All pipline components present (but untested)

This commit is contained in:
Pascal Serrarens 2025-01-21 14:57:48 +01:00
parent 3538b7dcc0
commit 941cdd17db

88
LinearAlgebra/Matrix.cs Normal file
View File

@ -0,0 +1,88 @@
public class Matrix {
private readonly uint rows = 0;
private readonly uint cols = 0;
private float[] data;
public Matrix(uint rows, uint cols) {
this.rows = rows;
this.cols = cols;
}
public static float[,] Transpose(float[,] m) {
float[,] r = new float[m.GetLength(1), m.GetLength(0)];
for (uint rowIx = 0; rowIx < m.GetLength(0); rowIx++) {
for (uint colIx = 0; colIx < m.GetLength(1); colIx++)
r[colIx, rowIx] = m[rowIx, colIx];
}
return r;
}
public static void NegateColumn(float[,] m, uint colIx) {
for (uint rowIx = 0; rowIx < m.GetLength(0); rowIx++) {
m[rowIx, colIx] = -m[rowIx, colIx];
}
}
public static float Determinant(float[,] matrix) {
int n = matrix.GetLength(0);
if (n != matrix.GetLength(1))
throw new System.ArgumentException("Matrix must be square.");
if (n == 1) return matrix[0, 0]; // Base case for 1x1 matrix
if (n == 2) // Base case for 2x2 matrix
return matrix[0, 0] * matrix[1, 1] - matrix[0, 1] * matrix[1, 0];
float det = 0;
for (int col = 0; col < n; col++) {
det += (col % 2 == 0 ? 1 : -1) * matrix[0, col] * Determinant(Minor(matrix, 0, col));
}
return det;
}
// Helper function to compute the minor of a matrix
private static float[,] Minor(float[,] matrix, int rowToRemove, int colToRemove) {
int n = matrix.GetLength(0);
float[,] minor = new float[n - 1, n - 1];
int r = 0, c = 0;
for (int i = 0; i < n; i++) {
if (i == rowToRemove) continue;
c = 0;
for (int j = 0; j < n; j++) {
if (j == colToRemove) continue;
minor[r, c] = matrix[i, j];
c++;
}
r++;
}
return minor;
}
public static float[,] MultiplyMatrices(float[,] A, float[,] B) {
int rowsA = A.GetLength(0);
int colsA = A.GetLength(1);
int rowsB = B.GetLength(0);
int colsB = B.GetLength(1);
if (colsA != rowsB)
throw new System.ArgumentException("Number of columns in A must match number of rows in B.");
float[,] result = new float[rowsA, colsB];
for (int i = 0; i < rowsA; i++) {
for (int j = 0; j < colsB; j++) {
float sum = 0;
for (int k = 0; k < colsA; k++) {
sum += A[i, k] * B[k, j];
}
result[i, j] = sum;
}
}
return result;
}
}