;
|
||||
|
||||
for (int i = 0; i < 4; ++i)
|
||||
EXPECT_TRUE(result4.data[i] == A.data[i]);
|
||||
std::cout << "Test 4 passed: Multiplication with identity matrix.\n";
|
||||
|
||||
}
|
||||
|
||||
TEST(MatrixSingle, Init) {
|
||||
// zero
|
||||
MatrixOf<float> m0 = MatrixOf<float>(0, 0);
|
||||
|
@ -196,6 +196,8 @@ bool LocalParticipant::Send(Participant* remoteParticipant, IMessage* msg) {
|
||||
Arduino::LocalParticipant* thisArduino =
|
||||
static_cast<Arduino::LocalParticipant*>(this);
|
||||
return thisArduino->Send(remoteParticipant, bufferSize);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
@ -233,6 +235,8 @@ bool LocalParticipant::Publish(IMessage* msg) {
|
||||
Arduino::LocalParticipant* thisArduino =
|
||||
static_cast<Arduino::LocalParticipant*>(this);
|
||||
return thisArduino->Publish(msg);
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -86,10 +86,11 @@ class LocalParticipant : public Participant {
|
||||
|
||||
#if defined(__unix__) || defined(__APPLE__)
|
||||
int sock;
|
||||
#endif
|
||||
#elif defined(_WIN32) || defined(_WIN64)
|
||||
sockaddr_in remote_addr;
|
||||
sockaddr_in server_addr;
|
||||
sockaddr_in broadcast_addr;
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user