RoboidControl-cpp/test/BB2B_Test.cc
2024-01-31 09:50:48 +01:00

416 lines
12 KiB
C++

#if GTEST
// #include <gmock/gmock.h>
// not supported using Visual Studio 2022 compiler...
#include <gtest/gtest.h>
#include "../DifferentialDrive.h"
#include "../DistanceSensor.h"
#include "../Roboid.h"
#include "../VectorAlgebra/Angle.h"
/// @brief A Distance sensor with testing support
/// With this sensor it is possible to simulate a measurement
class MockDistanceSensor : public DistanceSensor {
public:
MockDistanceSensor() : DistanceSensor(){};
MockDistanceSensor(float triggerDistance) : DistanceSensor(triggerDistance){};
void SimulateMeasurement(float distance) { this->distance = distance; }
};
TEST(BB2B, NoObstacle) {
#pragma region Setup
Motor *motorLeft = new Motor();
Motor *motorRight = new Motor();
MockDistanceSensor *sensorLeft = new MockDistanceSensor(10.0F);
sensorLeft->position.angle = -30;
MockDistanceSensor *sensorRight = new MockDistanceSensor(10.0F);
sensorRight->position.angle = 30;
Sensor *sensors[] = {sensorLeft, sensorRight};
Perception *perception = new Perception(sensors, 2);
DifferentialDrive *propulsion = new DifferentialDrive(motorLeft, motorRight);
propulsion->SetDimensions(
1 / Angle::pi, // we use this, such that motor speed 1 -> velocity 1 m/s
1);
Roboid *roboid = new Roboid(perception, propulsion);
#pragma endregion
#pragma region Test initial state
// Sensors should return no valid value
float distanceLeft = sensorLeft->GetDistance();
float distanceRight = sensorRight->GetDistance();
EXPECT_LT(distanceLeft, 0.0F); // negative values are invalid
EXPECT_LT(distanceRight, 0.0F); // negative values are invalid
#pragma endregion
#pragma region Measurement 1
/// closest objects are too far away
sensorLeft->SimulateMeasurement(100.0F);
sensorRight->SimulateMeasurement(100.0F);
roboid->Update(0.0F);
#pragma endregion
#pragma region Test state 1
distanceLeft = sensorLeft->GetDistance();
distanceRight = sensorRight->GetDistance();
EXPECT_LT(distanceLeft, 0.0F); // negative values are invalid
EXPECT_LT(distanceRight, 0.0F); // negative values are invalid
int trackedObjectCount = roboid->perception->TrackedObjectCount();
EXPECT_EQ(trackedObjectCount, 0);
bool obstacleLeft = roboid->perception->ObjectNearby(-30);
bool obstacleRight = roboid->perception->ObjectNearby(30);
EXPECT_FALSE(obstacleLeft);
EXPECT_FALSE(obstacleRight);
float leftMotorSpeed = obstacleRight ? -1.0F : 1.0F;
float rightMotorSpeed = obstacleLeft ? -1.0F : 1.0F;
EXPECT_FLOAT_EQ(leftMotorSpeed, 1.0F);
EXPECT_FLOAT_EQ(rightMotorSpeed, 1.0F);
DifferentialDrive *diffDrive = (DifferentialDrive *)roboid->propulsion;
diffDrive->SetMotorTargetSpeeds(leftMotorSpeed, rightMotorSpeed);
float leftActualSpeed = motorLeft->GetActualSpeed();
float rightActualSpeed = motorRight->GetActualSpeed();
EXPECT_FLOAT_EQ(leftActualSpeed, 1.0F);
EXPECT_FLOAT_EQ(rightActualSpeed, 1.0F);
Polar velocity =
diffDrive->GetVelocity(); // this depends on the wheel diameter.
EXPECT_FLOAT_EQ(velocity.distance, 1.0F);
EXPECT_FLOAT_EQ(velocity.angle, 0.0F);
trackedObjectCount = roboid->perception->TrackedObjectCount();
EXPECT_EQ(trackedObjectCount, 0);
InterestingThing **trackedObjects = roboid->perception->GetTrackedObjects();
InterestingThing *trackedObject = nullptr;
for (int i = 0; i < roboid->perception->maxObjectCount; i++) {
if (trackedObjects[i] != nullptr)
trackedObject = trackedObjects[0];
}
EXPECT_TRUE(trackedObject == NULL);
#pragma endregion
}
TEST(BB2B, ObstacleLeft) {
#pragma region Setup
Motor *motorLeft = new Motor();
Motor *motorRight = new Motor();
MockDistanceSensor *sensorLeft = new MockDistanceSensor();
sensorLeft->position.angle = -30;
MockDistanceSensor *sensorRight = new MockDistanceSensor();
sensorRight->position.angle = 30;
Sensor *sensors[] = {sensorLeft, sensorRight};
Perception *perception = new Perception(sensors, 2);
DifferentialDrive *propulsion = new DifferentialDrive(motorLeft, motorRight);
propulsion->SetDimensions(
1 / Angle::pi, // we use this, such that motor speed 1 -> velocity 1 m/s
8 / Angle::pi); // we use this, such that angular velocity will be 90
// degrees per second
Roboid *roboid = new Roboid(perception, propulsion);
#pragma endregion
#pragma region Sensor Measurement - only left
// place obstacle on the left
sensorLeft->SimulateMeasurement(0.1F);
roboid->Update(0.1F);
#pragma endregion
#pragma region Test Sensor output
// Distance
float distanceLeft = sensorLeft->GetDistance();
float distanceRight = sensorRight->GetDistance();
EXPECT_FLOAT_EQ(distanceLeft, 0.1F);
EXPECT_LT(distanceRight, 0.0F); // invalid
// Obstacle
bool obstacleLeft = roboid->perception->ObjectNearby(-30);
bool obstacleRight = roboid->perception->ObjectNearby(30);
EXPECT_TRUE(obstacleLeft);
EXPECT_FALSE(obstacleRight);
// Tracked objects
int trackedObjectCount = roboid->perception->TrackedObjectCount();
EXPECT_EQ(trackedObjectCount, 1);
// Find the single tracked object
InterestingThing **trackedObjects = roboid->perception->GetTrackedObjects();
InterestingThing *trackedObject = nullptr;
for (int i = 0; i < roboid->perception->maxObjectCount; i++) {
if (trackedObjects[i] != nullptr)
trackedObject = trackedObjects[i];
}
ASSERT_FALSE(trackedObject == nullptr);
EXPECT_FLOAT_EQ(trackedObject->position.distance, 0.1F);
EXPECT_FLOAT_EQ(trackedObject->position.angle, -30);
#pragma endregion
#pragma region Motor Control
// Motor speeds
float leftMotorSpeed = obstacleRight ? -1.0F : 1.0F;
float rightMotorSpeed = obstacleLeft ? -1.0F : 1.0F;
EXPECT_FLOAT_EQ(leftMotorSpeed, 1.0F);
EXPECT_FLOAT_EQ(rightMotorSpeed, -1.0F);
DifferentialDrive *diffDrive = (DifferentialDrive *)roboid->propulsion;
diffDrive->SetMotorTargetSpeeds(leftMotorSpeed, rightMotorSpeed);
#pragma endregion
#pragma region Test motor output results
float leftActualSpeed = motorLeft->GetActualSpeed();
float rightActualSpeed = motorRight->GetActualSpeed();
EXPECT_FLOAT_EQ(leftActualSpeed, 1.0F);
EXPECT_FLOAT_EQ(rightActualSpeed, -1.0F);
// Roboid velocity
Polar velocity =
diffDrive->GetVelocity(); // this depends on the wheel diameter.
EXPECT_FLOAT_EQ(velocity.distance, 0.0F);
float angularVelocity =
diffDrive->GetAngularVelocity(); // this also depends on wheel separation
EXPECT_FLOAT_EQ(angularVelocity, 90.0F);
#pragma endregion
}
TEST(BB2B, ObstacleRight) {
#pragma region Setup
Motor *motorLeft = new Motor();
Motor *motorRight = new Motor();
MockDistanceSensor *sensorLeft = new MockDistanceSensor();
sensorLeft->position.angle = -30;
MockDistanceSensor *sensorRight = new MockDistanceSensor();
sensorRight->position.angle = 30;
Sensor *sensors[] = {sensorLeft, sensorRight};
Perception *perception = new Perception(sensors, 2);
DifferentialDrive *propulsion = new DifferentialDrive(motorLeft, motorRight);
propulsion->SetDimensions(
1 / Angle::pi, // we use this, such that motor speed 1 -> velocity 1 m/s
8 / Angle::pi); // we use this, such that angular velocity will be 90
// degrees per second
Roboid *roboid = new Roboid(perception, propulsion);
#pragma endregion
#pragma region Sensor Measurement - only right
// place obstacle on the left
sensorRight->SimulateMeasurement(0.1F);
roboid->Update(0.1F);
#pragma endregion
#pragma region Test Sensor output
// Distance
float distanceLeft = sensorLeft->GetDistance();
float distanceRight = sensorRight->GetDistance();
EXPECT_LT(distanceLeft, 0.0F); // invalid
EXPECT_FLOAT_EQ(distanceRight, 0.1F);
// Obstacle
bool obstacleLeft = roboid->perception->ObjectNearby(-30);
bool obstacleRight = roboid->perception->ObjectNearby(30);
EXPECT_FALSE(obstacleLeft);
EXPECT_TRUE(obstacleRight);
// Tracked objects
int trackedObjectCount = roboid->perception->TrackedObjectCount();
EXPECT_EQ(trackedObjectCount, 1);
// Find the single tracked object
InterestingThing **trackedObjects = roboid->perception->GetTrackedObjects();
InterestingThing *trackedObject = nullptr;
for (int i = 0; i < roboid->perception->maxObjectCount; i++) {
if (trackedObjects[i] != nullptr)
trackedObject = trackedObjects[i];
}
ASSERT_FALSE(trackedObject == nullptr);
EXPECT_FLOAT_EQ(trackedObject->position.distance, 0.1F);
EXPECT_FLOAT_EQ(trackedObject->position.angle, 30);
#pragma endregion
#pragma region Motor Control
// Motor speeds
float leftMotorSpeed = obstacleRight ? -1.0F : 1.0F;
float rightMotorSpeed = obstacleLeft ? -1.0F : 1.0F;
EXPECT_FLOAT_EQ(leftMotorSpeed, -1.0F);
EXPECT_FLOAT_EQ(rightMotorSpeed, 1.0F);
DifferentialDrive *diffDrive = (DifferentialDrive *)roboid->propulsion;
diffDrive->SetMotorTargetSpeeds(leftMotorSpeed, rightMotorSpeed);
#pragma endregion
#pragma region Test motor output results
float leftActualSpeed = motorLeft->GetActualSpeed();
float rightActualSpeed = motorRight->GetActualSpeed();
EXPECT_FLOAT_EQ(leftActualSpeed, -1.0F);
EXPECT_FLOAT_EQ(rightActualSpeed, 1.0F);
// Roboid velocity
Polar velocity = diffDrive->GetVelocity();
EXPECT_FLOAT_EQ(velocity.distance, 0.0F);
float angularVelocity = diffDrive->GetAngularVelocity();
EXPECT_FLOAT_EQ(angularVelocity, -90.0F);
#pragma endregion
}
TEST(BB2B, ObstacleBoth) {
#pragma region Setup
Motor *motorLeft = new Motor();
Motor *motorRight = new Motor();
MockDistanceSensor *sensorLeft = new MockDistanceSensor();
sensorLeft->position.angle = -30;
MockDistanceSensor *sensorRight = new MockDistanceSensor();
sensorRight->position.angle = 30;
Sensor *sensors[] = {sensorLeft, sensorRight};
Perception *perception = new Perception(sensors, 2);
DifferentialDrive *propulsion = new DifferentialDrive(motorLeft, motorRight);
propulsion->SetDimensions(
1 / Angle::pi, // we use this, such that motor speed 1 -> velocity 1 m/s
8 / Angle::pi); // we use this, such that angular velocity will be 90
// degrees per second
Roboid *roboid = new Roboid(perception, propulsion);
#pragma endregion
#pragma region Sensor Measurement - left and right
sensorLeft->SimulateMeasurement(0.1F);
sensorRight->SimulateMeasurement(0.1F);
roboid->Update(0.1F);
#pragma endregion
#pragma region Test Sensor output
// Distance
float distanceLeft = sensorLeft->GetDistance();
float distanceRight = sensorRight->GetDistance();
EXPECT_FLOAT_EQ(distanceLeft, 0.1F);
EXPECT_FLOAT_EQ(distanceRight, 0.1F);
// Obstacle
bool obstacleLeft = roboid->perception->ObjectNearby(-30);
bool obstacleRight = roboid->perception->ObjectNearby(30);
EXPECT_TRUE(obstacleLeft);
EXPECT_TRUE(obstacleRight);
// Tracked objects
int trackedObjectCount = roboid->perception->TrackedObjectCount();
EXPECT_EQ(trackedObjectCount, 2);
// Find the single tracked object
InterestingThing **trackedObjects = roboid->perception->GetTrackedObjects();
for (int i = 0; i < roboid->perception->maxObjectCount; i++) {
if (trackedObjects[i] != nullptr) {
EXPECT_FLOAT_EQ(trackedObjects[i]->position.distance, 0.1F);
// EXPECT_THAT(trackedObjects[i] ->position.angle, AnyOf(FloatEq(-30),
// FloatEq(30));
}
}
#pragma endregion
#pragma region Motor Control
// Motor speeds
float leftMotorSpeed = obstacleRight ? -1.0F : 1.0F;
float rightMotorSpeed = obstacleLeft ? -1.0F : 1.0F;
EXPECT_FLOAT_EQ(leftMotorSpeed, -1.0F);
EXPECT_FLOAT_EQ(rightMotorSpeed, -1.0F);
DifferentialDrive *diffDrive = (DifferentialDrive *)roboid->propulsion;
diffDrive->SetMotorTargetSpeeds(leftMotorSpeed, rightMotorSpeed);
#pragma endregion
#pragma region Test motor output results
float leftActualSpeed = motorLeft->GetActualSpeed();
float rightActualSpeed = motorRight->GetActualSpeed();
EXPECT_FLOAT_EQ(leftActualSpeed, -1.0F);
EXPECT_FLOAT_EQ(rightActualSpeed, -1.0F);
// Roboid velocity
Polar velocity = diffDrive->GetVelocity();
EXPECT_FLOAT_EQ(velocity.distance, 1.0F);
EXPECT_FLOAT_EQ(velocity.angle, 180.0F);
float angularVelocity = diffDrive->GetAngularVelocity();
EXPECT_FLOAT_EQ(angularVelocity, 0.0F);
#pragma endregion
}
#endif