RoboidControl-cpp/Polar.cpp
2024-08-28 11:32:37 +02:00

282 lines
7.8 KiB
C++

#include <math.h>
#include "Polar.h"
template <typename T>
PolarOf<T>::PolarOf() {
this->distance = 0.0f;
this->angle = 0.0f;
}
template <typename T>
PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) {
// distance should always be 0 or greater
if (distance < 0.0f) {
this->distance = -distance;
this->angle = AngleOf<T>::Normalize(angle.ToFloat() - 180.0f);
} else {
this->distance = distance;
if (this->distance == 0.0f)
// angle is always 0 if distance is 0
this->angle = 0.0f;
else
this->angle = AngleOf<T>::Normalize(angle);
}
}
template <typename T>
PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) {
float distance = v.magnitude();
AngleOf<T> angle = Vector2::SignedAngle(Vector2::forward, v);
PolarOf<T> p = PolarOf(distance, angle);
return p;
}
template <typename T>
PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) {
float distance =
v.distance * cosf(v.vertical.ToFloat() * Passer::LinearAlgebra::Deg2Rad);
AngleOf<T> angle = v.horizontal;
PolarOf<T> p = PolarOf(distance, angle);
return p;
}
template <typename T>
const PolarOf<T> PolarOf<T>::zero = PolarOf(0.0f, 0.0f);
template <typename T>
const PolarOf<T> PolarOf<T>::forward = PolarOf(1.0f, 0.0f);
template <typename T>
const PolarOf<T> PolarOf<T>::back = PolarOf(1.0, 180.0f);
template <typename T>
const PolarOf<T> PolarOf<T>::right = PolarOf(1.0, 90.0f);
template <typename T>
const PolarOf<T> PolarOf<T>::left = PolarOf(1.0, -90.0f);
template <typename T>
bool PolarOf<T>::operator==(const PolarOf& v) const {
return (this->distance == v.distance &&
this->angle.ToFloat() == v.angle.ToFloat());
}
template <typename T>
PolarOf<T> PolarOf<T>::Normalize(const PolarOf& v) {
PolarOf<T> r = PolarOf(1, v.angle);
return r;
}
template <typename T>
PolarOf<T> PolarOf<T>::normalized() const {
PolarOf<T> r = PolarOf(1, this->angle);
return r;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-() const {
PolarOf<T> v = PolarOf(this->distance, this->angle + AngleOf<T>(180));
return v;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-(const PolarOf& v) const {
PolarOf<T> r = -v;
return *this + r;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-=(const PolarOf& v) {
*this = *this - v;
return *this;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator+(const PolarOf& v) const {
if (v.distance == 0)
return PolarOf(this->distance, this->angle);
if (this->distance == 0.0f)
return v;
float deltaAngle =
Angle::Normalize(v.angle.ToFloat() - this->angle.ToFloat()).ToFloat();
float rotation =
deltaAngle < 0.0f ? 180.0f + deltaAngle : 180.0f - deltaAngle;
if (rotation == 180.0f && v.distance > 0.0f) {
// angle is too small, take this angle and add the distances
return PolarOf(this->distance + v.distance, this->angle);
}
float newDistance =
Angle::CosineRuleSide(v.distance, this->distance, rotation).ToFloat();
float angle =
Angle::CosineRuleAngle(newDistance, this->distance, v.distance).ToFloat();
float newAngle = deltaAngle < 0.0f ? this->angle.ToFloat() - angle
: this->angle.ToFloat() + angle;
newAngle = Angle::Normalize(newAngle).ToFloat();
PolarOf vector = PolarOf(newDistance, newAngle);
return vector;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator+=(const PolarOf& v) {
*this = *this + v;
return *this;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator*=(float f) {
this->distance *= f;
return *this;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator/=(float f) {
this->distance /= f;
return *this;
}
template <typename T>
float PolarOf<T>::Distance(const PolarOf& v1, const PolarOf& v2) {
float d = Angle::CosineRuleSide(v1.distance, v2.distance,
v2.angle.ToFloat() - v1.angle.ToFloat())
.ToFloat();
return d;
}
template <typename T>
PolarOf<T> PolarOf<T>::Rotate(const PolarOf& v, AngleOf<T> angle) {
AngleOf<T> a = AngleOf<T>::Normalize(v.angle + angle);
PolarOf<T> r = PolarOf(v.distance, a);
return r;
}
template class PolarOf<float>;
template class PolarOf<signed short>;
//=====================================
/*
Polar::Polar() {
this->distance = 0.0f;
this->angle = 0.0f;
}
Polar::Polar(float distance, Angle angle) {
// distance should always be 0 or greater
if (distance < 0.0f) {
this->distance = -distance;
this->angle = Angle::Normalize(angle.ToFloat() - 180.0f);
} else {
this->distance = distance;
if (this->distance == 0.0f)
// angle is always 0 if distance is 0
this->angle = 0.0f;
else
this->angle = Angle::Normalize(angle);
}
}
Polar::Polar(Vector2 v) {
this->distance = v.magnitude();
this->angle = Vector2::SignedAngle(Vector2::forward, v);
}
Polar::Polar(Spherical v) {
this->distance = v.distance * cosf(v.verticalAngle.ToFloat() *
Passer::LinearAlgebra::Deg2Rad);
this->angle = v.horizontalAngle;
}
const Polar Polar::zero = Polar(0.0f, 0.0f);
const Polar Polar::forward = Polar(1.0f, 0.0f);
const Polar Polar::back = Polar(1.0, 180.0f);
const Polar Polar::right = Polar(1.0, 90.0f);
const Polar Polar::left = Polar(1.0, -90.0f);
bool Polar::operator==(const Polar& v) const {
return (this->distance == v.distance &&
this->angle.ToFloat() == v.angle.ToFloat());
}
Polar Polar::Normalize(const Polar& v) {
Polar r = Polar(1, v.angle);
return r;
}
Polar Polar::normalized() const {
Polar r = Polar(1, this->angle);
return r;
}
Polar Polar::operator-() const {
Polar v = Polar(this->distance, this->angle.ToFloat() + 180.0f);
return v;
}
Polar Polar::operator-(const Polar& v) const {
Polar r = -v;
return *this + r;
}
Polar Polar::operator-=(const Polar& v) {
*this = *this - v;
return *this;
}
Polar Polar::operator+(const Polar& v) const {
if (v.distance == 0)
return Polar(this->distance, this->angle);
if (this->distance == 0.0f)
return v;
float deltaAngle =
Angle::Normalize(v.angle.ToFloat() - this->angle.ToFloat()).ToFloat();
float rotation =
deltaAngle < 0.0f ? 180.0f + deltaAngle : 180.0f - deltaAngle;
if (rotation == 180.0f && v.distance > 0.0f) {
// angle is too small, take this angle and add the distances
return Polar(this->distance + v.distance, this->angle);
}
float newDistance =
Angle::CosineRuleSide(v.distance, this->distance, rotation).ToFloat();
float angle =
Angle::CosineRuleAngle(newDistance, this->distance,
v.distance).ToFloat();
float newAngle = deltaAngle < 0.0f ? this->angle.ToFloat() - angle
: this->angle.ToFloat() + angle;
newAngle = Angle::Normalize(newAngle).ToFloat();
Polar vector = Polar(newDistance, newAngle);
return vector;
}
Polar Polar::operator+=(const Polar& v) {
*this = *this + v;
return *this;
}
// Polar Passer::LinearAlgebra::operator*(const Polar &v, float f) {
// return Polar(v.distance * f, v.angle);
// }
// Polar Passer::LinearAlgebra::operator*(float f, const Polar &v) {
// return Polar(v.distance * f, v.angle);
// }
Polar Polar::operator*=(float f) {
this->distance *= f;
return *this;
}
// Polar Passer::LinearAlgebra::operator/(const Polar& v, float f) {
// return Polar(v.distance / f, v.angle);
// }
// Polar Passer::LinearAlgebra::operator/(float f, const Polar& v) {
// return Polar(v.distance / f, v.angle);
// }
Polar Polar::operator/=(float f) {
this->distance /= f;
return *this;
}
float Polar::Distance(const Polar& v1, const Polar& v2) {
float d = Angle::CosineRuleSide(v1.distance, v2.distance,
v2.angle.ToFloat() - v1.angle.ToFloat())
.ToFloat();
return d;
}
Polar Polar::Rotate(const Polar& v, Angle angle) {
Angle a = Angle::Normalize(v.angle.ToFloat() + angle.ToFloat());
Polar r = Polar(v.distance, a);
return r;
}
*/