Restructuring

This commit is contained in:
Pascal Serrarens 2025-03-07 14:48:03 +01:00
parent 6a443e111c
commit c7bce31f34
20 changed files with 909 additions and 100 deletions

110
LinearAlgebra/src/Angle.cs Normal file
View File

@ -0,0 +1,110 @@
using System;
namespace Passer.LinearAlgebra {
/// <summary>
/// %Angle utilities
/// </summary>
public static class Angle {
public const float pi = 3.1415927410125732421875F;
// public static float Rad2Deg = 360.0f / ((float)Math.PI * 2);
// public static float Deg2Rad = ((float)Math.PI * 2) / 360.0f;
public const float Deg2Rad = 360.0f / ((float)Math.PI * 2); //0.0174532924F;
public const float Rad2Deg = ((float)Math.PI * 2) / 360.0f; //57.29578F;
/// <summary>
/// Clamp the angle between the given min and max values
/// </summary>
/// <param name="angle">The angle to clamp</param>
/// <param name="min">The minimum angle</param>
/// <param name="max">The maximum angle</param>
/// <returns>The clamped angle</returns>
/// Angles are normalized
public static float Clamp(float angle, float min, float max) {
float normalizedAngle = Normalize(angle);
return Float.Clamp(normalizedAngle, min, max);
}
/// <summary>
/// Determine the angle difference, result is a normalized angle
/// </summary>
/// <param name="a">First first angle</param>
/// <param name="b">The second angle</param>
/// <returns>the angle between the two angles</returns>
/// Angle values should be degrees
public static float Difference(float a, float b) {
float r = Normalize(b - a);
return r;
}
/// <summary>
/// Normalize an angle to the range -180 < angle <= 180
/// </summary>
/// <param name="angle">The angle to normalize</param>
/// <returns>The normalized angle in interval (-180..180] </returns>
/// Angle values should be in degrees
public static float Normalize(float angle) {
if (float.IsInfinity(angle))
return angle;
while (angle <= -180) angle += 360;
while (angle > 180) angle -= 360;
return angle;
}
/// <summary>
/// Rotate from one angle to the other with a maximum degrees
/// </summary>
/// <param name="fromAngle">Starting angle</param>
/// <param name="toAngle">Target angle</param>
/// <param name="maxAngle">Maximum angle to rotate</param>
/// <returns>The resulting angle</returns>
/// This function is compatible with radian and degrees angles
public static float MoveTowards(float fromAngle, float toAngle, float maxAngle) {
float d = toAngle - fromAngle;
d = Normalize(d);
d = Math.Sign(d) * Float.Clamp(Math.Abs(d), 0, maxAngle);
return fromAngle + d;
}
/// <summary>
/// Map interval of angles between vectors [0..Pi] to interval [0..1]
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns>The resulting factor in interval [0..1]</returns>
/// Vectors a and b must be normalized
/// \deprecated Please use Vector2.ToFactor instead.
[Obsolete("Please use Vector2.ToFactor instead.")]
public static float ToFactor(Vector2 v1, Vector2 v2) {
return (1 - Vector2.Dot(v1, v2)) / 2;
}
// Normalize all vector angles to the range -180 < angle < 180
//public static Vector3 Normalize(Vector3 angles) {
// float x = Normalize(angles.x);
// float y = Normalize(angles.y);
// float z = Normalize(angles.z);
// return new Vector3(x, y, z);
//}
// Returns the signed angle in degrees between from and to.
//public static float SignedAngle(Vector3 from, Vector3 to) {
// float angle = Vector3.Angle(from, to);
// Vector3 cross = Vector3.Cross(from, to);
// if (cross.y < 0) angle = -angle;
// return angle;
//}
// Returns the signed angle in degrees between from and to.
//public static float SignedAngle(Vector2 from, Vector2 to) {
// float sign = Math.Sign(from.y * to.x - from.x * to.y);
// return Vector2.Angle(from, to) * sign;
//}
//public static Quaternion ToQuaternion(Rotation orientation) {
// return new Quaternion(orientation.x, orientation.y, orientation.z, orientation.w);
//}
}
}

View File

@ -0,0 +1,41 @@
namespace Passer.LinearAlgebra {
/// <summary>
/// Float number utilities
/// </summary>
public class Float {
/// <summary>
/// The precision of float numbers
/// </summary>
public const float epsilon = 1E-05f;
/// <summary>
/// The square of the float number precision
/// </summary>
public const float sqrEpsilon = 1e-10f;
/// <summary>
/// Clamp the value between the given minimum and maximum values
/// </summary>
/// <param name="f">The value to clamp</param>
/// <param name="min">The minimum value</param>
/// <param name="max">The maximum value</param>
/// <returns>The clamped value</returns>
public static float Clamp(float f, float min, float max) {
if (f < min)
return min;
if (f > max)
return max;
return f;
}
/// <summary>
/// Clamp the value between to the interval [0..1]
/// </summary>
/// <param name="f">The value to clamp</param>
/// <returns>The clamped value</returns>
public static float Clamp01(float f) {
return Clamp(f, 0, 1);
}
}
}

View File

@ -0,0 +1,14 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<GenerateAssemblyInfo>false</GenerateAssemblyInfo>
<GenerateTargetFrameworkAttribute>false</GenerateTargetFrameworkAttribute>
<TargetFramework>net5.0</TargetFramework>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.13.0" />
<PackageReference Include="NUnit" Version="3.13.2" />
</ItemGroup>
</Project>

View File

@ -0,0 +1,363 @@
using System;
using System.Numerics;
namespace Passer.LinearAlgebra {
public class Vector2Of<T> where T : IComparable<T> {
public T x;
public T y;
public Vector2Of(T x, T y) {
this.x = x;
this.y = y;
}
}
public class Vector2Int : Vector2Of<int> {
public Vector2Int(int x, int y) : base(x, y) { }
public static Vector2Int operator -(Vector2Int v1, Vector2Int v2) {
return new Vector2Int(v1.x - v2.x, v1.y - v2.y);
}
public float magnitude {
get {
return (float)Math.Sqrt(this.x * this.x + this.y * this.y);
}
}
public static float Distance(Vector2Int v1, Vector2Int v2) {
return (v1 - v2).magnitude;
}
}
public class Vector2Float : Vector2Of<float> {
public Vector2Float(float x, float y) : base(x, y) { }
public static Vector2Float operator -(Vector2Float v1, Vector2Float v2) {
return new Vector2Float(v1.x - v2.x, v1.y - v2.y);
}
public float magnitude {
get {
return (float)Math.Sqrt(this.x * this.x + this.y * this.y);
}
}
public static float Distance(Vector2Float v1, Vector2Float v2) {
return (v1 - v2).magnitude;
}
}
/// <summary>
/// 2-dimensional vectors
/// </summary>
public struct Vector2 : IEquatable<Vector2> {
/// <summary>
/// The right axis of the vector
/// </summary>
public float x; // left/right
/// <summary>
/// The upward/forward axis of the vector
/// </summary>
public float y; // forward/backward
// directions are to be inline with Vector3 as much as possible...
/// <summary>
/// Create a new 2-dimensional vector
/// </summary>
/// <param name="x">x axis value</param>
/// <param name="y">y axis value</param>
public Vector2(float x, float y) {
this.x = x;
this.y = y;
}
/// <summary>
/// A vector with zero for all axis
/// </summary>
public static readonly Vector2 zero = new Vector2(0, 0);
/// <summary>
/// A vector with values (1, 1)
/// </summary>
public static readonly Vector2 one = new Vector2(1, 1);
/// <summary>
/// A vector with values (0, 1)
/// </summary>
public static readonly Vector2 up = new Vector2(0, 1);
/// <summary>
/// A vector with values (0, -1)
/// </summary>
public static readonly Vector2 down = new Vector2(0, -1);
/// <summary>
/// A vector with values (0, 1)
/// </summary>
public static readonly Vector2 forward = new Vector2(0, 1);
/// <summary>
/// A vector with values (0, -1)
/// </summary>
public static readonly Vector2 back = new Vector2(0, -1);
/// <summary>
/// A vector3 with values (-1, 0)
/// </summary>
public static readonly Vector2 left = new Vector2(-1, 0);
/// <summary>
/// A vector with values (1, 0)
/// </summary>
public static readonly Vector2 right = new Vector2(1, 0);
/// <summary>
/// The squared length of this vector
/// </summary>
/// <returns>The squared length</returns>
/// The squared length is computationally simpler than the real length.
/// Think of Pythagoras A^2 + B^2 = C^2.
/// This leaves out the calculation of the squared root of C.
public float sqrMagnitude {
get {
float d = x * x + y * y;
return d;
}
}
/// <summary>
/// The length of this vector
/// </summary>
/// <returns>The length of this vector</returns>
public float magnitude {
get {
float d = (float)Math.Sqrt(x * x + y * y);
return d;
}
}
/// <summary>
/// Convert the vector to a length of a 1
/// </summary>
/// <returns>The vector with length 1</returns>
public Vector2 normalized {
get {
float l = magnitude;
Vector2 v = zero;
if (l > Float.epsilon)
v = this / l;
return v;
}
}
/// <summary>
/// Add two vectors
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns>The result of adding the two vectors</returns>
public static Vector2 operator +(Vector2 v1, Vector2 v2) {
Vector2 v = new Vector2(v1.x + v2.x, v1.y + v2.y);
return v;
}
/// <summary>
/// Subtract two vectors
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns>The result of adding the two vectors</returns>
public static Vector2 operator -(Vector2 v1, Vector2 v2) {
Vector2 v = new Vector2(v1.x - v2.x, v1.y - v2.y);
return v;
}
/// <summary>
/// Negate the vector
/// </summary>
/// <param name="v1">The vector to negate</param>
/// <returns>The negated vector</returns>
/// This will result in a vector pointing in the opposite direction
public static Vector2 operator -(Vector2 v1) {
Vector2 v = new Vector2(-v1.x, -v1.y);
return v;
}
/// <summary>
/// Scale a vector uniformly up
/// </summary>
/// <param name="v1">The vector to scale</param>
/// <param name="f">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// Each component of the vector will be multipled with the same factor.
public static Vector2 operator *(Vector2 v1, float f) {
Vector2 v = new Vector2(v1.x * f, v1.y * f);
return v;
}
/// <summary>
/// Scale a vector uniformly up
/// </summary>
/// <param name="f">The scaling factor</param>
/// <param name="v1">The vector to scale</param>
/// <returns>The scaled vector</returns>
/// Each component of the vector will be multipled with the same factor.
public static Vector2 operator *(float f, Vector2 v1) {
Vector2 v = new Vector2(f * v1.x, f * v1.y);
return v;
}
/// <summary>
/// Scale a vector uniformly down
/// </summary>
/// <param name="v1">The vector to scale</param>
/// <param name="f">The scaling factor</param>
/// <returns>The scaled vector</returns>
/// Each component of the vector will be devided by the same factor.
public static Vector2 operator /(Vector2 v1, float f) {
Vector2 v = new Vector2(v1.x / f, v1.y / f);
return v;
}
/// <summary>
/// Tests if the vector has equal values as the given vector
/// </summary>
/// <param name="v1">The vector to compare to</param>
/// <returns><em>true</em> if the vector values are equal</returns>
public bool Equals(Vector2 v1) => x == v1.x && y == v1.y;
/// <summary>
/// Tests if the vector is equal to the given object
/// </summary>
/// <param name="obj">The object to compare to</param>
/// <returns><em>false</em> when the object is not a Vector2 or does not have equal values</returns>
public override bool Equals(object obj) {
if (!(obj is Vector2 v))
return false;
return (x == v.x && y == v.y);
}
/// <summary>
/// Tests if the two vectors have equal values
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns><em>true</em>when the vectors have equal values</returns>
/// Note that this uses a Float equality check which cannot be not exact in all cases.
/// In most cases it is better to check if the Vector2.Distance between the vectors is smaller than Float.epsilon
/// Or more efficient: (v1 - v2).sqrMagnitude < Float.sqrEpsilon
public static bool operator ==(Vector2 v1, Vector2 v2) {
return (v1.x == v2.x && v1.y == v2.y);
}
/// <summary>
/// Tests if two vectors have different values
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns><em>true</em>when the vectors have different values</returns>
/// Note that this uses a Float equality check which cannot be not exact in all case.
/// In most cases it is better to check if the Vector2.Distance between the vectors is smaller than Float.epsilon.
/// Or more efficient: (v1 - v2).sqrMagnitude < Float.sqrEpsilon
public static bool operator !=(Vector2 v1, Vector2 v2) {
return (v1.x != v2.x || v1.y != v2.y);
}
/// <summary>
/// Get an hash code for the vector
/// </summary>
/// <returns>The hash code</returns>
public override int GetHashCode() {
return (x, y).GetHashCode();
}
/// <summary>
/// Get the distance between two vectors
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns>The distance between the two vectors</returns>
public static float Distance(Vector2 v1, Vector2 v2) {
float x = v1.x - v2.x;
float y = v1.y - v2.y;
float d = (float)Math.Sqrt(x * x + y * y);
return d;
}
/// <summary>
/// The dot product of two vectors
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns>The dot product of the two vectors</returns>
public static float Dot(Vector2 v1, Vector2 v2) {
return v1.x * v2.x + v1.y * v2.y;
}
/// <summary>
/// Lerp between two vectors
/// </summary>
/// <param name="v1">The from vector</param>
/// <param name="v2">The to vector</param>
/// <param name="f">The interpolation distance [0..1]</param>
/// <returns>The lerped vector</returns>
/// The factor f is unclamped. Value 0 matches the *v1* vector, Value 1
/// matches the *v2* vector Value -1 is *v1* vector minus the difference
/// between *v1* and *v2* etc.
public static Vector2 Lerp(Vector2 v1, Vector2 v2, float f) {
Vector2 v = v1 + (v2 - v1) * f;
return v;
}
/// <summary>
/// Calculate the signed angle between two vectors.
/// </summary>
/// <param name="from">The starting vector</param>
/// <param name="to">The ending vector</param>
/// <param name="axis">The axis to rotate around</param>
/// <returns>The signed angle in degrees</returns>
public static float SignedAngle(Vector2 from, Vector2 to) {
//float sign = Math.Sign(v1.y * v2.x - v1.x * v2.y);
//return Vector2.Angle(v1, v2) * sign;
float sqrMagFrom = from.sqrMagnitude;
float sqrMagTo = to.sqrMagnitude;
if (sqrMagFrom == 0 || sqrMagTo == 0)
return 0;
//if (!isfinite(sqrMagFrom) || !isfinite(sqrMagTo))
// return nanf("");
float angleFrom = (float)Math.Atan2(from.y, from.x);
float angleTo = (float)Math.Atan2(to.y, to.x);
return (angleTo - angleFrom) * Angle.Rad2Deg;
}
/// <summary>
/// Rotates the vector with the given angle
/// </summary>
/// <param name="v1">The vector to rotate</param>
/// <param name="angle">The angle in degrees</param>
/// <returns></returns>
public static Vector2 Rotate(Vector2 v1, float angle) {
float sin = (float)Math.Sin(angle * Angle.Deg2Rad);
float cos = (float)Math.Cos(angle * Angle.Deg2Rad);
float tx = v1.x;
float ty = v1.y;
Vector2 v = new Vector2() {
x = (cos * tx) - (sin * ty),
y = (sin * tx) + (cos * ty)
};
return v;
}
/// <summary>
/// Map interval of angles between vectors [0..Pi] to interval [0..1]
/// </summary>
/// <param name="v1">The first vector</param>
/// <param name="v2">The second vector</param>
/// <returns>The resulting factor in interval [0..1]</returns>
/// Vectors a and b must be normalized
public static float ToFactor(Vector2 v1, Vector2 v2) {
return (1 - Vector2.Dot(v1, v2)) / 2;
}
}
}

View File

@ -0,0 +1,179 @@
#if !UNITY_5_3_OR_NEWER
using System;
namespace Passer.LinearAlgebra {
public class Vector3Of<T> {
public T x;
public T y;
public T z;
public Vector3Of(T x, T y, T z) {
this.x = x;
this.y = y;
this.z = z;
}
// public uint magnitude {
// get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
// }
}
public class Vector3Int : Vector3Of<int> {
public Vector3Int(int x, int y, int z) : base(x, y, z) { }
}
public class Vector3Float : Vector3Of<float> {
public Vector3Float(float x, float y, float z) : base(x, y, z) { }
public float magnitude {
get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
}
}
/// <summary>
/// 3-dimensional vectors
/// </summary>
/// This uses the right-handed coordinate system.
public struct Vector3 : IEquatable<Vector3> {
/// <summary>
/// The right axis of the vector
/// </summary>
public float x; //> left/right
/// <summary>
/// The upward axis of the vector
/// </summary>
public float y; //> up/down
/// <summary>
/// The forward axis of the vector
/// </summary>
public float z; //> forward/backward
/// <summary>
/// Create a new 3-dimensional vector
/// </summary>
/// <param name="x">x axis value</param>
/// <param name="y">y axis value</param>
/// <param name="z">z axis value</param>
public Vector3(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/// <summary>
/// A vector with zero for all axis
/// </summary>
public static readonly Vector3 zero = new Vector3(0, 0, 0);
/// <summary>
/// A vector with one for all axis
/// </summary>
public static readonly Vector3 one = new Vector3(1, 1, 1);
/// <summary>
/// A vector3 with values (-1, 0, 0)
/// </summary>
public static readonly Vector3 left = new Vector3(-1, 0, 0);
/// <summary>
/// A vector with values (1, 0, 0)
/// </summary>
public static readonly Vector3 right = new Vector3(1, 0, 0);
/// <summary>
/// A vector with values (0, -1, 0)
/// </summary>
public static readonly Vector3 down = new Vector3(0, -1, 0);
/// <summary>
/// A vector with values (0, 1, 0)
/// </summary>
public static readonly Vector3 up = new Vector3(0, 1, 0);
/// <summary>
/// A vector with values (0, 0, -1)
/// </summary>
public static readonly Vector3 back = new Vector3(0, -1, 0);
/// <summary>
/// A vector with values (0, 0, 1)
/// </summary>
public static readonly Vector3 forward = new Vector3(0, 1, 0);
public float magnitude {
get {
float d = (float)Math.Sqrt(x * x + y * y);
return d;
}
}
public Vector3 normalized {
get {
float l = magnitude;
Vector3 v = zero;
if (l > Float.epsilon)
v = this / l;
return v;
}
}
public static Vector3 operator +(Vector3 v1, Vector3 v2) {
Vector3 v = new Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
return v;
}
public static Vector3 operator -(Vector3 v1, Vector3 v2) {
Vector3 v = new Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
return v;
}
public static Vector3 operator -(Vector3 v1) {
Vector3 v = new Vector3(-v1.x, -v1.y, -v1.z);
return v;
}
public static Vector3 operator *(Vector3 v1, float d) {
Vector3 v = new Vector3(v1.x * d, v1.y * d, v1.z * d);
return v;
}
public static Vector3 operator *(float d, Vector3 v1) {
Vector3 v = new Vector3(d * v1.x, d * v1.y, d * v1.z);
return v;
}
public static Vector3 operator /(Vector3 v1, float d) {
Vector3 v = new Vector3(v1.x / d, v1.y / d, v1.z / d);
return v;
}
public bool Equals(Vector3 v) => (x == v.x && y == v.y && z == v.z);
public override bool Equals(object obj) {
if (!(obj is Vector3 v))
return false;
return (x == v.x && y == v.y && z == v.z);
}
public static bool operator ==(Vector3 v1, Vector3 v2) {
return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z);
}
public static bool operator !=(Vector3 v1, Vector3 v2) {
return (v1.x != v2.x || v1.y != v2.y || v1.z != v2.z);
}
public override int GetHashCode() {
return (x, y, z).GetHashCode();
}
public static float Distance(Vector3 v1, Vector3 v2) {
return (v2 - v1).magnitude;
}
public static float Dot(Vector3 v1, Vector3 v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
public static Vector3 Lerp(Vector3 v1, Vector3 v2, float f) {
Vector3 v = v1 + (v2 - v1) * f;
return v;
}
}
}
#endif

View File

@ -0,0 +1,162 @@
#if NUNIT
using NUnit.Framework;
using Passer.LinearAlgebra;
namespace LinearAlgebraTest {
public class AngleTest {
[Test]
public void Normalize() {
float r = 0;
r = Angle.Normalize(90);
Assert.AreEqual(r, 90, "Normalize 90");
r = Angle.Normalize(-90);
Assert.AreEqual(r, -90, "Normalize -90");
r = Angle.Normalize(270);
Assert.AreEqual(r, -90, "Normalize 270");
r = Angle.Normalize(270 + 360);
Assert.AreEqual(r, -90, "Normalize 270+360");
r = Angle.Normalize(-270);
Assert.AreEqual(r, 90, "Normalize -270");
r = Angle.Normalize(-270 - 360);
Assert.AreEqual(r, 90, "Normalize -270-360");
r = Angle.Normalize(0);
Assert.AreEqual(r, 0, "Normalize 0");
r = Angle.Normalize(float.PositiveInfinity);
Assert.AreEqual(r, float.PositiveInfinity, "Normalize INFINITY");
r = Angle.Normalize(float.NegativeInfinity);
Assert.AreEqual(r, float.NegativeInfinity, "Normalize INFINITY");
}
[Test]
public void Clamp() {
float r = 0;
r = Angle.Clamp(1, 0, 2);
Assert.AreEqual(r, 1, "Clamp 1 0 2");
r = Angle.Clamp(-1, 0, 2);
Assert.AreEqual(r, 0, "Clamp -1 0 2");
r = Angle.Clamp(3, 0, 2);
Assert.AreEqual(r, 2, "Clamp 3 0 2");
r = Angle.Clamp(1, 0, 0);
Assert.AreEqual(r, 0, "Clamp 1 0 0");
r = Angle.Clamp(0, 0, 0);
Assert.AreEqual(r, 0, "Clamp 0 0 0");
r = Angle.Clamp(0, 1, -1);
Assert.AreEqual(r, 1, "Clamp 0 1 -1");
r = Angle.Clamp(1, 0, float.PositiveInfinity);
Assert.AreEqual(r, 1, "Clamp 1 0 INFINITY");
r = Angle.Clamp(1, float.NegativeInfinity, 1);
Assert.AreEqual(r, 1, "Clamp 1 -INFINITY 1");
}
[Test]
public void Difference() {
float r = 0;
r = Angle.Difference(0, 90);
Assert.AreEqual(r, 90, "Difference 0 90");
r = Angle.Difference(0, -90);
Assert.AreEqual(r, -90, "Difference 0 -90");
r = Angle.Difference(0, 270);
Assert.AreEqual(r, -90, "Difference 0 270");
r = Angle.Difference(0, -270);
Assert.AreEqual(r, 90, "Difference 0 -270");
r = Angle.Difference(90, 0);
Assert.AreEqual(r, -90, "Difference 90 0");
r = Angle.Difference(-90, 0);
Assert.AreEqual(r, 90, "Difference -90 0");
r = Angle.Difference(0, 0);
Assert.AreEqual(r, 0, "Difference 0 0");
r = Angle.Difference(90, 90);
Assert.AreEqual(r, 0, "Difference 90 90");
r = Angle.Difference(0, float.PositiveInfinity);
Assert.AreEqual(r, float.PositiveInfinity, "Difference 0 INFINITY");
r = Angle.Difference(0, float.NegativeInfinity);
Assert.AreEqual(r, float.NegativeInfinity, "Difference 0 -INFINITY");
r = Angle.Difference(float.NegativeInfinity, float.PositiveInfinity);
Assert.AreEqual(r, float.PositiveInfinity, "Difference -INFINITY INFINITY");
}
[Test]
public void MoveTowards() {
float r = 0;
r = Angle.MoveTowards(0, 90, 30);
Assert.AreEqual(r, 30, "MoveTowards 0 90 30");
r = Angle.MoveTowards(0, 90, 90);
Assert.AreEqual(r, 90, "MoveTowards 0 90 90");
r = Angle.MoveTowards(0, 90, 180);
Assert.AreEqual(r, 90, "MoveTowards 0 90 180");
r = Angle.MoveTowards(0, 90, 270);
Assert.AreEqual(r, 90, "MoveTowrads 0 90 270");
r = Angle.MoveTowards(0, 90, -30);
Assert.AreEqual(r, -30, "MoveTowards 0 90 -30");
r = Angle.MoveTowards(0, -90, -30);
Assert.AreEqual(r, 30, "MoveTowards 0 -90 -30");
r = Angle.MoveTowards(0, -90, -90);
Assert.AreEqual(r, 90, "MoveTowards 0 -90 -90");
r = Angle.MoveTowards(0, -90, -180);
Assert.AreEqual(r, 180, "MoveTowards 0 -90 -180");
r = Angle.MoveTowards(0, -90, -270);
Assert.AreEqual(r, 270, "MoveTowrads 0 -90 -270");
r = Angle.MoveTowards(0, 90, 0);
Assert.AreEqual(r, 0, "MoveTowards 0 90 0");
r = Angle.MoveTowards(0, 0, 0);
Assert.AreEqual(r, 0, "MoveTowards 0 0 0");
r = Angle.MoveTowards(0, 0, 30);
Assert.AreEqual(r, 0, "MoveTowrads 0 0 30");
r = Angle.MoveTowards(0, 90, float.PositiveInfinity);
Assert.AreEqual(r, 90, "MoveTowards 0 90 INFINITY");
r = Angle.MoveTowards(0, float.PositiveInfinity, 30);
Assert.AreEqual(r, 30, "MoveTowrads 0 INFINITY 30");
r = Angle.MoveTowards(0, -90, float.NegativeInfinity);
Assert.AreEqual(r, float.PositiveInfinity, "MoveTowards 0 -90 -INFINITY");
r = Angle.MoveTowards(0, float.NegativeInfinity, -30);
Assert.AreEqual(r, 30, "MoveTowrads 0 -INFINITY -30");
}
}
}
#endif

View File

@ -0,0 +1,19 @@
<Project Sdk="Microsoft.NET.Sdk">
<PropertyGroup>
<TargetFramework>net5.0</TargetFramework>
<IsPackable>false</IsPackable>
<IsTestProject>true</IsTestProject>
</PropertyGroup>
<ItemGroup>
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.13.0" />
<PackageReference Include="NUnit" Version="3.13.2" />
<PackageReference Include="NUnit3TestAdapter" Version="3.17.0" />
</ItemGroup>
<ItemGroup>
<ProjectReference Include="..\src\LinearAlgebra.csproj" />
</ItemGroup>
</Project>

View File

@ -3,7 +3,7 @@ Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio Version 17
VisualStudioVersion = 17.0.31903.59
MinimumVisualStudioVersion = 10.0.40219.1
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "test", "test\test.csproj", "{B65BB41E-5A93-46FC-BA68-B865F50D57BD}"
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "RoboidControl_Test", "test\RoboidControl_Test.csproj", "{B65BB41E-5A93-46FC-BA68-B865F50D57BD}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "Examples", "Examples", "{D6086F71-404B-4D18-BBE9-45947ED33DB2}"
EndProject
@ -11,14 +11,17 @@ Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "BB2B", "Examples\BB2B\BB2B.
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "RoboidControl", "src\RoboidControl.csproj", "{72BFCD03-FA78-4D0B-8B36-32301D60D6DD}"
EndProject
Project("{2150E333-8FDC-42A3-9474-1A3956D46DE8}") = "LinearAlgebra", "LinearAlgebra", "{3B5ED006-C6FC-4776-A6DC-FEE4E6909C03}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "LinearAlgebra", "LinearAlgebra\src\LinearAlgebra.csproj", "{CDCD9CE5-3224-4DB7-B7D6-5BB0714189B3}"
EndProject
Project("{FAE04EC0-301F-11D3-BF4B-00C04F79EFBC}") = "LinearAlgebra_Test", "LinearAlgebra\test\LinearAlgebra_Test.csproj", "{8F286220-E70C-4E77-BDA6-6F28B726E320}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Any CPU = Debug|Any CPU
Release|Any CPU = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{B65BB41E-5A93-46FC-BA68-B865F50D57BD}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{B65BB41E-5A93-46FC-BA68-B865F50D57BD}.Debug|Any CPU.Build.0 = Debug|Any CPU
@ -32,8 +35,21 @@ Global
{72BFCD03-FA78-4D0B-8B36-32301D60D6DD}.Debug|Any CPU.Build.0 = Debug|Any CPU
{72BFCD03-FA78-4D0B-8B36-32301D60D6DD}.Release|Any CPU.ActiveCfg = Release|Any CPU
{72BFCD03-FA78-4D0B-8B36-32301D60D6DD}.Release|Any CPU.Build.0 = Release|Any CPU
{CDCD9CE5-3224-4DB7-B7D6-5BB0714189B3}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{CDCD9CE5-3224-4DB7-B7D6-5BB0714189B3}.Debug|Any CPU.Build.0 = Debug|Any CPU
{CDCD9CE5-3224-4DB7-B7D6-5BB0714189B3}.Release|Any CPU.ActiveCfg = Release|Any CPU
{CDCD9CE5-3224-4DB7-B7D6-5BB0714189B3}.Release|Any CPU.Build.0 = Release|Any CPU
{8F286220-E70C-4E77-BDA6-6F28B726E320}.Debug|Any CPU.ActiveCfg = Debug|Any CPU
{8F286220-E70C-4E77-BDA6-6F28B726E320}.Debug|Any CPU.Build.0 = Debug|Any CPU
{8F286220-E70C-4E77-BDA6-6F28B726E320}.Release|Any CPU.ActiveCfg = Release|Any CPU
{8F286220-E70C-4E77-BDA6-6F28B726E320}.Release|Any CPU.Build.0 = Release|Any CPU
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
GlobalSection(NestedProjects) = preSolution
{488F28B2-A2CC-4E32-8D3B-7DB4EB1485F9} = {D6086F71-404B-4D18-BBE9-45947ED33DB2}
{CDCD9CE5-3224-4DB7-B7D6-5BB0714189B3} = {3B5ED006-C6FC-4776-A6DC-FEE4E6909C03}
{8F286220-E70C-4E77-BDA6-6F28B726E320} = {3B5ED006-C6FC-4776-A6DC-FEE4E6909C03}
EndGlobalSection
EndGlobal

View File

@ -1,11 +0,0 @@
using System;
namespace Passer.LinearAlgebra {
public class Angle {
public const float pi = 3.1415927410125732421875F;
public static float Rad2Deg = 360.0f / ((float)Math.PI * 2);
public static float Deg2Rad = ((float)Math.PI * 2) / 360.0f;
}
}

View File

@ -1,51 +0,0 @@
using System;
using System.Numerics;
namespace Passer.LinearAlgebra {
public class Vector2Of<T> where T : IComparable<T> {
public T x;
public T y;
public Vector2Of(T x, T y) {
this.x = x;
this.y = y;
}
}
public class Vector2Int : Vector2Of<int> {
public Vector2Int(int x, int y) : base(x, y) { }
public static Vector2Int operator -(Vector2Int v1, Vector2Int v2) {
return new Vector2Int(v1.x - v2.x, v1.y - v2.y);
}
public float magnitude {
get {
return (float)Math.Sqrt(this.x * this.x + this.y * this.y);
}
}
public static float Distance(Vector2Int v1, Vector2Int v2) {
return (v1 - v2).magnitude;
}
}
public class Vector2Float : Vector2Of<float> {
public Vector2Float(float x, float y) : base(x, y) { }
public static Vector2Float operator -(Vector2Float v1, Vector2Float v2) {
return new Vector2Float(v1.x - v2.x, v1.y - v2.y);
}
public float magnitude {
get {
return (float)Math.Sqrt(this.x * this.x + this.y * this.y);
}
}
public static float Distance(Vector2Float v1, Vector2Float v2) {
return (v1 - v2).magnitude;
}
}
}

View File

@ -1,33 +0,0 @@
#if !UNITY_5_3_OR_NEWER
using System;
namespace Passer.LinearAlgebra {
public class Vector3Of<T> {
public T x;
public T y;
public T z;
public Vector3Of(T x, T y, T z) {
this.x = x;
this.y = y;
this.z = z;
}
// public uint magnitude {
// get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
// }
}
public class Vector3Int : Vector3Of<int> {
public Vector3Int(int x, int y, int z) : base(x, y, z) { }
}
public class Vector3Float : Vector3Of<float> {
public Vector3Float(float x, float y, float z) : base(x, y, z) { }
public float magnitude {
get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
}
}
}
#endif

View File

@ -9,6 +9,6 @@
<ItemGroup>
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.13.0" />
<PackageReference Include="NUnit" Version="3.13.2" />
<ProjectReference Include="..\LinearAlgebra\src\LinearAlgebra.csproj" />
</ItemGroup>
</Project>