RoboidControl-cpp/Vector3.cpp
2024-01-03 11:49:50 +01:00

166 lines
4.3 KiB
C++

// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Vector3.h"
#include <math.h>
const float Deg2Rad = 0.0174532924F;
const float Rad2Deg = 57.29578F;
const float epsilon = 1E-05f;
Vector3::Vector3() {
x = 0;
y = 0;
z = 0;
}
Vector3::Vector3(float _x, float _y, float _z) {
x = _x;
y = _y;
z = _z;
}
Vector3::Vector3(Vec3 v) {
x = v.x;
y = v.y;
z = v.z;
}
Vector3::~Vector3() {}
const Vector3 Vector3::zero = Vector3(0, 0, 0);
const Vector3 Vector3::one = Vector3(1, 1, 1);
const Vector3 Vector3::right = Vector3(1, 0, 0);
const Vector3 Vector3::left = Vector3(-1, 0, 0);
const Vector3 Vector3::up = Vector3(0, 1, 0);
const Vector3 Vector3::down = Vector3(0, -1, 0);
const Vector3 Vector3::forward = Vector3(0, 0, 1);
const Vector3 Vector3::back = Vector3(0, 0, -1);
float Vector3::Magnitude(const Vector3 &a) {
return sqrtf(a.x * a.x + a.y * a.y + a.z * a.z);
}
float Vector3::magnitude() const { return (float)sqrtf(x * x + y * y + z * z); }
float Vector3::SqrMagnitude(const Vector3 &a) {
return a.x * a.x + a.y * a.y + a.z * a.z;
}
float Vector3::sqrMagnitude() const { return (x * x + y * y + z * z); }
Vector3 Vector3::Normalize(Vector3 v) {
float num = Vector3::Magnitude(v);
Vector3 result = Vector3::zero;
if (num > epsilon) {
result = v / num;
}
return result;
}
Vector3 Vector3::normalized() const {
float num = this->magnitude();
Vector3 result = Vector3::zero;
if (num > epsilon) {
result = ((Vector3) * this) / num;
}
return result;
}
Vector3 Vector3::operator-(const Vector3 &v2) const {
return Vector3(this->x - v2.x, this->y - v2.y, this->z - v2.z);
}
Vector3 Vector3::operator-() { return Vector3(-this->x, -this->y, -this->z); }
Vector3 Vector3::operator+(const Vector3 &v2) const {
return Vector3(this->x + v2.x, this->y + v2.y, this->z + v2.z);
}
Vector3 Vector3::Scale(const Vector3 &p1, const Vector3 &p2) {
return Vector3(p1.x * p2.x, p1.y * p2.y, p1.z * p2.z);
}
Vector3 Vector3::operator*(float f) const {
return Vector3(this->x * f, this->y * f, this->z * f);
}
Vector3 Vector3::operator/(const float &d) {
return Vector3(this->x / d, this->y / d, this->z / d);
}
float Vector3::Dot(const Vector3 &v1, const Vector3 &v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
bool Vector3::operator==(const Vector3 &v) {
return (this->x == v.x && this->y == v.y && this->z == v.z);
}
float Vector3::Distance(const Vector3 &p1, const Vector3 &p2) {
return Magnitude(p1 - p2);
}
Vector3 Vector3::Cross(const Vector3 &v1, const Vector3 &v2) {
return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
}
Vector3 Vector3::Project(Vector3 vector, Vector3 onNormal) {
float sqrMagnitude = Dot(onNormal, onNormal);
if (sqrMagnitude < epsilon)
return Vector3::zero;
else {
float dot = Dot(vector, onNormal);
Vector3 r = onNormal * dot / sqrMagnitude;
return r;
}
}
Vector3 Vector3::ProjectOnPlane(Vector3 vector, Vector3 planeNormal) {
Vector3 r = vector - Project(vector, planeNormal);
return r;
}
Vector2 Vector3::ProjectHorizontalPlane(Vector3 vector) {
Vector2 r = Vector2(vector.x, vector.z);
return r;
}
float clamp(float x, float lower, float upper) {
float lowerClamp = fmaxf(x, lower);
float upperClamp = fminf(upper, lowerClamp);
return upperClamp;
}
float Vector3::Angle(Vector3 from, Vector3 to) {
float denominator = sqrtf(from.sqrMagnitude() * to.sqrMagnitude());
if (denominator < epsilon)
return 0;
float dot = Vector3::Dot(from, to);
float fraction = dot / denominator;
if (isnan(fraction))
return fraction; // short cut to returning NaN universally
float cdot = clamp(fraction, -1.0, 1.0);
float r = ((float)acos(cdot)) * Rad2Deg;
return r;
}
float Vector3::SignedAngle(Vector3 from, Vector3 to, Vector3 axis) {
// angle in [0,180]
float angle = Vector3::Angle(from, to);
Vector3 cross = Vector3::Cross(from, to);
float b = Vector3::Dot(axis, cross);
float signd = b < 0 ? -1.0F : (b > 0 ? 1.0F : 0.0F);
// angle in [-179,180]
float signed_angle = angle * signd;
return signed_angle;
}
Vector3 Vector3::Lerp(Vector3 from, Vector3 to, float f) {
Vector3 v = from + (to - from) * f;
return v;
}