2025-03-06 11:06:43 +01:00

304 lines
10 KiB
C++

#include "Spherical.h"
#include "Angle.h"
#include "Quaternion.h"
#include <math.h>
template <typename T>
SphericalOf<T>::SphericalOf() {
this->distance = 0.0f;
this->direction = DirectionOf<T>();
}
template <typename T>
SphericalOf<T>::SphericalOf(float distance,
AngleOf<T> horizontal,
AngleOf<T> vertical) {
if (distance < 0) {
this->distance = -distance;
this->direction = -DirectionOf<T>(horizontal, vertical);
} else {
this->distance = distance;
this->direction = DirectionOf<T>(horizontal, vertical);
}
}
template <typename T>
SphericalOf<T>::SphericalOf(float distance, DirectionOf<T> direction) {
if (distance < 0) {
this->distance = -distance;
this->direction = -direction;
} else {
this->distance = distance;
this->direction = direction;
}
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Degrees(float distance,
float horizontal,
float vertical) {
AngleOf<T> horizontalAngle = AngleOf<T>::Degrees(horizontal);
AngleOf<T> verticalAngle = AngleOf<T>::Degrees(vertical);
SphericalOf<T> r = SphericalOf<T>(distance, horizontalAngle, verticalAngle);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Radians(float distance,
float horizontal,
float vertical) {
return SphericalOf<T>(distance, AngleOf<T>::Radians(horizontal),
AngleOf<T>::Radians(vertical));
}
template <typename T>
SphericalOf<T> SphericalOf<T>::FromPolar(PolarOf<T> polar) {
AngleOf<T> horizontal = polar.angle;
AngleOf<T> vertical = AngleOf<T>();
SphericalOf<T> r = SphericalOf(polar.distance, horizontal, vertical);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
float distance = v.magnitude();
if (distance == 0.0f) {
return SphericalOf(distance, AngleOf<T>(), AngleOf<T>());
} else {
AngleOf<T> verticalAngle =
AngleOf<T>::Radians((pi / 2 - acosf(v.Up() / distance)));
AngleOf<T> horizontalAngle =
AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
return SphericalOf(distance, horizontalAngle, verticalAngle);
}
}
/**
* @brief Converts spherical coordinates to a 3D vector.
*
* This function converts the spherical coordinates represented by the
* SphericalOf object to a 3D vector (Vector3). The conversion is based
* on the distance and direction (vertical and horizontal angles) of the
* spherical coordinates.
*
* @tparam T The type of the distance and direction values.
* @return Vector3 The 3D vector representation of the spherical coordinates.
*/
template <typename T>
Vector3 SphericalOf<T>::ToVector3() const {
float verticalRad = (pi / 2) - this->direction.vertical.InRadians();
float horizontalRad = this->direction.horizontal.InRadians();
float cosVertical = cosf(verticalRad);
float sinVertical = sinf(verticalRad);
float cosHorizontal = cosf(horizontalRad);
float sinHorizontal = sinf(horizontalRad);
float x = this->distance * sinVertical * sinHorizontal;
float y = this->distance * cosVertical;
float z = this->distance * sinVertical * cosHorizontal;
Vector3 v = Vector3(x, y, z);
return v;
}
template <typename T>
const SphericalOf<T> SphericalOf<T>::zero =
SphericalOf<T>(0.0f, AngleOf<T>(), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::forward =
SphericalOf<T>(1.0f, AngleOf<T>(), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::back =
SphericalOf<T>(1.0f, AngleOf<T>::Degrees(180), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::right =
SphericalOf<T>(1.0f, AngleOf<T>::Degrees(90), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::left =
SphericalOf<T>(1.0f, AngleOf<T>::Degrees(-90), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::up =
SphericalOf<T>(1.0f, AngleOf<T>(), AngleOf<T>::Degrees(90));
template <typename T>
const SphericalOf<T> SphericalOf<T>::down =
SphericalOf<T>(1.0f, AngleOf<T>(), AngleOf<T>::Degrees(-90));
template <typename T>
SphericalOf<T> SphericalOf<T>::WithDistance(float distance) {
SphericalOf<T> v = SphericalOf<T>(distance, this->direction);
return v;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator-() const {
SphericalOf<T> v = SphericalOf<T>(
this->distance, this->direction.horizontal + AngleOf<T>::Degrees(180),
this->direction.vertical + AngleOf<T>::Degrees(180));
return v;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T>& s2) const {
// let's do it the easy way...
Vector3 v1 = this->ToVector3();
Vector3 v2 = s2.ToVector3();
Vector3 v = v1 - v2;
SphericalOf<T> r = SphericalOf<T>::FromVector3(v);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator-=(const SphericalOf<T>& v) {
*this = *this - v;
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T>& s2) const {
// let's do it the easy way...
Vector3 v1 = this->ToVector3();
Vector3 v2 = s2.ToVector3();
Vector3 v = v1 + v2;
SphericalOf<T> r = SphericalOf<T>::FromVector3(v);
return r;
/*
// This is the hard way...
if (v2.distance <= 0)
return Spherical(this->distance, this->horizontalAngle,
this->verticalAngle);
if (this->distance <= 0)
return v2;
float deltaHorizontalAngle =
(float)Angle::Normalize(v2.horizontalAngle - this->horizontalAngle);
float horizontalRotation = deltaHorizontalAngle < 0
? 180 + deltaHorizontalAngle
: 180 - deltaHorizontalAngle;
float deltaVerticalAngle =
Angle::Normalize(v2.verticalAngle - this->verticalAngle);
float verticalRotation = deltaVerticalAngle < 0 ? 180 + deltaVerticalAngle
: 180 - deltaVerticalAngle;
if (horizontalRotation == 180 && verticalRotation == 180)
// angle is too small, take this angle and add the distances
return Spherical(this->distance + v2.distance, this->horizontalAngle,
this->verticalAngle);
Angle rotation = AngleBetween(*this, v2);
float newDistance =
Angle::CosineRuleSide(v2.distance, this->distance, rotation);
float angle =
Angle::CosineRuleAngle(newDistance, this->distance, v2.distance);
// Now we have to project the angle to the horizontal and vertical planes...
// The axis for the angle is the cross product of the two spherical vectors
// (which function we do not have either...)
float horizontalAngle = 0;
float verticalAngle = 0;
float newHorizontalAngle =
deltaHorizontalAngle < 0
? Angle::Normalize(this->horizontalAngle - horizontalAngle)
: Angle::Normalize(this->horizontalAngle + horizontalAngle);
float newVerticalAngle =
deltaVerticalAngle < 0
? Angle::Normalize(this->verticalAngle - verticalAngle)
: Angle::Normalize(this->verticalAngle + verticalAngle);
Spherical v = Spherical(newDistance, newHorizontalAngle, newVerticalAngle);
*/
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator+=(const SphericalOf<T>& v) {
*this = *this + v;
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator*=(float f) {
this->distance *= f;
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator/=(float f) {
this->distance /= f;
return *this;
}
#include "FloatSingle.h"
#include "Vector3.h"
const float epsilon = 1E-05f;
template <typename T>
float SphericalOf<T>::DistanceBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2) {
// SphericalOf<T> difference = v1 - v2;
// return difference.distance;
Vector3 vec1 = v1.ToVector3();
Vector3 vec2 = v2.ToVector3();
float distance = Vector3::Distance(vec1, vec2);
return distance;
}
template <typename T>
AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf& v1,
const SphericalOf& v2) {
// float denominator = v1.distance * v2.distance;
// if (denominator < epsilon)
// return 0.0f;
Vector3 v1_3 = v1.ToVector3();
Vector3 v2_3 = v2.ToVector3();
// float dot = Vector3::Dot(v1_3, v2_3);
// float fraction = dot / denominator;
// if (isnan(fraction))
// return fraction; // short cut to returning NaN universally
// float cdot = Float::Clamp(fraction, -1.0, 1.0);
// float r = ((float)acos(cdot)) * Rad2Deg;
AngleSingle r = Vector3::Angle(v1_3, v2_3);
return AngleOf<T>::Degrees(r.InDegrees());
}
template <typename T>
AngleOf<T> SphericalOf<T>::SignedAngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2,
const SphericalOf<T>& axis) {
Vector3 v1_vector = v1.ToVector3();
Vector3 v2_vector = v2.ToVector3();
Vector3 axis_vector = axis.ToVector3();
AngleSingle r = Vector3::SignedAngle(v1_vector, v2_vector, axis_vector);
return AngleOf<T>::Degrees(r.InDegrees());
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T>& v,
AngleOf<T> horizontalAngle,
AngleOf<T> verticalAngle) {
SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal + horizontalAngle,
v.direction.vertical + verticalAngle);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::RotateHorizontal(const SphericalOf<T>& v,
AngleOf<T> a) {
SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal + a, v.direction.vertical);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T>& v,
AngleOf<T> a) {
SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal, v.direction.vertical + a);
return r;
}
template class SphericalOf<float>;
template class SphericalOf<signed short>;