RoboidControl-cpp/Angle.cpp
2024-07-31 11:44:23 +02:00

172 lines
4.3 KiB
C++

// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Angle.h"
#include <math.h>
#include "FloatSingle.h"
/*
const float Angle::Rad2Deg = 57.29578F;
const float Angle::Deg2Rad = 0.0174532924F;
float Angle::Normalize(float angle) {
if (!isfinite(angle))
return angle;
while (angle <= -180)
angle += 360;
while (angle > 180)
angle -= 360;
return angle;
}
float Angle::Clamp(float angle, float min, float max) {
float normalizedAngle = Normalize(angle);
float r = Float::Clamp(normalizedAngle, min, max);
return r;
}
float Angle::Difference(float a, float b) {
float r = Normalize(b - a);
return r;
}
float Angle::MoveTowards(float fromAngle, float toAngle, float maxAngle) {
float d = toAngle - fromAngle;
float sign = signbit(d) ? -1 : 1;
d = sign * Float::Clamp(fabs(d), 0, maxAngle);
return fromAngle + d;
}
float Angle::CosineRuleSide(float a, float b, float gamma) {
float a2 = a * a;
float b2 = b * b;
float d = a2 + b2 - 2 * a * b * cos(gamma * Angle::Deg2Rad);
// Catch edge cases where float inacuracies lead tot nans
if (d < 0)
return 0;
float c = sqrtf(d);
return c;
}
float Angle::CosineRuleAngle(float a, float b, float c) {
float a2 = a * a;
float b2 = b * b;
float c2 = c * c;
float d = (a2 + b2 - c2) / (2 * a * b);
// Catch edge cases where float inacuracies lead tot nans
if (d >= 1)
return 0;
if (d <= -1)
return 180;
float gamma = acos(d) * Angle::Rad2Deg;
return gamma;
}
float Angle::SineRuleAngle(float a, float beta, float b) {
float alpha = asin(a * sin(beta * Angle::Deg2Rad) / b);
return alpha;
}
*/
//----------------------
template <>
AngleOf<float>::AngleOf(float angle) : value(angle) {}
template <>
AngleOf<float>::operator float() const {
return value;
}
template <>
AngleOf<float> AngleOf<float>::pi = 3.1415927410125732421875F;
template <>
AngleOf<float> AngleOf<float>::Rad2Deg = 360.0f / (pi * 2);
template <>
AngleOf<float> AngleOf<float>::Deg2Rad = (pi * 2) / 360.0f;
template <>
bool Passer::LinearAlgebra::AngleOf<float>::operator==(AngleOf<float> a) {
return (float)*this == (float)a;
}
template <>
AngleOf<float> AngleOf<float>::Normalize(AngleOf<float> angle) {
float angleValue = angle;
if (!isfinite(angleValue))
return angleValue;
while (angleValue <= -180)
angleValue += 360;
while (angleValue > 180)
angleValue -= 360;
return angleValue;
}
template <>
AngleOf<float> AngleOf<float>::Clamp(AngleOf<float> angle,
AngleOf<float> min,
AngleOf<float> max) {
float normalizedAngle = Normalize(angle);
float r = Float::Clamp(normalizedAngle, min, max);
return r;
}
// template <typename T>
// Angle2<T> Angle2<T>::Difference(Angle2<T> a, Angle2<T> b) {
// Angle2<T> r = Normalize(b - a);
// return r;
// }
template <>
AngleOf<float> AngleOf<float>::MoveTowards(AngleOf<float> fromAngle,
AngleOf<float> toAngle,
AngleOf<float> maxAngle) {
float d = toAngle - fromAngle;
float sign = signbit(d) ? -1 : 1;
d = sign * Float::Clamp(fabs(d), 0, maxAngle);
return fromAngle + d;
}
template <>
AngleOf<float> AngleOf<float>::CosineRuleSide(float a,
float b,
AngleOf<float> gamma) {
float a2 = a * a;
float b2 = b * b;
float d = a2 + b2 - 2 * a * b * cos(gamma * AngleOf<float>::Deg2Rad);
// Catch edge cases where float inacuracies lead tot nans
if (d < 0)
return 0;
float c = sqrtf(d);
return c;
}
template <>
AngleOf<float> AngleOf<float>::CosineRuleAngle(float a, float b, float c) {
float a2 = a * a;
float b2 = b * b;
float c2 = c * c;
float d = (a2 + b2 - c2) / (2 * a * b);
// Catch edge cases where float inacuracies lead tot nans
if (d >= 1)
return 0;
if (d <= -1)
return 180;
float gamma = acos(d) * Angle::Rad2Deg;
return gamma;
}
template <>
AngleOf<float> AngleOf<float>::SineRuleAngle(float a,
AngleOf<float> beta,
float b) {
float alpha = asin(a * sin(beta * Angle::Deg2Rad) / b);
return alpha;
}