Compare commits

...

12 Commits

21 changed files with 886 additions and 124 deletions

View File

@ -1,8 +1,21 @@
cmake_minimum_required(VERSION 3.13) # CMake version check cmake_minimum_required(VERSION 3.13) # CMake version check
file(GLOB srcs
*.cpp
Things/*.cpp
Messages/*.cpp
Arduino/*.cpp
Posix/*.cpp
Windows/*.cpp
EspIdf/*.cpp
LinearAlgebra/*.cpp
)
if(ESP_PLATFORM) if(ESP_PLATFORM)
idf_component_register( idf_component_register(
SRC_DIRS "." SRCS ${srcs}
INCLUDE_DIRS "." INCLUDE_DIRS "." "LinearAlgebra"
REQUIRES esp_netif esp_wifi
) )
else() else()
project(RoboidControl) project(RoboidControl)
@ -28,14 +41,6 @@ else()
. .
LinearAlgebra LinearAlgebra
) )
file(GLOB srcs
*.cpp
Things/*.cpp
Messages/*.cpp
Arduino/*.cpp
Posix/*.cpp
Windows/*.cpp
)
add_library(RoboidControl STATIC ${srcs}) add_library(RoboidControl STATIC ${srcs})
enable_testing() enable_testing()

View File

@ -0,0 +1,157 @@
#include "EspIdfParticipant.h"
#include "esp_wifi.h"
namespace RoboidControl {
namespace EspIdf {
void LocalParticipant::Setup(int localPort,
const char* remoteIpAddress,
int remotePort) {
#if defined(IDF_VER)
GetBroadcastAddress();
wifi_ap_record_t ap_info;
esp_err_t result = esp_wifi_sta_get_ap_info(&ap_info);
if (result != ESP_OK) {
std::cout << "No network available!\n";
return;
}
// Create a UDP socket
sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd < 0) {
std::cout << "Unable to create UDP socket: errno " << errno << "\n";
vTaskDelete(NULL);
return;
}
// Set up the server address structure
struct sockaddr_in local_addr;
memset(&local_addr, 0, sizeof(local_addr));
local_addr.sin_family = AF_INET;
local_addr.sin_port = htons(this->port);
local_addr.sin_addr.s_addr =
htonl(INADDR_ANY); // Listen on all available network interfaces
// Bind the socket to the address and port
if (bind(sockfd, (struct sockaddr*)&local_addr, sizeof(local_addr)) < 0) {
std::cout << "Unable to bind UDP socket: errno " << errno << "\n";
close(sockfd);
vTaskDelete(NULL);
return;
}
// struct sockaddr_in dest_addr;
memset(dest_addr.sin_zero, 0, sizeof(dest_addr.sin_zero));
dest_addr.sin_family = AF_INET;
dest_addr.sin_port = htons(this->remoteSite->port);
inet_pton(AF_INET, this->remoteSite->ipAddress, &dest_addr.sin_addr.s_addr);
std::cout << "Wifi sync started local " << this->port << ", remote "
<< this->remoteSite->ipAddress << ":" << this->remoteSite->port
<< "\n";
#endif
}
void LocalParticipant::GetBroadcastAddress() {
esp_netif_ip_info_t ip_info;
esp_netif_t* esp_netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
// Get IP information (IP address, netmask, gateway)
if (esp_netif_get_ip_info(esp_netif, &ip_info) != ESP_OK) {
std::cout << "Failed to get IP info\n";
return;
}
ip_addr_t broadcast_addr = {};
broadcast_addr.u_addr.ip4.addr =
(ip_info.ip.addr & ip_info.netmask.addr) | ~ip_info.netmask.addr;
this->broadcastIpAddress = new char[16]; // IPv4 address can have a max of 15
// characters + null terminator
snprintf(this->broadcastIpAddress, 16, IPSTR,
IP2STR(&broadcast_addr.u_addr.ip4));
std::cout << "Broadcast address: " << this->broadcastIpAddress << "\n";
}
void LocalParticipant::Receive() {
#if defined(IDF_VER)
struct pollfd fds;
fds.fd = sockfd;
fds.events = POLLIN; // We're looking for data available to read
// Use poll() with a timeout of 0 to return immediately
int ret = poll(&fds, 1, 0);
if (ret == -1) {
std::cout << "poll() error\n";
return;
}
socklen_t addr_len = sizeof(this->src_addr);
while (ret > 0 && fds.revents & POLLIN) {
int packetSize = recvfrom(sockfd, buffer, sizeof(buffer) - 1, 0,
(struct sockaddr*)&this->src_addr, &addr_len);
if (packetSize < 0) {
std::cout << "recvfrom() error\n";
return;
}
char sender_ipAddress[16];
inet_ntoa_r(this->src_addr.sin_addr, sender_ipAddress, INET_ADDRSTRLEN);
unsigned int sender_port = ntohs(this->src_addr.sin_port);
ReceiveData(packetSize, sender_ipAddress, sender_port);
int ret = poll(&fds, 1, 0);
if (ret == -1) {
std::cout << "poll() error\n";
return;
}
}
#endif
}
bool LocalParticipant::Send(Participant* remoteParticipant, int bufferSize) {
#if defined(IDF_VER)
std::cout << "Sending to " << remoteParticipant->ipAddress << ":"
<< remoteParticipant->port << "\n";
int err = sendto(sockfd, buffer, bufferSize, 0, (struct sockaddr*)&dest_addr,
sizeof(dest_addr));
if (errno != 0)
std::cout << "Send error " << err << " or " << errno << "\n";
#endif
return true;
}
bool LocalParticipant::Publish(IMessage* msg) {
#if defined(IDF_VER)
int bufferSize = msg->Serialize((char*)this->buffer);
if (bufferSize <= 0)
return true;
struct sockaddr_in dest_addr;
dest_addr.sin_family = AF_INET;
dest_addr.sin_port = htons(this->port);
inet_pton(AF_INET, this->broadcastIpAddress, &dest_addr.sin_addr.s_addr);
int err = sendto(sockfd, buffer, bufferSize, 0, (struct sockaddr*)&dest_addr,
sizeof(dest_addr));
if (err != 0)
std::cout << "Publish error\n";
// udp.beginPacket(this->broadcastIpAddress, this->remotePort);
// udp.write((unsigned char*)buffer, bufferSize);
// udp.endPacket();
// std::cout << "Publish to " << this->broadcastIpAddress << ":"
// << this->remotePort << "\n";
#endif
return true;
};
} // namespace EspIdf
} // namespace RoboidControl

View File

@ -0,0 +1,30 @@
#pragma once
#include "../LocalParticipant.h"
#include "lwip/sockets.h"
namespace RoboidControl {
namespace EspIdf {
class LocalParticipant : public RoboidControl::LocalParticipant {
public:
void Setup(int localPort, const char* remoteIpAddress, int remotePort);
void Receive();
bool Send(Participant* remoteParticipant, int bufferSize);
bool Publish(IMessage* msg);
protected:
// const char* remoteIpAddress = nullptr;
// unsigned short remotePort = 0;
char* broadcastIpAddress = nullptr;
int sockfd;
struct sockaddr_in dest_addr;
struct sockaddr_in src_addr;
void GetBroadcastAddress();
};
} // namespace EspIdf
} // namespace RoboidControl

100
EspIdf/EspIdfUtils.cpp Normal file
View File

@ -0,0 +1,100 @@
#include "EspIdfUtils.h"
#if defined(IDF_VER)
#include <iostream>
// #include "esp_event.h"
// #include "esp_log.h"
#include "esp_netif.h"
#include "esp_wifi.h"
// #include "lwip/inet.h"
// #include "lwip/ip_addr.h"
#include "string.h"
const char* hotspotSSID = "Roboid";
const char* hotspotPassword = "alchemy7000";
esp_netif_t* wifi_netif = nullptr;
// Semaphore to signal Wi-Fi connection status
// SemaphoreHandle_t wifi_semaphore;
static bool wifi_connected = false;
static void wifi_event_handler(void* arg,
esp_event_base_t event_base,
int32_t event_id,
void* event_data) {
if (event_base == WIFI_EVENT) {
if (event_id == WIFI_EVENT_STA_START)
esp_wifi_connect();
else if (event_id == WIFI_EVENT_STA_DISCONNECTED)
esp_wifi_connect();
} else if (event_base == IP_EVENT) {
if (event_id == IP_EVENT_STA_GOT_IP) {
// ip_event_got_ip_t* event = (ip_event_got_ip_t*)event_data;
// const char* ipaddr = IP2STR(&event->ip_info.ip);
wifi_connected = true;
// xSemaphoreGive(wifi_semaphore); // Signal that connection is
// established
}
}
}
bool StartWifi(const char* wifiSsid, const char* wifiPassword) {
std::cout << "Connecting to WiFi " << wifiSsid << "\n";
esp_netif_init();
esp_event_loop_create_default();
wifi_netif = esp_netif_create_default_wifi_sta();
wifi_init_config_t cfg = WIFI_INIT_CONFIG_DEFAULT();
esp_wifi_init(&cfg);
esp_event_handler_register(WIFI_EVENT, ESP_EVENT_ANY_ID, &wifi_event_handler,
NULL);
esp_event_handler_register(IP_EVENT, IP_EVENT_STA_GOT_IP, &wifi_event_handler,
NULL);
wifi_config_t wifi_config = {};
strncpy((char*)wifi_config.sta.ssid, wifiSsid, strlen(wifiSsid) + 1);
strncpy((char*)wifi_config.sta.password, wifiPassword,
strlen(wifiPassword) + 1);
esp_wifi_set_mode(WIFI_MODE_STA);
esp_wifi_set_config(WIFI_IF_STA, &wifi_config);
esp_wifi_start();
// Wait for connection with a timeout of 10 seconds
TickType_t xLastWakeTime = xTaskGetTickCount();
bool success = false;
for (int i = 0; i < 20; i++) { // 20 iterations, each 500ms
if (wifi_connected) {
success = true;
std::cout << " Connected.\n";
break;
}
std::cout << ".";
fflush(stdout); // Ensure output is printed immediately
vTaskDelayUntil(&xLastWakeTime, pdMS_TO_TICKS(500)); // Wait 500ms
}
if (wifi_connected) {
esp_netif_ip_info_t ip_info = {};
esp_netif_t* esp_netif = esp_netif_get_handle_from_ifkey("WIFI_STA_DEF");
// Get IP information (IP address, netmask, gateway)
if (esp_netif_get_ip_info(esp_netif, &ip_info) != ESP_OK) {
std::cout << "Failed to get IP info\n";
return false;
}
// Convert the IP address to string format using inet_ntoa
char ip_str[16]; // IPv4 address can have a max of 15 characters + null
// terminator
snprintf(ip_str, sizeof(ip_str), IPSTR, IP2STR(&ip_info.ip));
std::cout << "IP address = " << ip_str << "\n";
} else
std::cout << "\nCould not connect to home network.\n";
return success;
}
#endif

6
EspIdf/EspIdfUtils.h Normal file
View File

@ -0,0 +1,6 @@
#pragma once
#if defined(IDF_VER)
bool StartWifi(const char *wifiSsid, const char *wifiPassword);
#endif

View File

@ -21,7 +21,7 @@ template <typename T>
class AngleOf { class AngleOf {
public: public:
/// @brief Create a new angle with a zero value /// @brief Create a new angle with a zero value
AngleOf<T>(); AngleOf();
/// @brief An zero value angle /// @brief An zero value angle
const static AngleOf<T> zero; const static AngleOf<T> zero;
@ -209,7 +209,7 @@ class AngleOf {
private: private:
T value; T value;
AngleOf<T>(T rawValue); AngleOf(T rawValue);
}; };
using AngleSingle = AngleOf<float>; using AngleSingle = AngleOf<float>;

View File

@ -30,11 +30,11 @@ class DirectionOf {
AngleOf<T> vertical; AngleOf<T> vertical;
/// @brief Create a new direction with zero angles /// @brief Create a new direction with zero angles
DirectionOf<T>(); DirectionOf();
/// @brief Create a new direction /// @brief Create a new direction
/// @param horizontal The horizontal angle /// @param horizontal The horizontal angle
/// @param vertical The vertical angle. /// @param vertical The vertical angle.
DirectionOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical); DirectionOf(AngleOf<T> horizontal, AngleOf<T> vertical);
/// @brief Convert the direction into a carthesian vector /// @brief Convert the direction into a carthesian vector
/// @return The carthesian vector corresponding to this direction. /// @return The carthesian vector corresponding to this direction.

View File

@ -1,6 +1,207 @@
#include "Matrix.h" #include "Matrix.h"
#include <iostream>
template <> MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) { #pragma region Matrix1
Matrix1::Matrix1(int size) : size(size) {
if (this->size == 0)
data = nullptr;
else {
this->data = new float[size]();
this->externalData = false;
}
}
Matrix1::Matrix1(float* data, int size)
: data(data), size(size) {
this->externalData = true;
}
Matrix1 LinearAlgebra::Matrix1::FromQuaternion(Quaternion q) {
Matrix1 r = Matrix1(4);
float* data = r.data;
data[0] = q.x;
data[1] = q.y;
data[2] = q.z;
data[3] = q.w;
return r;
}
Quaternion LinearAlgebra::Matrix1::ToQuaternion() {
return Quaternion(
this->data[0],
this->data[1],
this->data[2],
this->data[3]
);
}
// Matrix1
#pragma endregion
#pragma region Matrix2
Matrix2::Matrix2() {}
Matrix2::Matrix2(int nRows, int nCols) : nRows(nRows), nCols(nCols) {
this->nValues = nRows * nCols;
if (this->nValues == 0)
data = nullptr;
else {
this->data = new float[nValues]();
this->externalData = false;
}
}
Matrix2::Matrix2(float* data, int nRows, int nCols)
: nRows(nRows), nCols(nCols), data(data) {
this->nValues = nRows * nCols;
this->externalData = true;
}
Matrix2::~Matrix2() {
if (data != nullptr && !this->externalData)
delete[] data;
}
// Move constructor
Matrix2::Matrix2(Matrix2&& other) noexcept
: nRows(other.nRows),
nCols(other.nCols),
nValues(other.nValues),
data(other.data) {
other.data = nullptr; // Set the other object's pointer to nullptr to avoid
// double deletion
}
// Move assignment operator
Matrix2& Matrix2::operator=(Matrix2&& other) noexcept {
if (this != &other) {
delete[] data; // Clean up current data
nRows = other.nRows;
nCols = other.nCols;
nValues = other.nValues;
data = other.data;
other.data = nullptr; // Avoid double deletion
}
return *this;
}
Matrix2 Matrix2::Zero(int nRows, int nCols) {
Matrix2 r = Matrix2(nRows, nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = 0;
return r;
}
Matrix2 Matrix2::Identity(int size) {
return Diagonal(1, size);
}
Matrix2 Matrix2::Diagonal(float f, int size) {
Matrix2 r = Matrix2(size, size);
float* data = r.data;
int valueIx = 0;
for (int ix = 0; ix < size; ix++) {
data[valueIx] = f;
valueIx += size + 1;
}
return r;
}
Matrix2 Matrix2::SkewMatrix(const Vector3& v) {
Matrix2 r = Matrix2(3, 3);
float* data = r.data;
data[0 * 3 + 1] = -v.z; // result(0, 1)
data[0 * 3 + 2] = v.y; // result(0, 2)
data[1 * 3 + 0] = v.z; // result(1, 0)
data[1 * 3 + 2] = -v.x; // result(1, 2)
data[2 * 3 + 0] = -v.y; // result(2, 0)
data[2 * 3 + 1] = v.x; // result(2, 1)
return r;
}
Matrix2 LinearAlgebra::Matrix2::operator-() const {
Matrix2 r = Matrix2(this->nRows, this->nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = -this->data[ix];
return r;
}
Matrix2 LinearAlgebra::Matrix2::operator+(const Matrix2& v) const {
Matrix2 r = Matrix2(this->nRows, this->nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = this->data[ix] + v.data[ix];
return r;
}
Matrix2 LinearAlgebra::Matrix2::operator*(const Matrix2& B) const {
Matrix2 r = Matrix2(this->nRows, B.nCols);
int ACols = this->nCols;
int BCols = B.nCols;
int ARows = this->nRows;
// int BRows = B.nRows;
for (int i = 0; i < ARows; ++i) {
// Pre-compute row offsets
int ARowOffset = i * ACols; // ARowOffset is constant for each row of A
int BColOffset = i * BCols; // BColOffset is constant for each row of B
for (int j = 0; j < BCols; ++j) {
float sum = 0;
std::cout << " 0";
int BIndex = j;
for (int k = 0; k < ACols; ++k) {
std::cout << " + " << this->data[ARowOffset + k] << " * "
<< B.data[BIndex];
sum += this->data[ARowOffset + k] * B.data[BIndex];
BIndex += BCols;
}
r.data[BColOffset + j] = sum;
std::cout << " = " << sum << " ix: " << BColOffset + j << "\n";
}
}
return r;
}
void LinearAlgebra::Matrix2::SetSlice(int rowStart,
int rowStop,
int colStart,
int colStop,
const Matrix2& m) const {
for (int i = rowStart; i < rowStop; i++) {
for (int j = colStart; j < colStop; j++)
this->data[i * this->nCols + j] =
m.data[(i - rowStart) * m.nCols + (j - colStart)];
}
}
/// @brief Compute the Omega matrix of a 3D vector
/// @param v The vector
/// @return 4x4 Omega matrix
Matrix2 LinearAlgebra::Matrix2::Omega(const Vector3& v) {
Matrix2 r = Matrix2::Zero(4, 4);
r.SetSlice(0, 3, 0, 3, -Matrix2::SkewMatrix(v));
// set last row to -v
int ix = 3 * 4;
r.data[ix++] = -v.x;
r.data[ix++] = -v.y;
r.data[ix] = -v.z;
// Set last column to v
ix = 3;
r.data[ix += 4] = v.x;
r.data[ix += 4] = v.y;
r.data[ix] = v.z;
return r;
}
// Matrix2
#pragma endregion
template <>
MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
if (rows <= 0 || cols <= 0) { if (rows <= 0 || cols <= 0) {
this->rows = 0; this->rows = 0;
this->cols = 0; this->cols = 0;
@ -14,15 +215,17 @@ template <> MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
this->data = new float[matrixSize]{0.0f}; this->data = new float[matrixSize]{0.0f};
} }
template <> MatrixOf<float>::MatrixOf(Vector3 v) : MatrixOf(3, 1) { template <>
MatrixOf<float>::MatrixOf(Vector3 v) : MatrixOf(3, 1) {
Set(0, 0, v.Right()); Set(0, 0, v.Right());
Set(1, 0, v.Up()); Set(1, 0, v.Up());
Set(2, 0, v.Forward()); Set(2, 0, v.Forward());
} }
template <> template <>
void MatrixOf<float>::Multiply(const MatrixOf<float> *m1, void MatrixOf<float>::Multiply(const MatrixOf<float>* m1,
const MatrixOf<float> *m2, MatrixOf<float> *r) { const MatrixOf<float>* m2,
MatrixOf<float>* r) {
for (unsigned int rowIx1 = 0; rowIx1 < m1->rows; rowIx1++) { for (unsigned int rowIx1 = 0; rowIx1 < m1->rows; rowIx1++) {
for (unsigned int colIx2 = 0; colIx2 < m2->cols; colIx2++) { for (unsigned int colIx2 = 0; colIx2 < m2->cols; colIx2++) {
unsigned int rDataIx = colIx2 * m2->cols + rowIx1; unsigned int rDataIx = colIx2 * m2->cols + rowIx1;
@ -37,7 +240,7 @@ void MatrixOf<float>::Multiply(const MatrixOf<float> *m1,
} }
template <> template <>
Vector3 MatrixOf<float>::Multiply(const MatrixOf<float> *m, Vector3 v) { Vector3 MatrixOf<float>::Multiply(const MatrixOf<float>* m, Vector3 v) {
MatrixOf<float> v_m = MatrixOf<float>(v); MatrixOf<float> v_m = MatrixOf<float>(v);
MatrixOf<float> r_m = MatrixOf<float>(3, 1); MatrixOf<float> r_m = MatrixOf<float>(3, 1);
@ -47,10 +250,11 @@ Vector3 MatrixOf<float>::Multiply(const MatrixOf<float> *m, Vector3 v) {
return r; return r;
} }
template <typename T> Vector3 MatrixOf<T>::operator*(const Vector3 v) const { template <typename T>
float *vData = new float[3]{v.Right(), v.Up(), v.Forward()}; Vector3 MatrixOf<T>::operator*(const Vector3 v) const {
float* vData = new float[3]{v.Right(), v.Up(), v.Forward()};
MatrixOf<float> v_m = MatrixOf<float>(3, 1, vData); MatrixOf<float> v_m = MatrixOf<float>(3, 1, vData);
float *rData = new float[3]{}; float* rData = new float[3]{};
MatrixOf<float> r_m = MatrixOf<float>(3, 1, rData); MatrixOf<float> r_m = MatrixOf<float>(3, 1, rData);
Multiply(this, &v_m, &r_m); Multiply(this, &v_m, &r_m);

View File

@ -1,10 +1,102 @@
#ifndef MATRIX_H #ifndef MATRIX_H
#define MATRIX_H #define MATRIX_H
#include "Quaternion.h"
#include "Vector3.h" #include "Vector3.h"
namespace LinearAlgebra { namespace LinearAlgebra {
/// @brief A 1-dimensional matrix or vector of arbitrary size
class Matrix1 {
public:
float* data = nullptr;
int size = 0;
Matrix1(int size);
Matrix1(float* data, int size);
static Matrix1 FromQuaternion(Quaternion q);
Quaternion ToQuaternion();
private:
bool externalData = true;
};
/// @brief A 2-dimensional matrix of arbitrary size
class Matrix2 {
public:
int nRows = 0;
int nCols = 0;
int nValues = 0;
float* data = nullptr;
Matrix2();
Matrix2(int nRows, int nCols);
Matrix2(float* data, int nRows, int nCols);
~Matrix2();
static Matrix2 Zero(int nRows, int nCols);
static Matrix2 Identity(int size);
static Matrix2 Diagonal(float f, int size);
static Matrix2 SkewMatrix(const Vector3& v);
Matrix2 operator-() const;
/// @brief Add a matrix to this matrix
/// @param m The matrix to add to this matrix
/// @return The result of the addition
Matrix2 operator+(const Matrix2& v) const;
Matrix2 operator*(const Matrix2& m) const;
friend Matrix2 operator*(const Matrix2& m, float f) {
Matrix2 r = Matrix2(m.nRows, m.nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = m.data[ix] * f;
return r;
}
friend Matrix2 operator*(float f, const Matrix2& m) {
Matrix2 r = Matrix2(m.nRows, m.nCols);
for (int ix = 0; ix < r.nValues; ix++)
r.data[ix] = f * m.data[ix];
return r;
}
friend Matrix1 operator*(const Matrix2& m, const Matrix1& v) {
Matrix1 r = Matrix1(m.nRows);
for (int rowIx = 0; rowIx < m.nRows; rowIx++) {
int mRowIx = rowIx * m.nCols;
for (int colIx = 0; colIx < m.nCols; colIx++)
r.data[rowIx] += m.data[mRowIx + colIx] * v.data[rowIx];
}
return r;
}
// friend Matrix2 operator*(float f, const Matrix2& v) {
// Matrix2 r = Matrix2(v.nRows, v.nCols);
// for (int ix = 0; ix < r.nValues; ix++)
// r.data[ix] = f * v.data[ix];
// return r;
// }
void SetSlice(int rowStart,
int rowStop,
int colStart,
int colStop,
const Matrix2& m) const;
// private:
// move constructor and move assignment operator
Matrix2(Matrix2&& other) noexcept;
Matrix2& operator=(Matrix2&& other) noexcept;
static Matrix2 Omega(const Vector3& v);
private:
bool externalData = true;
};
/// @brief Single precision float matrix /// @brief Single precision float matrix
template <typename T> template <typename T>
class MatrixOf { class MatrixOf {
@ -116,6 +208,6 @@ class MatrixOf {
}; };
} // namespace LinearAlgebra } // namespace LinearAlgebra
using namespace LinearAlgebra; //using namespace LinearAlgebra;
#endif #endif

View File

@ -6,6 +6,7 @@
#include <float.h> #include <float.h>
#include <math.h> #include <math.h>
#include "Angle.h" #include "Angle.h"
#include "Matrix.h"
#include "Vector3.h" #include "Vector3.h"
void CopyQuat(const Quat& q1, Quat& q2) { void CopyQuat(const Quat& q1, Quat& q2) {
@ -97,6 +98,28 @@ Vector3 Quaternion::ToAngles(const Quaternion& q1) {
} }
} }
Matrix2 LinearAlgebra::Quaternion::ToRotationMatrix() {
Matrix2 r = Matrix2(3, 3);
float x = this->x;
float y = this->y;
float z = this->z;
float w = this->w;
float* data = r.data;
data[0 * 3 + 0] = 1 - 2 * (y * y + z * z);
data[0 * 3 + 1] = 2 * (x * y - w * z);
data[0 * 3 + 2] = 2 * (x * z + w * y);
data[1 * 3 + 0] = 2 * (x * y + w * z);
data[1 * 3 + 1] = 1 - 2 * (x * x + z * z);
data[1 * 3 + 2] = 2 * (y * z - w * x);
data[2 * 3 + 0] = 2 * (x * z - w * y);
data[2 * 3 + 1] = 2 * (y * z + w * x);
data[2 * 3 + 2] = 1 - 2 * (x * x + y * y);
return r;
}
Quaternion Quaternion::operator*(const Quaternion& r2) const { Quaternion Quaternion::operator*(const Quaternion& r2) const {
return Quaternion( return Quaternion(
this->x * r2.w + this->y * r2.z - this->z * r2.y + this->w * r2.x, this->x * r2.w + this->y * r2.z - this->z * r2.y + this->w * r2.x,

View File

@ -34,6 +34,8 @@ typedef struct Quat {
namespace LinearAlgebra { namespace LinearAlgebra {
class Matrix2;
/// <summary> /// <summary>
/// A quaternion /// A quaternion
/// </summary> /// </summary>
@ -89,6 +91,8 @@ struct Quaternion : Quat {
/// The euler angles performed in the order: Z, X, Y /// The euler angles performed in the order: Z, X, Y
static Vector3 ToAngles(const Quaternion& q); static Vector3 ToAngles(const Quaternion& q);
Matrix2 ToRotationMatrix();
/// <summary> /// <summary>
/// Rotate a vector using this quaterion /// Rotate a vector using this quaterion
/// </summary> /// </summary>

View File

@ -24,9 +24,9 @@ class SphericalOf {
/// @brief The direction of the vector /// @brief The direction of the vector
DirectionOf<T> direction; DirectionOf<T> direction;
SphericalOf<T>(); SphericalOf();
SphericalOf<T>(float distance, AngleOf<T> horizontal, AngleOf<T> vertical); SphericalOf(float distance, AngleOf<T> horizontal, AngleOf<T> vertical);
SphericalOf<T>(float distance, DirectionOf<T> direction); SphericalOf(float distance, DirectionOf<T> direction);
/// @brief Create spherical vector without using AngleOf type. All given /// @brief Create spherical vector without using AngleOf type. All given
/// angles are in degrees /// angles are in degrees

View File

@ -21,9 +21,9 @@ class SwingTwistOf {
DirectionOf<T> swing; DirectionOf<T> swing;
AngleOf<T> twist; AngleOf<T> twist;
SwingTwistOf<T>(); SwingTwistOf();
SwingTwistOf<T>(DirectionOf<T> swing, AngleOf<T> twist); SwingTwistOf(DirectionOf<T> swing, AngleOf<T> twist);
SwingTwistOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist); SwingTwistOf(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist);
static SwingTwistOf<T> Degrees(float horizontal, static SwingTwistOf<T> Degrees(float horizontal,
float vertical = 0, float vertical = 0,

View File

@ -14,7 +14,7 @@ extern "C" {
/// This is a C-style implementation /// This is a C-style implementation
/// This uses the right-handed coordinate system. /// This uses the right-handed coordinate system.
typedef struct Vec3 { typedef struct Vec3 {
protected: public:
/// <summary> /// <summary>
/// The right axis of the vector /// The right axis of the vector
/// </summary> /// </summary>

View File

@ -1,10 +1,90 @@
#if GTEST #if GTEST
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <limits>
#include <math.h> #include <math.h>
#include <limits>
#include "Matrix.h" #include "Matrix.h"
TEST(Matrix2, Zero) {
// Test case 1: 2x2 zero matrix
Matrix2 zeroMatrix = Matrix2::Zero(2, 2);
EXPECT_TRUE(zeroMatrix.nRows == 2);
EXPECT_TRUE(zeroMatrix.nCols == 2);
for (int i = 0; i < zeroMatrix.nValues; ++i) {
EXPECT_TRUE(zeroMatrix.data[i] == 0.0f);
}
std::cout << "Test case 1 passed: 2x2 zero matrix\n";
// Test case 2: 3x3 zero matrix
zeroMatrix = Matrix2::Zero(3, 3);
EXPECT_TRUE(zeroMatrix.nRows == 3);
EXPECT_TRUE(zeroMatrix.nCols == 3);
for (int i = 0; i < zeroMatrix.nValues; ++i) {
EXPECT_TRUE(zeroMatrix.data[i] == 0.0f);
}
std::cout << "Test case 2 passed: 3x3 zero matrix\n";
// Test case 3: 1x1 zero matrix
zeroMatrix = Matrix2::Zero(1, 1);
EXPECT_TRUE(zeroMatrix.nRows == 1);
EXPECT_TRUE(zeroMatrix.nCols == 1);
EXPECT_TRUE(zeroMatrix.data[0] == 0.0f);
std::cout << "Test case 3 passed: 1x1 zero matrix\n";
// Test case 4: 0x0 matrix (edge case)
zeroMatrix = Matrix2::Zero(0, 0);
EXPECT_TRUE(zeroMatrix.nRows == 0);
EXPECT_TRUE(zeroMatrix.nCols == 0);
EXPECT_TRUE(zeroMatrix.data == nullptr);
std::cout << "Test case 4 passed: 0x0 matrix\n";
}
TEST(Matrix2, Multiplication) {
// Test 1: Multiplying two 2x2 matrices
float dataA[] = {1, 2, 3, 4};
float dataB[] = {5, 6, 7, 8};
Matrix2 A(dataA, 2, 2);
Matrix2 B(dataB, 2, 2);
Matrix2 result = A * B;
float expectedData[] = {19, 22, 43, 50};
for (int i = 0; i < 4; ++i)
EXPECT_TRUE(result.data[i] == expectedData[i]);
std::cout << "Test 1 passed: 2x2 matrix multiplication.\n";
// Test 2: Multiplying a 3x2 matrix with a 2x3 matrix
float dataC[] = {1, 2, 3, 4, 5, 6};
float dataD[] = {7, 8, 9, 10, 11, 12};
Matrix2 C(dataC, 3, 2);
Matrix2 D(dataD, 2, 3);
Matrix2 result2 = C * D;
float expectedData2[] = {27, 30, 33, 61, 68, 75, 95, 106, 117};
for (int i = 0; i < 9; ++i)
EXPECT_TRUE(result2.data[i] == expectedData2[i]);
std::cout << "Test 2 passed: 3x2 * 2x3 matrix multiplication.\n";
// Test 3: Multiplying with a zero matrix
Matrix2 zeroMatrix = Matrix2::Zero(2, 2);
Matrix2 result3 = A * zeroMatrix;
for (int i = 0; i < 4; ++i)
EXPECT_TRUE(result3.data[i] == 0);
std::cout << "Test 3 passed: Multiplication with zero matrix.\n";
// Test 4: Multiplying with an identity matrix
Matrix2 identityMatrix = Matrix2::Identity(2);
Matrix2 result4 = A * identityMatrix;
for (int i = 0; i < 4; ++i)
EXPECT_TRUE(result4.data[i] == A.data[i]);
std::cout << "Test 4 passed: Multiplication with identity matrix.\n";
}
TEST(MatrixSingle, Init) { TEST(MatrixSingle, Init) {
// zero // zero
MatrixOf<float> m0 = MatrixOf<float>(0, 0); MatrixOf<float> m0 = MatrixOf<float>(0, 0);

View File

@ -3,6 +3,7 @@
#include "Thing.h" #include "Thing.h"
#include "Arduino/ArduinoParticipant.h" #include "Arduino/ArduinoParticipant.h"
#include "EspIdf/EspIdfParticipant.h"
#if defined(_WIN32) || defined(_WIN64) #if defined(_WIN32) || defined(_WIN64)
#include <winsock2.h> #include <winsock2.h>
@ -24,8 +25,6 @@
namespace RoboidControl { namespace RoboidControl {
// LocalParticipant::LocalParticipant() {}
LocalParticipant::LocalParticipant(int port) { LocalParticipant::LocalParticipant(int port) {
this->ipAddress = "0.0.0.0"; this->ipAddress = "0.0.0.0";
this->port = port; this->port = port;
@ -33,10 +32,10 @@ LocalParticipant::LocalParticipant(int port) {
this->isIsolated = true; this->isIsolated = true;
} }
LocalParticipant::LocalParticipant(const char* ipAddress, int port) { LocalParticipant::LocalParticipant(const char* ipAddress,
this->ipAddress = "0.0.0.0"; // ipAddress; // maybe this is not needed int port,
// anymore, keeping it to "0.0.0.0" int localPort)
this->port = port; : Participant("127.0.0.1", localPort) {
if (this->port == 0) if (this->port == 0)
this->isIsolated = true; this->isIsolated = true;
else else
@ -55,7 +54,7 @@ void LocalParticipant::begin() {
if (this->isIsolated) if (this->isIsolated)
return; return;
SetupUDP(this->port, this->ipAddress, this->port); SetupUDP(this->port, this->remoteSite->ipAddress, this->remoteSite->port);
} }
void LocalParticipant::SetupUDP(int localPort, void LocalParticipant::SetupUDP(int localPort,
@ -73,22 +72,17 @@ void LocalParticipant::SetupUDP(int localPort,
Arduino::LocalParticipant* thisArduino = Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this); static_cast<Arduino::LocalParticipant*>(this);
thisArduino->Setup(localPort, remoteIpAddress, remotePort); thisArduino->Setup(localPort, remoteIpAddress, remotePort);
#elif defined(IDF_VER)
EspIdf::LocalParticipant* thisEspIdf =
static_cast<EspIdf::LocalParticipant*>(this);
thisEspIdf->Setup(localPort, remoteIpAddress, remotePort);
#endif #endif
this->connected = true; this->connected = true;
} }
void LocalParticipant::Update(unsigned long currentTimeMs) { void LocalParticipant::Update(unsigned long currentTimeMs) {
if (currentTimeMs == 0) { if (currentTimeMs == 0)
currentTimeMs = Thing::GetTimeMs(); currentTimeMs = Thing::GetTimeMs();
// #if defined(ARDUINO)
// currentTimeMs = millis();
// #elif defined(__unix__) || defined(__APPLE__)
// auto now = std::chrono::steady_clock::now();
// auto ms =
// std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch());
// currentTimeMs = static_cast<unsigned long>(ms.count());
// #endif
}
if (this->isIsolated == false) { if (this->isIsolated == false) {
if (this->connected == false) if (this->connected == false)
@ -133,6 +127,10 @@ void LocalParticipant::ReceiveUDP() {
Arduino::LocalParticipant* thisArduino = Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this); static_cast<Arduino::LocalParticipant*>(this);
thisArduino->Receive(); thisArduino->Receive();
#elif defined(IDF_VER)
EspIdf::LocalParticipant* thisEspIdf =
static_cast<EspIdf::LocalParticipant*>(this);
thisEspIdf->Receive();
#endif #endif
} }
@ -196,6 +194,12 @@ bool LocalParticipant::Send(Participant* remoteParticipant, IMessage* msg) {
Arduino::LocalParticipant* thisArduino = Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this); static_cast<Arduino::LocalParticipant*>(this);
return thisArduino->Send(remoteParticipant, bufferSize); return thisArduino->Send(remoteParticipant, bufferSize);
#elif defined(IDF_VER)
EspIdf::LocalParticipant* thisEspIdf =
static_cast<EspIdf::LocalParticipant*>(this);
return thisEspIdf->Send(remoteParticipant, bufferSize);
#else
return false;
#endif #endif
} }
@ -233,6 +237,12 @@ bool LocalParticipant::Publish(IMessage* msg) {
Arduino::LocalParticipant* thisArduino = Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this); static_cast<Arduino::LocalParticipant*>(this);
return thisArduino->Publish(msg); return thisArduino->Publish(msg);
#elif defined(IDF_VER)
EspIdf::LocalParticipant* thisEspIdf =
static_cast<EspIdf::LocalParticipant*>(this);
return thisEspIdf->Publish(msg);
#else
return false;
#endif #endif
} }
@ -248,11 +258,11 @@ void LocalParticipant::ReceiveData(unsigned char packetSize,
this->GetParticipant(senderIpAddress, senderPort); this->GetParticipant(senderIpAddress, senderPort);
if (remoteParticipant == nullptr) { if (remoteParticipant == nullptr) {
remoteParticipant = this->AddParticipant(senderIpAddress, senderPort); remoteParticipant = this->AddParticipant(senderIpAddress, senderPort);
// std::cout << "New sender " << sender_ipAddress << ":" << sender_port // std::cout << "New sender " << senderIpAddress << ":" << senderPort
// << "\n"; // << "\n";
// std::cout << "New remote participant " << remoteParticipant->ipAddress std::cout << "New remote participant " << remoteParticipant->ipAddress
// << ":" << remoteParticipant->port << " " << ":" << remoteParticipant->port << " "
// << (int)remoteParticipant->networkId << "\n"; << (int)remoteParticipant->networkId << "\n";
} }
ReceiveData(packetSize, remoteParticipant); ReceiveData(packetSize, remoteParticipant);
@ -304,8 +314,8 @@ void LocalParticipant::ReceiveData(unsigned char bufferSize,
void LocalParticipant::Process(Participant* sender, ParticipantMsg* msg) {} void LocalParticipant::Process(Participant* sender, ParticipantMsg* msg) {}
void LocalParticipant::Process(Participant* sender, SiteMsg* msg) { void LocalParticipant::Process(Participant* sender, SiteMsg* msg) {
// std::cout << this->name << ": process NetworkId [" << (int)this->networkId std::cout << this->name << ": process Site Id " << (int)this->networkId
// << "/" << (int)msg->networkId << "]\n"; << "->" << (int)msg->networkId << "\n";
if (this->networkId != msg->networkId) { if (this->networkId != msg->networkId) {
this->networkId = msg->networkId; this->networkId = msg->networkId;
// std::cout << this->things.size() << " things\n"; // std::cout << this->things.size() << " things\n";
@ -316,9 +326,26 @@ void LocalParticipant::Process(Participant* sender, SiteMsg* msg) {
void LocalParticipant::Process(Participant* sender, InvestigateMsg* msg) {} void LocalParticipant::Process(Participant* sender, InvestigateMsg* msg) {}
void LocalParticipant::Process(Participant* sender, ThingMsg* msg) {} void LocalParticipant::Process(Participant* sender, ThingMsg* msg) {
std::cout << this->name << ": process Thing [" << (int)msg->networkId << "/"
<< (int)msg->thingId << "]\n";
#if !defined(NO_STD)
auto thingMsgProcessor = thingMsgProcessors.find(msg->thingType);
//Thing* newThing;
if (thingMsgProcessor != thingMsgProcessors.end()) { // found item
//newThing =
thingMsgProcessor->second(sender, msg->networkId, msg->thingId);
} else
//newThing =
new Thing(sender, msg->networkId, msg->thingId,
(Thing::Type)msg->thingType);
#endif
}
void LocalParticipant::Process(Participant* sender, NameMsg* msg) { void LocalParticipant::Process(Participant* sender, NameMsg* msg) {
std::cout << this->name << ": process Name [" << (int)msg->networkId << "/"
<< (int)msg->thingId << "]\n";
Thing* thing = sender->Get(msg->networkId, msg->thingId); Thing* thing = sender->Get(msg->networkId, msg->thingId);
if (thing != nullptr) { if (thing != nullptr) {
int nameLength = msg->nameLength; int nameLength = msg->nameLength;
@ -336,17 +363,20 @@ void LocalParticipant::Process(Participant* sender, NameMsg* msg) {
#endif #endif
thingName[nameLength] = '\0'; thingName[nameLength] = '\0';
thing->name = thingName; thing->name = thingName;
// std::cout << "thing name = " << thing->name << " length = " << nameLength // std::cout << "thing name = " << thing->name << " length = " <<
// nameLength
// << "\n"; // << "\n";
} }
} }
void LocalParticipant::Process(Participant* sender, PoseMsg* msg) {} void LocalParticipant::Process(Participant* sender, PoseMsg* msg) {
std::cout << this->name << ": process Pose [" << (int)this->networkId << "/"
<< (int)msg->networkId << "]\n";
}
void LocalParticipant::Process(Participant* sender, BinaryMsg* msg) { void LocalParticipant::Process(Participant* sender, BinaryMsg* msg) {
// std::cout << this->name << ": process Binary [" << (int)this->networkId << std::cout << this->name << ": process Binary [" << (int)this->networkId << "/"
// "/" << (int)msg->networkId << "]\n";
// << (int)msg->networkId << "]\n";
Thing* thing = sender->Get(msg->networkId, msg->thingId); Thing* thing = sender->Get(msg->networkId, msg->thingId);
if (thing != nullptr) if (thing != nullptr)
thing->ProcessBinary(msg->bytes); thing->ProcessBinary(msg->bytes);

View File

@ -11,7 +11,9 @@
#include "Participant.h" #include "Participant.h"
#if !defined(NO_STD) #if !defined(NO_STD)
#include <functional>
#include <list> #include <list>
// #include <unordered_map>
#endif #endif
#if defined(_WIN32) || defined(_WIN64) #if defined(_WIN32) || defined(_WIN64)
@ -51,7 +53,9 @@ class LocalParticipant : public Participant {
/// @brief Create a participant which will try to connect to a site. /// @brief Create a participant which will try to connect to a site.
/// @param ipAddress The IP address of the site /// @param ipAddress The IP address of the site
/// @param port The port used by the site /// @param port The port used by the site
LocalParticipant(const char* ipAddress, int port = 7681); LocalParticipant(const char* ipAddress,
int port = 7681,
int localPort = 7681);
// Note to self: one cannot specify the port used by the local participant // Note to self: one cannot specify the port used by the local participant
// now!! // now!!
@ -86,10 +90,11 @@ class LocalParticipant : public Participant {
#if defined(__unix__) || defined(__APPLE__) #if defined(__unix__) || defined(__APPLE__)
int sock; int sock;
#endif #elif defined(_WIN32) || defined(_WIN64)
sockaddr_in remote_addr; sockaddr_in remote_addr;
sockaddr_in server_addr; sockaddr_in server_addr;
sockaddr_in broadcast_addr; sockaddr_in broadcast_addr;
#endif
#endif #endif
@ -135,6 +140,35 @@ class LocalParticipant : public Participant {
virtual void Process(Participant* sender, NameMsg* msg); virtual void Process(Participant* sender, NameMsg* msg);
virtual void Process(Participant* sender, PoseMsg* msg); virtual void Process(Participant* sender, PoseMsg* msg);
virtual void Process(Participant* sender, BinaryMsg* msg); virtual void Process(Participant* sender, BinaryMsg* msg);
#if !defined(NO_STD)
public:
using ThingConstructor = std::function<Thing*(Participant* participant,
unsigned char networkId,
unsigned char thingId)>;
template <typename ThingClass>
void Register(unsigned char thingType) {
thingMsgProcessors[thingType] = [](Participant* participant,
unsigned char networkId,
unsigned char thingId) {
return new ThingClass(participant, networkId, thingId);
};
};
template <typename ThingClass>
void Register2(unsigned char thingType, ThingConstructor f) {
thingMsgProcessors[thingType] = [f](Participant* participant,
unsigned char networkId,
unsigned char thingId) {
return f(participant, networkId, thingId);
};
};
protected:
std::unordered_map<unsigned char, ThingConstructor> thingMsgProcessors;
#endif
}; };
} // namespace RoboidControl } // namespace RoboidControl

View File

@ -25,7 +25,7 @@ SiteServer::SiteServer(int port) {
SetupUDP(port, ipAddress, 0); SetupUDP(port, ipAddress, 0);
#if !defined(NO_STD) #if !defined(NO_STD)
Register<TemperatureSensor>((unsigned char)Thing::Type::TemperatureSensor); //Register<TemperatureSensor>((unsigned char)Thing::Type::TemperatureSensor);
#endif #endif
} }
@ -45,19 +45,20 @@ void SiteServer::Process(Participant* sender, SiteMsg* msg) {}
void SiteServer::Process(Participant* sender, ThingMsg* msg) { void SiteServer::Process(Participant* sender, ThingMsg* msg) {
Thing* thing = sender->Get(msg->networkId, msg->thingId); Thing* thing = sender->Get(msg->networkId, msg->thingId);
if (thing == nullptr) { if (thing == nullptr) {
#if defined(NO_STD) // #if defined(NO_STD)
new Thing(sender, msg->networkId, msg->thingId, new Thing(sender, msg->networkId, msg->thingId,
(Thing::Type)msg->thingType); (Thing::Type)msg->thingType);
#else // #else
auto thingMsgProcessor = thingMsgProcessors.find(msg->thingType); // auto thingMsgProcessor = thingMsgProcessors.find(msg->thingType);
Thing* newThing; // //Thing* newThing;
if (thingMsgProcessor != thingMsgProcessors.end()) // found item // if (thingMsgProcessor != thingMsgProcessors.end()) // found item
newThing = // //newThing =
thingMsgProcessor->second(sender, msg->networkId, msg->thingId); // thingMsgProcessor->second(sender, msg->networkId, msg->thingId);
else // else
newThing = new Thing(sender, msg->networkId, msg->thingId, // //newThing =
(Thing::Type)msg->thingType); // new Thing(sender, msg->networkId, msg->thingId,
#endif // (Thing::Type)msg->thingType);
// #endif
} }
} }

46
Participants/SiteServer.h Normal file
View File

@ -0,0 +1,46 @@
#pragma once
#include "LocalParticipant.h"
#if !defined(NO_STD)
#include <functional>
#include <memory>
#include <unordered_map>
#endif
namespace RoboidControl {
/// @brief A participant is device which can communicate with other participants
class SiteServer : public LocalParticipant {
public:
SiteServer(int port = 7681);
// virtual void Update(unsigned long currentTimeMs = 0) override;
// #if !defined(NO_STD)
// template <typename ThingClass>
// void Register(unsigned char thingType) {
// thingMsgProcessors[thingType] = [](Participant* participant,
// unsigned char networkId,
// unsigned char thingId) {
// return new ThingClass(participant, networkId, thingId);
// };
// };
// #endif
protected:
unsigned long nextPublishMe = 0;
virtual void Process(Participant* sender, ParticipantMsg* msg) override;
virtual void Process(Participant* sender, SiteMsg* msg) override;
virtual void Process(Participant* sender, ThingMsg* msg) override;
// #if !defined(NO_STD)
// using ThingConstructor = std::function<Thing*(Participant* participant,
// unsigned char networkId,
// unsigned char thingId)>;
// std::unordered_map<unsigned char, ThingConstructor> thingMsgProcessors;
// #endif
};
} // namespace RoboidControl

View File

@ -1,46 +0,0 @@
#pragma once
#include "LocalParticipant.h"
#if !defined(NO_STD)
#include <functional>
#include <memory>
#include <unordered_map>
#endif
namespace RoboidControl {
/// @brief A participant is device which can communicate with other participants
class SiteServer : public LocalParticipant {
public:
SiteServer(int port = 7681);
// virtual void Update(unsigned long currentTimeMs = 0) override;
#if !defined(NO_STD)
template <typename ThingClass>
void Register(unsigned char thingType) {
thingMsgProcessors[thingType] = [](Participant* participant,
unsigned char networkId,
unsigned char thingId) {
return new ThingClass(participant, networkId, thingId);
};
};
#endif
protected:
unsigned long nextPublishMe = 0;
virtual void Process(Participant* sender, ParticipantMsg* msg) override;
virtual void Process(Participant* sender, SiteMsg* msg) override;
virtual void Process(Participant* sender, ThingMsg* msg) override;
#if !defined(NO_STD)
using ThingConstructor = std::function<Thing*(Participant* participant,
unsigned char networkId,
unsigned char thingId)>;
std::unordered_map<unsigned char, ThingConstructor> thingMsgProcessors;
#endif
};
} // namespace RoboidControl

View File

@ -4,10 +4,6 @@
namespace RoboidControl { namespace RoboidControl {
// TemperatureSensor::TemperatureSensor() : Thing(Type::TemperatureSensor) {}
// TemperatureSensor::TemperatureSensor() : Thing(Type::TemperatureSensor) {}
TemperatureSensor::TemperatureSensor(Participant* participant, TemperatureSensor::TemperatureSensor(Participant* participant,
unsigned char networkId, unsigned char networkId,
unsigned char thingId) unsigned char thingId)