2025-03-06 11:06:43 +01:00

227 lines
8.4 KiB
C++

// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef ANGLE_H
#define ANGLE_H
namespace LinearAlgebra {
static float pi = 3.1415927410125732421875F;
static float Rad2Deg = 360.0f / (pi * 2);
static float Deg2Rad = (pi * 2) / 360.0f;
/// @brief An angle in various representations.
/// @tparam T The internal type used for the representation of the angle.
/// The angle is internally limited to (-180..180] degrees or (-PI...PI]
/// radians. When an angle exceeds this range, it is normalized to a value
/// within the range.
template <typename T>
class AngleOf {
public:
/// @brief Create a new angle with a zero value
AngleOf<T>();
/// @brief An zero value angle
const static AngleOf<T> zero;
// const static AngleOf<T> deg90;
// const static AngleOf<T> deg180;
/// @brief Creates an angle in degrees
/// @param degrees the angle in degrees
/// @return The angle value
static AngleOf<T> Degrees(float degrees);
/// @brief Creates an angle in radians
/// @param radians the angle in radians
/// @return The angle value
static AngleOf<T> Radians(float radians);
/// @brief Creates an angle from a raw value
/// @param rawValue the raw value to use for the angle
/// @return The the angle
static AngleOf<T> Binary(T rawValue);
/// @brief Get the angle value in degrees
/// @return The angle value in degrees
float InDegrees() const;
/// @brief Get the angle value in radians
/// @return The angle value in radians
float InRadians() const;
/// @brief Get the raw value for the angle
/// @return The raw value
T GetBinary() const;
/// @brief Set the raw value of the angle
/// @param rawValue The raw value
void SetBinary(T rawValue);
/// @brief Tests whether this angle is equal to the given angle
/// @param angle The angle to compare to
/// @return True when the angles are equal, False otherwise
/// @note The equality is determine within the limits of precision of the raw
/// type T
bool operator==(const AngleOf<T> angle) const;
/// @brief Tests if this angle is greater than the given angle
/// @param angle The given angle
/// @return True when this angle is greater than the given angle, False
/// otherwise
bool operator>(AngleOf<T> angle) const;
/// @brief Tests if this angle is greater than or equal to the given angle
/// @param angle The given angle
/// @return True when this angle is greater than or equal to the given angle.
/// False otherwise.
bool operator>=(AngleOf<T> angle) const;
/// @brief Tests if this angle is less than the given angle
/// @param angle The given angle
/// @return True when this angle is less than the given angle. False
/// otherwise.
bool operator<(AngleOf<T> angle) const;
/// @brief Tests if this angle is less than or equal to the given angle
/// @param angle The given angle
/// @return True when this angle is less than or equal to the given angle.
/// False otherwise.
bool operator<=(AngleOf<T> angle) const;
/// @brief Returns the sign of the angle
/// @param angle The angle
/// @return -1 when the angle is negative, 1 when it is positive and 0
/// otherwise.
static signed int Sign(AngleOf<T> angle);
/// @brief Returns the magnitude of the angle
/// @param angle The angle
/// @return The positive magitude of the angle.
/// Negative values are negated to get a positive result
static AngleOf<T> Abs(AngleOf<T> angle);
/// @brief Negate the angle
/// @return The negated angle
AngleOf<T> operator-() const;
/// @brief Substract another angle from this angle
/// @param angle The angle to subtract from this angle
/// @return The result of the subtraction
AngleOf<T> operator-(const AngleOf<T>& angle) const;
/// @brief Add another angle from this angle
/// @param angle The angle to add to this angle
/// @return The result of the addition
AngleOf<T> operator+(const AngleOf<T>& angle) const;
/// @brief Add another angle to this angle
/// @param angle The angle to add to this angle
/// @return The result of the addition
AngleOf<T> operator+=(const AngleOf<T>& angle);
/// @brief Mutliplies the angle
/// @param angle The angle to multiply
/// @param factor The factor by which the angle is multiplied
/// @return The multiplied angle
friend AngleOf<T> operator*(const AngleOf<T>& angle, float factor) {
return AngleOf::Degrees((float)angle.InDegrees() * factor);
}
/// @brief Multiplies the angle
/// @param factor The factor by which the angle is multiplies
/// @param angle The angle to multiply
/// @return The multiplied angle
friend AngleOf<T> operator*(float factor, const AngleOf<T>& angle) {
return AngleOf::Degrees((float)factor * angle.InDegrees());
}
/// @brief Normalizes the angle to (-180..180] or (-PI..PI]
/// Should not be needed but available in case it is.
void Normalize();
/// @brief Normalizes the angle to (-180..180] or (-PI..PI]
/// @param angle The angle to normalize
/// @return The normalized angle;
static AngleOf<T> Normalize(AngleOf<T> angle);
/// @brief Clamps the angle value between the two given angles
/// @param angle The angle to clamp
/// @param min The minimum angle
/// @param max The maximum angle
/// @return The clamped value
/// @remark When the min value is greater than the max value, angle is
/// returned unclamped.
static AngleOf<T> Clamp(AngleOf<T> angle, AngleOf<T> min, AngleOf<T> max);
// static AngleOf<T> Difference(AngleOf<T> a, AngleOf<T> b) {
// AngleOf<T> r = Normalize(b.InDegrees() - a.InDegrees());
// return r;
// };
/// @brief Rotates an angle towards another angle with a max distance
/// @param fromAngle The angle to start from
/// @param toAngle The angle to rotate towards
/// @param maxAngle The maximum angle to rotate
/// @return The rotated angle
static AngleOf<T> MoveTowards(AngleOf<T> fromAngle,
AngleOf<T> toAngle,
float maxAngle);
/// @brief Calculates the cosine of an angle
/// @param angle The given angle
/// @return The cosine of the angle
static float Cos(AngleOf<T> angle);
/// @brief Calculates the sine of an angle
/// @param angle The given angle
/// @return The sine of the angle
static float Sin(AngleOf<T> angle);
/// @brief Calculates the tangent of an angle
/// @param angle The given angle
/// @return The tangent of the angle
static float Tan(AngleOf<T> angle);
/// @brief Calculates the arc cosine angle
/// @param f The value
/// @return The arc cosine for the given value
static AngleOf<T> Acos(float f);
/// @brief Calculates the arc sine angle
/// @param f The value
/// @return The arc sine for the given value
static AngleOf<T> Asin(float f);
/// @brief Calculates the arc tangent angle
/// @param f The value
/// @return The arc tangent for the given value
static AngleOf<T> Atan(float f);
/// @brief Calculates the tangent for the given values
/// @param y The vertical value
/// @param x The horizontal value
/// @return The tanget for the given values
/// Uses the y and x signs to compute the quadrant
static AngleOf<T> Atan2(float y, float x);
/// @brief Computes the length of a side using the rule of cosines
/// @param a The length of side A
/// @param b The length of side B
/// @param gamma The angle of the corner opposing side C
/// @return The length of side C
static float CosineRuleSide(float a, float b, AngleOf<T> gamma);
/// @brief Computes the angle of a corner using the rule of cosines
/// @param a The length of side A
/// @param b The length of side B
/// @param c The length of side C
/// @return The angle of the corner opposing side C
static AngleOf<T> CosineRuleAngle(float a, float b, float c);
/// @brief Computes the angle of a corner using the rule of sines
/// @param a The length of side A
/// @param beta the angle of the corner opposing side B
/// @param c The length of side C
/// @return The angle of the corner opposing side A
static AngleOf<T> SineRuleAngle(float a, AngleOf<T> beta, float c);
private:
T value;
AngleOf<T>(T rawValue);
};
using AngleSingle = AngleOf<float>;
using Angle16 = AngleOf<signed short>;
using Angle8 = AngleOf<signed char>;
#if defined(ARDUINO)
using Angle = Angle16;
#else
using Angle = AngleSingle;
#endif
} // namespace LinearAlgebra
#endif