2025-04-01 17:27:06 +02:00

195 lines
5.4 KiB
C++

#include "Matrix.h"
#include <iostream>
#pragma region Matrix2
Matrix2::Matrix2(int nRows, int nCols) : nRows(nRows), nCols(nCols) {
this->nValues = nRows * nCols;
if (this->nValues == 0)
data = nullptr;
else {
this->data = new float[nValues]();
this->externalData = false;
}
}
Matrix2::Matrix2(float* data, int nRows, int nCols)
: nRows(nRows), nCols(nCols), data(data){
this->nValues = nRows * nCols;
this->externalData = true;
}
Matrix2::~Matrix2() {
if (data != nullptr && !this->externalData)
delete[] data;
}
// Move constructor
Matrix2::Matrix2(Matrix2&& other) noexcept
: nRows(other.nRows), nCols(other.nCols), nValues(other.nValues), data(other.data) {
other.data = nullptr; // Set the other object's pointer to nullptr to avoid double deletion
}
// Move assignment operator
Matrix2& Matrix2::operator=(Matrix2&& other) noexcept {
if (this != &other) {
delete[] data; // Clean up current data
nRows = other.nRows;
nCols = other.nCols;
nValues = other.nValues;
data = other.data;
other.data = nullptr; // Avoid double deletion
}
return *this;
}
Matrix2 Matrix2::Zero(int nRows, int nCols) {
Matrix2 r = Matrix2(nRows, nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = 0;
return r;
}
Matrix2 Matrix2::Identity(int size) {
return Diagonal(1, size);
}
Matrix2 Matrix2::Diagonal(float f, int size) {
Matrix2 r = Matrix2(size, size);
float* data = r.data;
int valueIx = 0;
for (int ix = 0; ix < size; ix++) {
data[valueIx] = f;
valueIx += size + 1;
}
return r;
}
Matrix2 Matrix2::SkewMatrix(const Vector3& v) {
Matrix2 r = Matrix2(3, 3);
float* data = r.data;
data[0 * 3 + 1] = -v.z; // result(0, 1)
data[0 * 3 + 2] = v.y; // result(0, 2)
data[1 * 3 + 0] = v.z; // result(1, 0)
data[1 * 3 + 2] = -v.x; // result(1, 2)
data[2 * 3 + 0] = -v.y; // result(2, 0)
data[2 * 3 + 1] = v.x; // result(2, 1)
return r;
}
Matrix2 LinearAlgebra::Matrix2::operator-() const {
Matrix2 r = Matrix2(this->nRows, this->nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = -this->data[ix];
return r;
}
Matrix2 LinearAlgebra::Matrix2::operator*(const Matrix2& B) const {
Matrix2 r = Matrix2(this->nRows, B.nCols);
int ACols = this->nCols;
int BCols = B.nCols;
int ARows = this->nRows;
//int BRows = B.nRows;
for (int i = 0; i < ARows; ++i) {
// Pre-compute row offsets
int ARowOffset = i * ACols; // ARowOffset is constant for each row of A
int BColOffset = i * BCols; // BColOffset is constant for each row of B
for (int j = 0; j < BCols; ++j) {
float sum = 0;
std::cout << " 0";
int BIndex = j;
for (int k = 0; k < ACols; ++k) {
std::cout << " + " << this->data[ARowOffset + k] << " * " << B.data[BIndex];
sum += this->data[ARowOffset + k] * B.data[BIndex];
BIndex += BCols;
}
r.data[BColOffset + j] = sum;
std::cout << " = " << sum << " ix: " << BColOffset + j << "\n";
}
}
return r;
}
void LinearAlgebra::Matrix2::SetSlice(int rowStart,
int rowStop,
int colStart,
int colStop,
const Matrix2& m) const {
for (int i = rowStart; i < rowStop; i++) {
for (int j = colStart; j < colStop; j++)
this->data[i * this->nCols + j] =
m.data[(i - rowStart) * m.nCols + (j - colStart)];
// this->data[i, j] = m.data[i - rowStart, j - colStart];
}
}
// Matrix2
#pragma endregion
template <>
MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
if (rows <= 0 || cols <= 0) {
this->rows = 0;
this->cols = 0;
this->data = nullptr;
return;
}
this->rows = rows;
this->cols = cols;
unsigned int matrixSize = this->cols * this->rows;
this->data = new float[matrixSize]{0.0f};
}
template <>
MatrixOf<float>::MatrixOf(Vector3 v) : MatrixOf(3, 1) {
Set(0, 0, v.Right());
Set(1, 0, v.Up());
Set(2, 0, v.Forward());
}
template <>
void MatrixOf<float>::Multiply(const MatrixOf<float>* m1,
const MatrixOf<float>* m2,
MatrixOf<float>* r) {
for (unsigned int rowIx1 = 0; rowIx1 < m1->rows; rowIx1++) {
for (unsigned int colIx2 = 0; colIx2 < m2->cols; colIx2++) {
unsigned int rDataIx = colIx2 * m2->cols + rowIx1;
r->data[rDataIx] = 0.0F;
for (unsigned int kIx = 0; kIx < m2->rows; kIx++) {
unsigned int dataIx1 = rowIx1 * m1->cols + kIx;
unsigned int dataIx2 = kIx * m2->cols + colIx2;
r->data[rDataIx] += m1->data[dataIx1] * m2->data[dataIx2];
}
}
}
}
template <>
Vector3 MatrixOf<float>::Multiply(const MatrixOf<float>* m, Vector3 v) {
MatrixOf<float> v_m = MatrixOf<float>(v);
MatrixOf<float> r_m = MatrixOf<float>(3, 1);
Multiply(m, &v_m, &r_m);
Vector3 r = Vector3(r_m.data[0], r_m.data[1], r_m.data[2]);
return r;
}
template <typename T>
Vector3 MatrixOf<T>::operator*(const Vector3 v) const {
float* vData = new float[3]{v.Right(), v.Up(), v.Forward()};
MatrixOf<float> v_m = MatrixOf<float>(3, 1, vData);
float* rData = new float[3]{};
MatrixOf<float> r_m = MatrixOf<float>(3, 1, rData);
Multiply(this, &v_m, &r_m);
Vector3 r = Vector3(r_m.data[0], r_m.data[1], r_m.data[2]);
delete[] vData;
delete[] rData;
return r;
}