Compare commits

...

No commits in common. "main" and "hierarchy-support" have entirely different histories.

158 changed files with 2900 additions and 14586 deletions

3
.gitignore vendored
View File

@ -1,3 +1,4 @@
doxygen/html
doxygen/DoxyWarnLogfile.txt
build
.vscode
DoxyGen/DoxyWarnLogfile.txt

61
.gitlab-ci.yml Normal file
View File

@ -0,0 +1,61 @@
# This file is a template, and might need editing before it works on your project.
# This is a sample GitLab CI/CD configuration file that should run without any modifications.
# It demonstrates a basic 3 stage CI/CD pipeline. Instead of real tests or scripts,
# it uses echo commands to simulate the pipeline execution.
#
# A pipeline is composed of independent jobs that run scripts, grouped into stages.
# Stages run in sequential order, but jobs within stages run in parallel.
#
# For more information, see: https://docs.gitlab.com/ee/ci/yaml/index.html#stages
#
# You can copy and paste this template into a new `.gitlab-ci.yml` file.
# You should not add this template to an existing `.gitlab-ci.yml` file by using the `include:` keyword.
#
# To contribute improvements to CI/CD templates, please follow the Development guide at:
# https://docs.gitlab.com/ee/development/cicd/templates.html
# This specific template is located at:
# https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Getting-Started.gitlab-ci.yml
# This file is a template, and might need editing before it works on your project.
# This is a sample GitLab CI/CD configuration file that should run without any modifications.
# It demonstrates a basic 3 stage CI/CD pipeline. Instead of real tests or scripts,
# it uses echo commands to simulate the pipeline execution.
#
# A pipeline is composed of independent jobs that run scripts, grouped into stages.
# Stages run in sequential order, but jobs within stages run in parallel.
#
# For more information, see: https://docs.gitlab.com/ee/ci/yaml/index.html#stages
#
# You can copy and paste this template into a new `.gitlab-ci.yml` file.
# You should not add this template to an existing `.gitlab-ci.yml` file by using the `include:` keyword.
#
# To contribute improvements to CI/CD templates, please follow the Development guide at:
# https://docs.gitlab.com/ee/development/cicd/templates.html
# This specific template is located at:
# https://gitlab.com/gitlab-org/gitlab/-/blob/master/lib/gitlab/ci/templates/Getting-Started.gitlab-ci.yml
variables:
GIT_SUBMODULE_STRATEGY: recursive
default:
image: rikorose/gcc-cmake
stages:
- test
unit-test-job:
stage: test
script:
- mkdir build
- cd build
- cmake ..
- cmake --build .
- export GTEST_OUTPUT="xml:report.xml"
- ls -la
- ls -ls test
- "./test/RoboidControlTest"
artifacts:
when: always
reports:
junit: build/report.xml
sast:
stage: test
include:
- template: Security/SAST.gitlab-ci.yml

4
.gitmodules vendored Normal file
View File

@ -0,0 +1,4 @@
[submodule "VectorAlgebra"]
path = VectorAlgebra
url = ../vectoralgebra.git
brnach = main

2
AbsoluteEncoder.cpp Normal file
View File

@ -0,0 +1,2 @@
#include "AbsoluteEncoder.h"

17
AbsoluteEncoder.h Normal file
View File

@ -0,0 +1,17 @@
#pragma once
#include "ServoMotor.h"
namespace Passer {
namespace RoboidContol {
class AbsoluteEncoder {
public:
AbsoluteEncoder() {}
virtual float GetActualAngle() = 0;
virtual float GetActualVelocity() = 0;
};
} // namespace RoboidContol
} // namespace Passer

5
Accelerometer.cpp Normal file
View File

@ -0,0 +1,5 @@
#include "Accelerometer.h"
Accelerometer::Accelerometer() {}
Spherical Accelerometer::GetVector() { return Spherical(); }

18
Accelerometer.h Normal file
View File

@ -0,0 +1,18 @@
#pragma once
#include "Sensor.h"
#include "VectorAlgebra/Spherical.h"
namespace Passer {
namespace RoboidControl {
class Accelerometer : public Sensor {
public:
Accelerometer();
virtual Spherical GetVector();
};
} // namespace RoboidControl
} // namespace Passer
using namespace Passer::RoboidControl;

46
Activation.cpp Normal file
View File

@ -0,0 +1,46 @@
#include "Activation.h"
float Activation::HeavisideStep(float inputValue, float bias) {
return (inputValue + bias > 0) ? 1.0F : 0.0F;
}
float Activation::Tanh(float inputValue) {
return (exp(inputValue) - exp(-inputValue)) / (exp(inputValue) + exp(-inputValue));
}
float Activation::Sigmoid(float inputValue) {
return 1 / (1 + expf(-inputValue));
}
float Activation::Linear(float inputValue, float minValue, float range) {
if (inputValue > minValue + range)
return 0;
if (inputValue < minValue)
return 1;
float f = (inputValue - minValue) * (1 / range); // normalize to 1..0
float influence = 1 - f; // invert
return influence;
}
float Activation::Quadratic(float inputValue, float minValue, float range) {
if (inputValue > minValue + range)
return 0;
if (inputValue < minValue)
return 1;
float f = (inputValue - minValue) * (1 / range); // normalize to 1..0
float influence = 1 - (f * f); // quadratic & invert
return influence;
}
float Activation::ParticleLife(float minValue, float maxValue, float attraction, float inputValue) {
if (inputValue < minValue)
return inputValue / minValue - 1;
if (inputValue < maxValue)
return attraction * (1 - fabs(2 * inputValue - minValue - maxValue) / (maxValue - minValue));
return 0;
}

32
Activation.h Normal file
View File

@ -0,0 +1,32 @@
#ifndef RC_ACTIVATION_H
#define RC_ACTIVATION_H
#include <math.h>
namespace Passer {
namespace RoboidControl {
/// @brief Activation function for control
/// @note This is mainly for future use :-)
class Activation {
public:
static float HeavisideStep(float inputValue, float bias = 0); // Range: {0,1}
static float Tanh(float inputValue); // Range: (-1, 1)
static float Sigmoid(float inputValue); // Range: (0, 1)
static float Linear(float inputValue, float bias = 0, float range = 0);
static float Quadratic(float inputValue, float bias = 0,
float range = 0); // minValue = bias
static float ParticleLife(float minValue, float maxValue, float attraction,
float inputValue); // minValue = bias
};
} // namespace RoboidControl
} // namespace Passer
using namespace Passer::RoboidControl;
#endif

View File

@ -1,126 +0,0 @@
#include "ArduinoParticipant.h"
#if defined(ARDUINO)
#if defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#elif defined(ESP32)
#include <WiFi.h>
#elif defined(UNO_R4)
#include <WiFi.h>
#elif defined(ARDUINO_ARCH_RP2040) // not functional, for future use
#include <WifiNINA.h>
#endif
#endif
namespace RoboidControl {
namespace Arduino {
void LocalParticipant::Setup(int localPort,
const char* remoteIpAddress,
int remotePort) {
#if defined(ARDUINO) && defined(HAS_WIFI)
this->remoteIpAddress = remoteIpAddress;
this->remotePort = remotePort;
GetBroadcastAddress();
#if defined(UNO_R4)
if (WiFi.status() == WL_NO_MODULE) {
std::cout << "No network available!\n";
return;
}
#else
if (WiFi.isConnected() == false) {
std::cout << "No network available!\n";
return;
}
#endif
udp.begin(localPort);
std::cout << "Wifi sync started to port " << this->remotePort << "\n";
#endif
}
void LocalParticipant::GetBroadcastAddress() {
#if defined(ARDUINO) && defined(HAS_WIFI)
IPAddress broadcastAddress = WiFi.localIP();
broadcastAddress[3] = 255;
String broadcastIpString = broadcastAddress.toString();
this->broadcastIpAddress = new char[broadcastIpString.length() + 1];
broadcastIpString.toCharArray(this->broadcastIpAddress,
broadcastIpString.length() + 1);
std::cout << "Broadcast address: " << broadcastIpAddress << "\n";
#endif
}
void LocalParticipant::Receive() {
#if defined(ARDUINO) && defined(HAS_WIFI)
int packetSize = udp.parsePacket();
while (packetSize > 0) {
udp.read(buffer, packetSize);
String senderAddress = udp.remoteIP().toString();
char sender_ipAddress[16];
senderAddress.toCharArray(sender_ipAddress, 16);
unsigned int sender_port = udp.remotePort();
// Participant* remoteParticipant = this->GetParticipant(sender_ipAddress,
// sender_port); if (remoteParticipant == nullptr) {
// remoteParticipant = this->AddParticipant(sender_ipAddress,
// sender_port);
// // std::cout << "New sender " << sender_ipAddress << ":" << sender_port
// // << "\n";
// // std::cout << "New remote participant " <<
// remoteParticipant->ipAddress
// // << ":" << remoteParticipant->port << " "
// // << (int)remoteParticipant->networkId << "\n";
// }
// ReceiveData(packetSize, remoteParticipant);
ReceiveData(packetSize, sender_ipAddress, sender_port);
packetSize = udp.parsePacket();
}
#endif
}
bool LocalParticipant::Send(Participant* remoteParticipant, int bufferSize) {
#if defined(ARDUINO) && defined(HAS_WIFI)
// std::cout << "Sending to:\n " << remoteParticipant->ipAddress << ":"
// << remoteParticipant->port << "\n";
int n = 0;
do {
if (n > 0) {
std::cout << "Retry sending\n";
delay(10);
}
n++;
udp.beginPacket(remoteParticipant->ipAddress, remoteParticipant->port);
udp.write((unsigned char*)buffer, bufferSize);
} while (udp.endPacket() == 0 && n < 10);
#endif
return true;
}
bool LocalParticipant::Publish(IMessage* msg) {
#if defined(ARDUINO) && defined(HAS_WIFI)
int bufferSize = msg->Serialize((char*)this->buffer);
if (bufferSize <= 0)
return true;
udp.beginPacket(this->broadcastIpAddress, this->remotePort);
udp.write((unsigned char*)buffer, bufferSize);
udp.endPacket();
// std::cout << "Publish to " << this->broadcastIpAddress << ":"
// << this->remotePort << "\n";
#endif
return true;
};
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,32 +0,0 @@
#pragma once
#include "../LocalParticipant.h"
#if defined(HAS_WIFI)
#include <WiFiUdp.h>
#endif
namespace RoboidControl {
namespace Arduino {
class LocalParticipant : public RoboidControl::LocalParticipant {
public:
void Setup(int localPort, const char* remoteIpAddress, int remotePort);
void Receive();
bool Send(Participant* remoteParticipant, int bufferSize);
bool Publish(IMessage* msg);
protected:
#if defined(HAS_WIFI)
const char* remoteIpAddress = nullptr;
unsigned short remotePort = 0;
char* broadcastIpAddress = nullptr;
WiFiUDP udp;
#endif
void GetBroadcastAddress();
};
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,218 +0,0 @@
#include "ArduinoUtils.h"
#if defined(ARDUINO)
#include <Arduino.h>
#if defined(ARDUINO_ARCH_ESP8266)
#include <ESP8266WiFi.h>
#include <ESP8266httpUpdate.h>
#include <HTTPClient.h>
#elif defined(ESP32)
#include <HTTPClient.h>
#include <HTTPUpdate.h>
#include <WiFi.h>
#elif defined(UNO_R4)
#include <WiFi.h>
#endif
const char* hotspotSSID = "Roboid";
const char* hotspotPassword = "alchemy7000";
#if ESP32
// Flash storage
#include "Preferences.h"
#define PREFERENCES_NAMESPACE "roboidControl"
Preferences wifiPreferences;
#define STORAGE_KEY_WIFI "rc/wifi"
struct WifiCredentials {
char ssid[32] = "\0";
char password[32] = "\0";
} credentials;
#define STORAGE_KEY_NSS "rc/nss"
struct NssServer {
char ipAddress[16] = "127.0.0.1\0";
unsigned short port = 7681;
} nssServer;
#endif
bool StartWifi(const char* wifiSsid,
const char* wifiPassword,
bool hotspotFallback) {
#if !defined(HAS_WIFI)
return false;
#else
#if defined(UNO_R4) || defined(ARDUINO_ARCH_RP2040)
if (WiFi.status() == WL_NO_MODULE) {
Serial.println("WiFi not present, WiFiSync is disabled");
return false;
}
#endif
#if ESP32
printf("Connecting to WiFi %s\n", wifiSsid);
#else
Serial.print("Connecting to WiFi ");
Serial.println(wifiSsid);
#endif
// Connect to Wifi
WiFi.begin(wifiSsid, wifiPassword);
uint32_t notConnectedCounter = 0;
bool connected = false;
bool hotSpotEnabled = false;
while (WiFi.status() != WL_CONNECTED && !hotSpotEnabled) {
#if ESP32
printf(".");
#else
Serial.print(".");
#endif
delay(500);
notConnectedCounter++;
if (notConnectedCounter > 20 && hotspotFallback) {
#if ESP32
printf("\nCould not connect to home network.\n");
#else
Serial.println();
Serial.println("Could not connect to home network");
#endif
WiFi.disconnect();
if (hotspotFallback) {
#if ESP32
WiFi.mode(WIFI_OFF);
WiFi.mode(WIFI_AP);
IPAddress wifiMyIp(192, 168, 4, 1);
WiFi.softAPConfig(wifiMyIp, wifiMyIp, IPAddress(255, 255, 255, 0));
WiFi.softAP(hotspotSSID, hotspotPassword);
#elif UNO_R4 || ARDUINO_ARCH_RP2040
WiFi.beginAP(hotspotSSID);
#endif
printf("Setup WiFi hotspot...\n");
// printf("ssid = %s, password = %s\n", hotspotSSID, hotspotPassword);
#if ARDUINO_ARCH_RP2040
String ipAddress = WiFi.localIP().toString();
#else
String ipAddress = WiFi.softAPIP().toString();
#endif
char buf[20];
ipAddress.toCharArray(buf, 20);
printf("IP address: %s\n", buf);
hotSpotEnabled = true;
}
}
}
connected = notConnectedCounter <= 20;
if (connected) {
char buf[20];
String ipAddress = WiFi.localIP().toString();
ipAddress.toCharArray(buf, 20);
#if ESP32 || ESP8266
printf("\nWifi connected, IP address: %s\n", buf);
#else
Serial.println();
Serial.println("Wifi connected");
#endif
#if ESP32
printf("Checking credentials in flash\n");
wifiPreferences.begin(PREFERENCES_NAMESPACE);
wifiPreferences.getBytes(STORAGE_KEY_WIFI, &credentials,
sizeof(credentials));
if (strcmp(wifiSsid, credentials.ssid) != 0 ||
strcmp(wifiPassword, credentials.password) != 0) {
printf("Updating credentials in flash...");
const int ssidLen = strlen(wifiSsid);
if (ssidLen < 32) {
memcpy(credentials.ssid, wifiSsid, ssidLen);
credentials.ssid[ssidLen] = '\0';
}
const int pwdLen = strlen(wifiPassword);
if (pwdLen < 32) {
memcpy(credentials.password, wifiPassword, pwdLen);
credentials.password[pwdLen] = '\0';
}
wifiPreferences.putBytes(STORAGE_KEY_WIFI, &credentials,
sizeof(credentials));
printf(" completed.\n");
}
wifiPreferences.end();
#endif
}
return (!hotSpotEnabled);
#endif
}
void CheckFirmware(String url, String FIRMWARE_NAME, int FIRMWARE_VERSION) {
#if !defined(HAS_WIFI)
return;
#else
#if defined(UNO_R4) // Uno R4 Wifi does not support this kind of firmware
// update (as far as I know)
return;
#else
Serial.println("Checking for firmware updates.");
WiFiClient client;
HTTPClient httpClient;
String versionURL = url + FIRMWARE_NAME + ".version";
httpClient.begin(client, versionURL);
int httpCode = httpClient.GET();
if (httpCode == 200) {
String newFWVersion = httpClient.getString();
Serial.print("Current firmware version: ");
Serial.println(FIRMWARE_VERSION);
Serial.print("Available firmware version: ");
Serial.println(newFWVersion);
int newVersion = newFWVersion.toInt();
if (newVersion > FIRMWARE_VERSION) {
Serial.println("Preparing to update firmware.");
String firmwareURL = url + FIRMWARE_NAME + ".bin";
#if defined(ESP32)
t_httpUpdate_return ret = httpUpdate.update(client, firmwareURL);
#else
t_httpUpdate_return ret = ESPhttpUpdate.update(client, firmwareURL);
#endif
switch (ret) {
case HTTP_UPDATE_FAILED:
#if defined(ESP32)
Serial.printf("HTTP_UPDATE_FAILED Error (%d): %s",
httpUpdate.getLastError(),
httpUpdate.getLastErrorString().c_str());
#else
Serial.printf("HTTP_UPDATE_FAILED Error (%d): %s",
ESPhttpUpdate.getLastError(),
ESPhttpUpdate.getLastErrorString().c_str());
#endif
break;
case HTTP_UPDATE_NO_UPDATES:
Serial.println("HTTP_UPDATE_NO_UPDATES");
break;
case HTTP_UPDATE_OK:
break;
}
} else {
Serial.println("No Firmware update necessary.");
}
} else {
Serial.print("Http Error: ");
Serial.println(httpCode);
}
#endif
#endif
}
#endif

View File

@ -1,10 +0,0 @@
#pragma once
#if defined(ARDUINO)
#include <Arduino.h>
bool StartWifi(const char *wifiSsid, const char *wifiPassword,
bool hotspotFallback = false);
void CheckFirmware(String url, String FIRMWARE_NAME, int FIRMWARE_VERSION);
#endif

View File

@ -1,120 +0,0 @@
#include "DRV8833.h"
#include <Arduino.h>
namespace RoboidControl {
namespace Arduino {
DRV8833Motor::DRV8833Motor(Participant* participant, unsigned char pinIn1, unsigned char pinIn2, bool reverse)
: Thing(participant) {
this->pinIn1 = pinIn1;
this->pinIn2 = pinIn2;
#if (ESP32)
in1Ch = nextAvailablePwmChannel++;
ledcSetup(in1Ch, 500, 8);
ledcAttachPin(pinIn1, in1Ch);
in2Ch = nextAvailablePwmChannel++;
ledcSetup(in2Ch, 500, 8);
ledcAttachPin(pinIn2, in2Ch);
#else
pinMode(pinIn1, OUTPUT); // configure the in1 pin to output mode
pinMode(pinIn2, OUTPUT); // configure the in1 pin to output mode
#endif
this->reverse = reverse;
}
void DRV8833Motor::SetMaxRPM(unsigned int rpm) {
this->maxRpm = rpm;
}
void DRV8833Motor::SetAngularVelocity(Spherical velocity) {
Thing::SetAngularVelocity(velocity);
// ignoring rotation axis for now.
// Spherical angularVelocity = this->GetAngularVelocity();
float angularSpeed = velocity.distance; // in degrees/sec
float rpm = angularSpeed / 360 * 60;
float motorSpeed = rpm / this->maxRpm;
uint8_t motorSignal = (uint8_t)(motorSpeed * 255);
// if (direction == RotationDirection::CounterClockwise)
// speed = -speed;
// Determine the rotation direction
if (velocity.direction.horizontal.InDegrees() < 0)
motorSpeed = -motorSpeed;
if (this->reverse)
motorSpeed = -motorSpeed;
// std::cout << "ang speed " << this->name << " = " << angularSpeed << " rpm " << rpm
// << ", motor signal = " << (int)motorSignal << "\n";
#if (ESP32)
if (motorSpeed == 0) { // stop
ledcWrite(in1Ch, 0);
ledcWrite(in2Ch, 0);
} else if (motorSpeed > 0) { // forward
#if FAST_DECAY
ledcWrite(in1Ch, motorSignal);
ledcWrite(in2Ch, 0);
#else
ledcWrite(in1Ch, 255);
ledcWrite(in2Ch, 255 - motorSignal);
#endif
} else { // (motorSpeed < 0) reverse
#if FAST_DECAY
ledcWrite(in1Ch, 0);
ledcWrite(in2Ch, motorSignal);
#else
ledcWrite(in1Ch, 255 - motorSignal);
ledcWrite(in2Ch, 255);
#endif
}
#else // not ESP32
if (motorSpeed == 0) { // stop
analogWrite(pinIn1, 0);
analogWrite(pinIn2, 0);
} else if (motorSpeed > 0) { // forward
#if FAST_DECAY
analogWrite(pinIn1, motorSignal);
analogWrite(pinIn2, 0);
#else
analogWrite(pinIn1, 255);
analogWrite(pinIn2, 255 - motorSignal);
#endif
} else { // (motorSpeed < 0) reverse
#if FAST_DECAY
analogWrite(pinIn1, 0);
analogWrite(pinIn2, motorSignal);
#else
analogWrite(pinIn1, 255 - motorSignal);
analogWrite(pinIn2, 255);
#endif
}
#endif
}
DRV8833::DRV8833(Participant* participant,
unsigned char pinAIn1,
unsigned char pinAIn2,
unsigned char pinBIn1,
unsigned char pinBIn2,
unsigned char pinStandby,
bool reverseA,
bool reverseB)
: Thing(participant) {
this->pinStandby = pinStandby;
if (pinStandby != 255)
pinMode(pinStandby, OUTPUT);
this->motorA = new DRV8833Motor(participant, pinAIn1, pinAIn2, reverseA);
this->motorA->name = "Motor A";
this->motorB = new DRV8833Motor(participant, pinBIn1, pinBIn2, reverseB);
this->motorB->name = "Motor B";
}
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,60 +0,0 @@
#pragma once
#include "Thing.h"
#include "Things/DifferentialDrive.h"
namespace RoboidControl {
namespace Arduino {
/// @brief Support for a DRV8833 motor controller
class DRV8833Motor : public Thing {
public:
/// @brief Motor turning direction
enum class RotationDirection { Clockwise = 1, CounterClockwise = -1 };
/// @brief Setup the DC motor
/// @param pinIn1 the pin number for the in1 signal
/// @param pinIn2 the pin number for the in2 signal
/// @param direction the forward turning direction of the motor
DRV8833Motor(Participant* participant, unsigned char pinIn1, unsigned char pinIn2, bool reverse = false);
void SetMaxRPM(unsigned int rpm);
virtual void SetAngularVelocity(Spherical velocity) override;
bool reverse = false;
protected:
unsigned char pinIn1 = 255;
unsigned char pinIn2 = 255;
unsigned int maxRpm = 200;
};
class DRV8833 : public Thing {
public:
/// @brief Setup a DRV8833 motor controller
/// @param pinAIn1 The pin number connected to the AIn1 port
/// @param pinAIn2 The pin number connected to the AIn2 port
/// @param pinBIn1 The pin number connected to the BIn1 port
/// @param pinBIn2 The pin number connceted to the BIn2 port
/// @param pinStandby The pin number connected to the standby port, 255
/// indicated that the port is not connected
/// @param reverseA The forward turning direction of motor A
/// @param reverseB The forward turning direction of motor B
DRV8833(Participant* participant,
unsigned char pinAIn1,
unsigned char pinAIn2,
unsigned char pinBIn1,
unsigned char pinBIn2,
unsigned char pinStandby = 255,
bool reverseA = false,
bool reverseB = false);
DRV8833Motor* motorA = nullptr;
DRV8833Motor* motorB = nullptr;
protected:
unsigned char pinStandby = 255;
};
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,23 +0,0 @@
#include "DigitalInput.h"
#include <Arduino.h>
namespace RoboidControl {
namespace Arduino {
DigitalInput::DigitalInput(Participant* participant, unsigned char pin)
: TouchSensor(participant) {
this->pin = pin;
pinMode(pin, INPUT);
}
void DigitalInput::Update(unsigned long currentTimeMs, bool recursive) {
this->touchedSomething = digitalRead(pin) == LOW;
// std::cout << "DigitalINput pin " << (int)this->pin << ": " <<
// this->touchedSomething << "\n";
Thing::Update(currentTimeMs, recursive);
}
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,26 +0,0 @@
#pragma once
#include "Things/TouchSensor.h"
namespace RoboidControl {
namespace Arduino {
/// @brief A digital input represents the stat of a digital GPIO pin
class DigitalInput : public TouchSensor {
public:
/// @brief Create a new digital input
/// @param participant The participant to use
/// @param pin The digital pin
DigitalInput(Participant* participant, unsigned char pin);
/// @copydoc RoboidControl::Thing::Update(unsigned long currentTimeMs)
virtual void Update(unsigned long currentTimeMs,
bool recursive = false) override;
protected:
/// @brief The pin used for digital input
unsigned char pin = 0;
};
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,68 +0,0 @@
#include "UltrasonicSensor.h"
#include <Arduino.h>
namespace RoboidControl {
namespace Arduino {
UltrasonicSensor::UltrasonicSensor(Participant* participant,
unsigned char pinTrigger,
unsigned char pinEcho)
: TouchSensor(participant) {
this->pinTrigger = pinTrigger;
this->pinEcho = pinEcho;
pinMode(pinTrigger, OUTPUT); // configure the trigger pin to output mode
pinMode(pinEcho, INPUT); // configure the echo pin to input mode
}
float UltrasonicSensor::GetDistance() {
// Start the ultrasonic 'ping'
digitalWrite(pinTrigger, LOW);
delayMicroseconds(5);
digitalWrite(pinTrigger, HIGH);
delayMicroseconds(10);
digitalWrite(pinTrigger, LOW);
// Measure the duration of the pulse on the echo pin
float duration_us =
pulseIn(pinEcho, HIGH, 100000); // the result is in microseconds
// Calculate the distance:
// * Duration should be divided by 2, because the ping goes to the object
// and back again. The distance to the object is therefore half the duration
// of the pulse: duration_us /= 2;
// * Then we need to convert from microseconds to seconds: duration_sec =
// duration_us / 1000000;
// * Now we calculate the distance based on the speed of sound (340 m/s):
// distance = duration_sec * 340;
// * The result calculation is therefore:
this->distance = duration_us / 2 / 1000000 * 340;
// Filter faulty measurements. The sensor can often give values > 30 m which
// are not correct
// if (distance > 30)
// distance = 0;
this->touchedSomething |= (this->distance <= this->touchDistance);
// std::cout << "Ultrasonic " << this->distance << " " <<
// this->touchedSomething << "\n";
return distance;
}
void UltrasonicSensor::Update(unsigned long currentTimeMs, bool recursive) {
this->touchedSomething = false;
GetDistance();
Thing::Update(currentTimeMs, recursive);
}
// void UltrasonicSensor::ProcessBinary(char* bytes) {
// this->touchedSomething = (bytes[0] == 1);
// if (this->touchedSomething)
// std::cout << "Touching something!\n";
// }
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,45 +0,0 @@
#pragma once
#include "Things/TouchSensor.h"
namespace RoboidControl {
namespace Arduino {
/// @brief An HC-SR04 ultrasonic distance sensor
class UltrasonicSensor : public TouchSensor {
public:
/// @brief Setup an ultrasonic sensor
/// @param participant The participant to use
/// @param pinTrigger The pin number of the trigger signal
/// @param pinEcho The pin number of the echo signal
UltrasonicSensor(Participant* participant,
unsigned char pinTrigger,
unsigned char pinEcho);
// parameters
/// @brief The distance at which the object is considered to be touched
float touchDistance = 0.2f;
// state
/// @brief The last read distance
float distance = 0;
/// @brief erform an ultrasonic 'ping' to determine the distance to the
/// nearest object
/// @return the measured distance in meters to the nearest object
float GetDistance();
/// @copydoc RoboidControl::Thing::Update(unsigned long currentTimeMs)
virtual void Update(unsigned long currentTimeMs,
bool recursive = false) override;
protected:
/// @brief The pin number of the trigger signal
unsigned char pinTrigger = 0;
/// @brief The pin number of the echo signal
unsigned char pinEcho = 0;
};
} // namespace Arduino
} // namespace RoboidControl

View File

@ -1,58 +1,71 @@
cmake_minimum_required(VERSION 3.13) # CMake version check
if(ESP_PLATFORM)
idf_component_register(
SRC_DIRS "."
INCLUDE_DIRS "."
)
else()
project(RoboidControl)
add_subdirectory(LinearAlgebra)
add_subdirectory(Examples)
set(CMAKE_CXX_STANDARD 17) # Enable c++11 standard
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
add_compile_definitions(GTEST)
include(FetchContent)
FetchContent_Declare(
googletest
DOWNLOAD_EXTRACT_TIMESTAMP ON
URL https://github.com/google/googletest/archive/refs/heads/main.zip
)
# For Windows: Prevent overriding the parent project's compiler/linker settings
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
include_directories(
set(sourcedirs
.
LinearAlgebra
)
file(GLOB srcs
*.cpp
Things/*.cpp
Messages/*.cpp
Arduino/*.cpp
Posix/*.cpp
Windows/*.cpp
)
add_library(RoboidControl STATIC ${srcs})
enable_testing()
file(GLOB_RECURSE test_srcs test/*_test.cc)
add_executable(
RoboidControlTest
${test_srcs}
)
target_link_libraries(
RoboidControlTest
gtest_main
RoboidControl
LinearAlgebra
VectorAlgebra
)
include(GoogleTest)
gtest_discover_tests(RoboidControlTest)
set(includedirs
.
VectorAlgebra
)
idf_component_register(
SRC_DIRS ${sourcedirs}
INCLUDE_DIRS ${includedirs}
REQUIRES arduino
)
endif()
project(RoboidControl)
add_subdirectory(VectorAlgebra)
add_subdirectory(test)
set(CMAKE_CXX_STANDARD 11)
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
add_compile_definitions(GTEST)
include(FetchContent)
FetchContent_Declare(
googletest
URL https://github.com/google/googletest/archive/refs/heads/main.zip
)
# For Windows: Prevent overriding the parent project's compiler/linker settings
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
include_directories(
.
VectorAlgebra
)
add_library(RoboidControl STATIC
"Roboid.cpp"
"Perception.cpp"
"TrackedObject.cpp"
"Propulsion.cpp"
"Motor.cpp"
"DifferentialDrive.cpp"
"DistanceSensor.cpp"
"Sensor.cpp"
"Switch.cpp"
"Thing.cpp"
"Quadcopter.cpp"
)
enable_testing()
# add_executable(
# RoboidControlTest
# "test/BB2B_Test.cc"
# )
# target_link_libraries(
# RoboidControlTest
# gtest_main
# RoboidControl
# VectorAlgebra
# )
include(GoogleTest)
# gtest_discover_tests(RoboidControlTest)

63
ControlledMotor.cpp Normal file
View File

@ -0,0 +1,63 @@
#include "ControlledMotor.h"
ControlledMotor::ControlledMotor() { this->type = Thing::ControlledMotorType; }
ControlledMotor::ControlledMotor(Motor *motor, Encoder *encoder)
: ControlledMotor() {
this->motor = motor;
this->encoder = encoder;
// this->rotationDirection = Direction::Forward;
}
#include <Arduino.h>
void ControlledMotor::SetTargetSpeed(float speed) {
this->currentTargetSpeed = speed;
// this->rotationDirection =
// (targetSpeed < 0) ? Direction::Reverse : Direction::Forward;
// this->direction = (targetSpeed < 0) ? Motor::Direction::CounterClockwise
// : Motor::Direction::Clockwise;
}
void ControlledMotor::Update(float currentTimeMs) {
this->actualSpeed = encoder->GetRevolutionsPerSecond(currentTimeMs);
if (this->currentTargetSpeed < 0)
this->actualSpeed = -this->actualSpeed;
float deltaTime = currentTimeMs - this->lastUpdateTime;
float error = this->currentTargetSpeed - this->actualSpeed;
float errorChange = (error - lastError) * deltaTime;
float delta = error * pidP + errorChange * pidD;
Serial.print(" actual Speed ");
Serial.print(actualSpeed);
Serial.print(" target Speed ");
Serial.print(this->currentTargetSpeed);
Serial.print(" motor target speed ");
Serial.print(motor->currentTargetSpeed);
Serial.print(" + ");
Serial.print(error * pidP);
Serial.print(" + ");
Serial.print(errorChange * pidD);
Serial.print(" = ");
Serial.println(motor->currentTargetSpeed + delta);
motor->SetTargetSpeed(motor->currentTargetSpeed +
delta); // or something like that
this->lastUpdateTime = currentTimeMs;
}
float ControlledMotor::GetActualSpeed() { return actualSpeed; }
bool ControlledMotor::Drive(float distance) {
if (!driving) {
targetDistance = distance;
startDistance = encoder->GetDistance();
driving = true;
}
float totalDistance = encoder->GetDistance() - startDistance;
bool completed = totalDistance > targetDistance;
return completed;
}

60
ControlledMotor.h Normal file
View File

@ -0,0 +1,60 @@
#pragma once
#include "Encoder.h"
#include "Motor.h"
namespace Passer {
namespace RoboidControl {
/// @brief A motor with speed control
/// It uses a feedback loop from an encoder to regulate the speed
/// The speed is measured in revolutions per second.
class ControlledMotor : public Motor {
public:
ControlledMotor();
ControlledMotor(Motor *motor, Encoder *encoder);
inline static bool CheckType(Thing *thing) {
return (thing->type & (int)Thing::Type::ControlledMotor) != 0;
}
float velocity;
float pidP = 0.1F;
float pidD = 0.0F;
float pidI = 0.0F;
void Update(float currentTimeMs) override;
/// @brief Set the target speed for the motor controller
/// @param speed the target in revolutions per second.
virtual void SetTargetSpeed(float speed) override;
/// @brief Get the actual speed from the encoder
/// @return The speed in revolutions per second
virtual float GetActualSpeed() override;
bool Drive(float distance);
Motor *motor;
Encoder *encoder;
protected:
float lastUpdateTime = 0;
float lastError = 0;
// float targetSpeed;
float actualSpeed;
float netDistance = 0;
float startDistance = 0;
// enum Direction { Forward = 1, Reverse = -1 };
// Direction rotationDirection;
bool driving = false;
float targetDistance = 0;
float lastEncoderPosition = 0;
};
} // namespace RoboidControl
} // namespace Passer
using namespace Passer::RoboidControl;

103
DifferentialDrive.cpp Normal file
View File

@ -0,0 +1,103 @@
#include "DifferentialDrive.h"
#include "VectorAlgebra/Angle.h"
#include "VectorAlgebra/FloatSingle.h"
#include <math.h>
DifferentialDrive::DifferentialDrive(){};
DifferentialDrive::DifferentialDrive(Motor *leftMotor, Motor *rightMotor) {
this->motorCount = 2;
this->motors = new Motor *[2];
this->motors[0] = leftMotor;
this->motors[1] = rightMotor;
float distance = this->wheelSeparation / 2;
leftMotor->direction = Motor::Direction::CounterClockwise;
leftMotor->position.angle = -90;
leftMotor->position.distance = distance;
rightMotor->direction = Motor::Direction::Clockwise;
rightMotor->position.angle = 90;
rightMotor->position.distance = distance;
}
void DifferentialDrive::SetDimensions(float wheelDiameter,
float wheelSeparation) {
this->wheelDiameter = wheelDiameter;
this->wheelSeparation = wheelSeparation;
this->rpsToMs = wheelDiameter * Angle::pi;
float distance = this->wheelSeparation / 2;
this->motors[0]->position.distance = distance;
this->motors[1]->position.distance = distance;
}
void DifferentialDrive::SetMotorTargetSpeeds(float leftSpeed,
float rightSpeed) {
for (unsigned int motorIx = 0; motorIx < this->motorCount; motorIx++) {
Motor *motor = motors[motorIx];
if (motor == nullptr)
continue;
float xPosition = motors[motorIx]->position.angle;
if (xPosition < 0)
motor->SetTargetSpeed(leftSpeed);
else if (xPosition > 0)
motor->SetTargetSpeed(rightSpeed);
};
}
void DifferentialDrive::SetTwistSpeed(float forward, float yaw) {
float leftSpeed =
Float::Clamp(forward - yaw, -1, 1); // revolutions per second
float rightSpeed =
Float::Clamp(forward + yaw, -1, 1); // revolutions per second
float leftMotorSpeed = leftSpeed / rpsToMs; // meters per second
float rightMotorSpeed = rightSpeed / rpsToMs; // meters per second
SetMotorTargetSpeeds(leftMotorSpeed, rightMotorSpeed);
}
void DifferentialDrive::SetTwistSpeed(Vector2 linear, float yaw) {
SetTwistSpeed(linear.y, yaw);
}
void DifferentialDrive::SetTwistSpeed(Vector3 linear, float yaw, float pitch,
float roll) {
SetTwistSpeed(linear.z, yaw);
}
Polar DifferentialDrive::GetVelocity() {
Motor *leftMotor = motors[0];
Motor *rightMotor = motors[1];
float leftSpeed = leftMotor->GetActualSpeed(); // in revolutions per second
float rightSpeed = rightMotor->GetActualSpeed(); // in revolutions per second
leftSpeed = leftSpeed * rpsToMs; // in meters per second
rightSpeed = rightSpeed * rpsToMs; // in meters per second
float speed = (leftSpeed + rightSpeed) / 2;
float direction = speed >= 0 ? 0.0F : 180.0F;
float magnitude = fabsf(speed);
Polar velocity = Polar(direction, magnitude);
return velocity;
}
float DifferentialDrive::GetAngularVelocity() {
Motor *leftMotor = motors[0];
Motor *rightMotor = motors[1];
float leftSpeed = leftMotor->GetActualSpeed(); // in revolutions per second
float rightSpeed = rightMotor->GetActualSpeed(); // in revolutions per second
leftSpeed = leftSpeed * rpsToMs; // in meters per second
rightSpeed = rightSpeed * rpsToMs; // in meters per second
float angularSpeed = (leftSpeed - rightSpeed) / 2;
float angularDistance = wheelSeparation / 2 * Angle::pi;
float rotationsPerSecond = angularSpeed / angularDistance;
float degreesPerSecond = Angle::Normalize(360 * rotationsPerSecond);
float angularVelocity = degreesPerSecond;
return angularVelocity;
}

88
DifferentialDrive.h Normal file
View File

@ -0,0 +1,88 @@
#pragma once
#include "Propulsion.h"
namespace Passer {
namespace RoboidControl {
/// @brief A two-wheeled Propulsion method
///
/// The wheels are put at either side of the roboid with the following behaviour
/// * When both wheels spin forward, the Roboid moves forward
/// * When both wheels spin backward, the Roboid moves backward
/// * When both wheels are spinning in opposite directions, the Roboid rotates
/// wihout moving forward or backward
/// * When just one wheel is spinning, the Roboid turnes while moving forward or
/// backward.
class DifferentialDrive : public Propulsion {
public:
/// @brief Default constructor
DifferentialDrive();
/// @brief Setup of the DifferentialDrive with the Placement of the motors
/// @param leftMotorPlacement Placement of the left Motor
/// @param rightMotorPlacement Placement of the right Motor
/// In this setup, the left motor Direction will be CounterClockWise when
/// driving forward, while the right motor will turn Clockwise.
/// @note When not using controlled motors, the placement of the motors is
/// irrelevant.
// DifferentialDrive(Placement leftMotorPlacement,
// Placement rightMotorPlacement);
DifferentialDrive(Motor *leftMotor, Motor *rightMotor);
void SetDimensions(float wheelDiameter, float wheelSeparation);
/// @brief Set the target speeds of the motors directly
/// @param leftSpeed The target speed of the left Motor
/// @param rightSpeed The target speed of the right Motor
void SetMotorTargetSpeeds(float leftSpeed, float rightSpeed);
/// @brief Controls the motors through forward and rotation speeds
/// @param forward The target forward speed of the Roboid
/// @param yaw The target rotation speed of the Roboid
virtual void SetTwistSpeed(float forward, float yaw) override;
/// @brief Controls the motors through forward and rotation speeds
/// @param linear The target linear speed of the Roboid
/// @param yaw The target rotation speed of the Roboid
/// @note As a DifferentialDrive cannot move sideward, this function has the
/// same effect as using the void SetTwistSpeed(float forward, float yaw)
/// function.
virtual void SetTwistSpeed(Vector2 linear, float yaw = 0.0F);
/// @brief Controls the motors through forward and rotation speeds
/// @param linear The target linear speed
/// @param yaw The target rotation speed around the vertical axis
/// @param pitch Pitch is not supported and is ignored
/// @param roll Roll is not supported and is ignores
/// @note As a DifferentialDrive cannot move sideward or vertical, this
/// function has the same effect as using the void SetTwistSpeed(float
/// forward, float yaw) function.
virtual void SetTwistSpeed(Vector3 linear, float yaw = 0.0F,
float pitch = 0.0F, float roll = 0.0F);
/// @brief Calculate the linear velocity of the roboid based on the wheel
/// velocities
/// @return The velocity of the roboid in local space
/// @details The actual values may not be accurate, depending on the available
/// information
/// @remark This will be more expanded/detailed in a future version of Roboid
/// Control
virtual Polar GetVelocity() override;
/// @brief Calculate the angular velocity of the roboid based on the wheel
/// velocities
/// @return The angular speed of the roboid in local space
/// @details The actual value may not be accurate, depending on the available
/// information
/// @remark This will be more expanded/detailed in a future version of Roboid
/// Control
virtual float GetAngularVelocity() override;
protected:
float wheelDiameter = 1.0F; // in meters
float wheelSeparation = 1.0F; // in meters;
float rpsToMs; // convert revolutions per second to meters per second
};
} // namespace RoboidControl
} // namespace Passer
using namespace Passer::RoboidControl;

28
DistanceSensor.cpp Normal file
View File

@ -0,0 +1,28 @@
#include "DistanceSensor.h"
#include <math.h>
DistanceSensor::DistanceSensor() {
this->type = Thing::DistanceSensorType;
this->distance = INFINITY;
this->triggerDistance = 1.0F;
}
DistanceSensor::DistanceSensor(float triggerDistance) : DistanceSensor() {
this->triggerDistance = triggerDistance;
}
float DistanceSensor::GetDistance() {
if (distance < minRange || distance > maxRange)
return -1; // invalid distance
return distance;
};
bool DistanceSensor::ObjectNearby() {
if (distance < minRange || distance > maxRange)
return false;
bool isOn = distance <= triggerDistance;
return isOn;
}

41
DistanceSensor.h Normal file
View File

@ -0,0 +1,41 @@
#pragma once
#include "Sensor.h"
namespace Passer {
namespace RoboidControl {
/// @brief A Sensor which can measure the distance to the nearest object
class DistanceSensor : public Sensor {
public:
/// @brief Default constructor
DistanceSensor();
/// @brief Creates a DistanceSensor with the given trigger distance
/// @param triggerDistance The distance at which the sensors indicates that a
/// object is close by
DistanceSensor(float triggerDistance);
/// @brief Determine the distance to the nearest object
/// @return the measured distance in meters to the nearest object
virtual float GetDistance();
/// @brief The minimum range at which the sensor gives reliable measurements
float minRange = 0.01F;
/// @brief The maximum range at which the sensor gives reliable measurements
float maxRange = 10.0F;
/// @brief The distance at which ObjectNearby triggers
float triggerDistance = 1;
/// @brief Indicate that an object is nearby
/// @return True when an object is nearby
bool ObjectNearby();
protected:
/// @brief Distance to the closest object
float distance = 0;
};
} // namespace RoboidControl
} // namespace Passer
using namespace Passer::RoboidControl;

File diff suppressed because it is too large Load Diff

View File

@ -1,226 +0,0 @@
<doxygenlayout version="1.0">
<!-- Generated by doxygen 1.8.18 -->
<!-- Navigation index tabs for HTML output -->
<navindex>
<tab type="mainpage" visible="yes" title=""/>
<tab type="pages" visible="yes" title="" intro=""/>
<tab type="modules" visible="yes" title="" intro=""/>
<tab type="namespaces" visible="yes" title="">
<tab type="namespacelist" visible="yes" title="" intro=""/>
<tab type="namespacemembers" visible="yes" title="" intro=""/>
</tab>
<tab type="interfaces" visible="yes" title="">
<tab type="interfacelist" visible="yes" title="" intro=""/>
<tab type="interfaceindex" visible="$ALPHABETICAL_INDEX" title=""/>
<tab type="interfacehierarchy" visible="yes" title="" intro=""/>
</tab>
<tab type="classes" visible="yes" title="">
<tab type="classlist" visible="yes" title="" intro=""/>
<tab type="classindex" visible="$ALPHABETICAL_INDEX" title=""/>
<tab type="hierarchy" visible="yes" title="" intro=""/>
<tab type="classmembers" visible="yes" title="" intro=""/>
</tab>
<tab type="structs" visible="yes" title="">
<tab type="structlist" visible="yes" title="" intro=""/>
<tab type="structindex" visible="$ALPHABETICAL_INDEX" title=""/>
</tab>
<tab type="exceptions" visible="yes" title="">
<tab type="exceptionlist" visible="yes" title="" intro=""/>
<tab type="exceptionindex" visible="$ALPHABETICAL_INDEX" title=""/>
<tab type="exceptionhierarchy" visible="yes" title="" intro=""/>
</tab>
<tab type="files" visible="yes" title="">
<tab type="filelist" visible="yes" title="" intro=""/>
<tab type="globals" visible="yes" title="" intro=""/>
</tab>
<tab type="examples" visible="yes" title="" intro=""/>
</navindex>
<!-- Layout definition for a class page -->
<class>
<briefdescription visible="no"/>
<detaileddescription title=""/>
<includes visible="$SHOW_INCLUDE_FILES"/>
<inheritancegraph visible="$CLASS_GRAPH"/>
<collaborationgraph visible="$COLLABORATION_GRAPH"/>
<memberdecl>
<nestedclasses visible="yes" title=""/>
<publictypes title=""/>
<services title=""/>
<interfaces title=""/>
<publicslots title=""/>
<signals title=""/>
<publicmethods title=""/>
<publicstaticmethods title=""/>
<publicattributes title=""/>
<publicstaticattributes title=""/>
<protectedtypes title=""/>
<protectedslots title=""/>
<protectedmethods title=""/>
<protectedstaticmethods title=""/>
<protectedattributes title=""/>
<protectedstaticattributes title=""/>
<packagetypes title=""/>
<packagemethods title=""/>
<packagestaticmethods title=""/>
<packageattributes title=""/>
<packagestaticattributes title=""/>
<properties title=""/>
<events title=""/>
<privatetypes title=""/>
<privateslots title=""/>
<privatemethods title=""/>
<privatestaticmethods title=""/>
<privateattributes title=""/>
<privatestaticattributes title=""/>
<friends title=""/>
<related title="" subtitle=""/>
<membergroups visible="yes"/>
</memberdecl>
<memberdef>
<inlineclasses title=""/>
<typedefs title=""/>
<enums title=""/>
<services title=""/>
<interfaces title=""/>
<constructors title=""/>
<functions title=""/>
<related title=""/>
<variables title=""/>
<properties title=""/>
<events title=""/>
</memberdef>
<allmemberslink visible="yes"/>
<usedfiles visible="$SHOW_USED_FILES"/>
<authorsection visible="yes"/>
</class>
<!-- Layout definition for a namespace page -->
<namespace>
<briefdescription visible="yes"/>
<memberdecl>
<nestednamespaces visible="yes" title=""/>
<constantgroups visible="yes" title=""/>
<interfaces visible="yes" title=""/>
<classes visible="yes" title=""/>
<structs visible="yes" title=""/>
<exceptions visible="yes" title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
<membergroups visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
<memberdef>
<inlineclasses title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
</memberdef>
<authorsection visible="yes"/>
</namespace>
<!-- Layout definition for a file page -->
<file>
<briefdescription visible="yes"/>
<includes visible="$SHOW_INCLUDE_FILES"/>
<includegraph visible="$INCLUDE_GRAPH"/>
<includedbygraph visible="$INCLUDED_BY_GRAPH"/>
<sourcelink visible="yes"/>
<memberdecl>
<interfaces visible="yes" title=""/>
<classes visible="yes" title=""/>
<structs visible="yes" title=""/>
<exceptions visible="yes" title=""/>
<namespaces visible="yes" title=""/>
<constantgroups visible="yes" title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
<membergroups visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
<memberdef>
<inlineclasses title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
</memberdef>
<authorsection/>
</file>
<!-- Layout definition for a group page -->
<group>
<briefdescription visible="yes"/>
<groupgraph visible="$GROUP_GRAPHS"/>
<memberdecl>
<nestedgroups visible="yes" title=""/>
<dirs visible="yes" title=""/>
<files visible="yes" title=""/>
<namespaces visible="yes" title=""/>
<classes visible="yes" title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<enumvalues title=""/>
<functions title=""/>
<variables title=""/>
<signals title=""/>
<publicslots title=""/>
<protectedslots title=""/>
<privateslots title=""/>
<events title=""/>
<properties title=""/>
<friends title=""/>
<membergroups visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
<memberdef>
<pagedocs/>
<inlineclasses title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<enumvalues title=""/>
<functions title=""/>
<variables title=""/>
<signals title=""/>
<publicslots title=""/>
<protectedslots title=""/>
<privateslots title=""/>
<events title=""/>
<properties title=""/>
<friends title=""/>
</memberdef>
<authorsection visible="yes"/>
</group>
<!-- Layout definition for a directory page -->
<directory>
<briefdescription visible="yes"/>
<directorygraph visible="yes"/>
<memberdecl>
<dirs visible="yes"/>
<files visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
</directory>
</doxygenlayout>

21
Encoder.cpp Normal file
View File

@ -0,0 +1,21 @@
/*
#include "Encoder.h"
IncrementalEncoder::IncrementalEncoder(unsigned char pulsesPerRevolution,
unsigned char distancePerRotation) {
this->pulsesPerRevolution = pulsesPerRevolution;
this->distancePerRevolution = distancePerRotation;
}
int IncrementalEncoder::GetPulseCount() { return 0; }
float IncrementalEncoder::GetDistance() { return 0; }
float IncrementalEncoder::GetPulsesPerSecond(float currentTimeMs) { return 0; }
float IncrementalEncoder::GetRevolutionsPerSecond(float currentTimeMs) {
return 0;
}
float IncrementalEncoder::GetSpeed(float currentTimeMs) { return 0; }
*/

57
Encoder.h Normal file
View File

@ -0,0 +1,57 @@
#pragma once
#include "IncrementalEncoder.h"
namespace Passer {
namespace RoboidControl {
// Deprecated, use explicit IncrementalEncoder in the future
using Encoder = IncrementalEncoder;
/*
/// @brief An Encoder measures the rotations of an axle using a rotary
/// sensor Some encoders are able to detect direction, while others can not.
class IncrementalEncoder {
public:
/// @brief Creates a sensor which measures distance from pulses
/// @param pulsesPerRevolution The number of pulse edges which make a
/// full rotation
/// @param distancePerRevolution The distance a wheel travels per full
/// rotation
IncrementalEncoder(unsigned char pulsesPerRevolution = 1,
unsigned char distancePerRevolution = 1);
/// @brief Get the total number of pulses since the previous call
/// @return The number of pulses, is zero or greater
virtual int GetPulseCount();
/// @brief Get the pulse speed since the previous call
/// @param currentTimeMs The clock time in milliseconds
/// @return The average pulses per second in the last period.
virtual float GetPulsesPerSecond(float currentTimeMs);
/// @brief Get the distance traveled since the previous call
/// @return The distance in meters.
virtual float GetDistance();
/// @brief Get the rotation speed since the previous call
/// @param currentTimeMs The clock time in milliseconds
/// @return The speed in rotations per second
virtual float GetRevolutionsPerSecond(float currentTimeMs);
/// @brief Get the speed since the previous call
/// @param currentTimeMs The clock time in milliseconds
/// @return The speed in meters per second.
/// @note this value is dependent on the accurate setting of the
/// pulsesPerRevolution and distancePerRevolution parameters;
virtual float GetSpeed(float currentTimeMs);
/// @brief The numer of pulses corresponding to a full rotation of the axle
unsigned char pulsesPerRevolution = 1;
/// @brief The number of revolutions which makes the wheel move forward 1
/// meter
unsigned char distancePerRevolution = 1;
};
*/
} // namespace RoboidControl
} // namespace Passer
using namespace Passer::RoboidControl;

View File

@ -1,50 +0,0 @@
#include "Thing.h"
#include "Things/DifferentialDrive.h"
#include "Things/TouchSensor.h"
#if defined(ARDUINO)
#include "Arduino.h"
#else
#include <chrono>
#include <thread>
using namespace std::this_thread;
using namespace std::chrono;
#endif
using namespace RoboidControl;
int main() {
// The robot's propulsion is a differential drive
DifferentialDrive* bb2b = new DifferentialDrive();
// Is has a touch sensor at the front left of the roboid
TouchSensor* touchLeft = new TouchSensor(bb2b);
// and other one on the right
TouchSensor* touchRight = new TouchSensor(bb2b);
// Do forever:
while (true) {
// The left wheel turns forward when nothing is touched on the right side
// and turn backward when the roboid hits something on the right
float leftWheelSpeed = (touchRight->touchedSomething) ? -600.0f : 600.0f;
// The right wheel does the same, but instead is controlled by
// touches on the left side
float rightWheelSpeed = (touchLeft->touchedSomething) ? -600.0f : 600.0f;
// When both sides are touching something, both wheels will turn backward
// and the roboid will move backwards
bb2b->SetWheelVelocity(leftWheelSpeed, rightWheelSpeed);
// Update the roboid state
bb2b->Update(true);
// and sleep for 100ms
#if defined(ARDUINO)
delay(100);
#else
sleep_for(milliseconds(100));
#endif
}
return 0;
}

View File

@ -1,25 +0,0 @@
# examples/CMakeLists.txt
# Specify the minimum CMake version
cmake_minimum_required(VERSION 3.10)
# Specify the path to the main project directory
set(MAIN_PROJECT_DIR "${CMAKE_SOURCE_DIR}/..")
# Set the project name
project(Examples)
include_directories(..)
# Add the executable for the main project
#add_executable(MainExecutable ${SOURCES})
# Find the main project library (assuming it's defined in the root CMakeLists.txt)
#find_package(RoboidControl REQUIRED) # Replace MyLibrary with your actual library name
# Add example executables
add_executable(BB2B BB2B.cpp)
target_link_libraries(
BB2B
RoboidControl
LinearAlgebra
)

19
IncrementalEncoder.cpp Normal file
View File

@ -0,0 +1,19 @@
#include "Encoder.h"
IncrementalEncoder::IncrementalEncoder(unsigned char pulsesPerRevolution,
unsigned char distancePerRotation) {
this->pulsesPerRevolution = pulsesPerRevolution;
this->distancePerRevolution = distancePerRotation;
}
int IncrementalEncoder::GetPulseCount() { return 0; }
float IncrementalEncoder::GetDistance() { return 0; }
float IncrementalEncoder::GetPulsesPerSecond(float currentTimeMs) { return 0; }
float IncrementalEncoder::GetRevolutionsPerSecond(float currentTimeMs) {
return 0;
}
float IncrementalEncoder::GetSpeed(float currentTimeMs) { return 0; }

51
IncrementalEncoder.h Normal file
View File

@ -0,0 +1,51 @@
#pragma once
namespace Passer {
namespace RoboidControl {
/// @brief An Encoder measures the rotations of an axle using a rotary
/// sensor Some encoders are able to detect direction, while others can not.
class IncrementalEncoder {
public:
/// @brief Creates a sensor which measures distance from pulses
/// @param pulsesPerRevolution The number of pulse edges which make a
/// full rotation
/// @param distancePerRevolution The distance a wheel travels per full
/// rotation
IncrementalEncoder(unsigned char pulsesPerRevolution = 1,
unsigned char distancePerRevolution = 1);
/// @brief Get the total number of pulses since the previous call
/// @return The number of pulses, is zero or greater
virtual int GetPulseCount();
/// @brief Get the pulse speed since the previous call
/// @param currentTimeMs The clock time in milliseconds
/// @return The average pulses per second in the last period.
virtual float GetPulsesPerSecond(float currentTimeMs);
/// @brief Get the distance traveled since the previous call
/// @return The distance in meters.
virtual float GetDistance();
/// @brief Get the rotation speed since the previous call
/// @param currentTimeMs The clock time in milliseconds
/// @return The speed in rotations per second
virtual float GetRevolutionsPerSecond(float currentTimeMs);
/// @brief Get the speed since the previous call
/// @param currentTimeMs The clock time in milliseconds
/// @return The speed in meters per second.
/// @note this value is dependent on the accurate setting of the
/// pulsesPerRevolution and distancePerRevolution parameters;
virtual float GetSpeed(float currentTimeMs);
/// @brief The numer of pulses corresponding to a full rotation of the axle
unsigned char pulsesPerRevolution = 1;
/// @brief The number of revolutions which makes the wheel move forward 1
/// meter
unsigned char distancePerRevolution = 1;
};
} // namespace RoboidControl
} // namespace Passer
using namespace Passer::RoboidControl;

View File

@ -1,2 +0,0 @@
build
.vscode

View File

@ -1,32 +0,0 @@
# You can override the included template(s) by including variable overrides
# SAST customization: https://docs.gitlab.com/ee/user/application_security/sast/#customizing-the-sast-settings
# Secret Detection customization: https://docs.gitlab.com/ee/user/application_security/secret_detection/#customizing-settings
# Dependency Scanning customization: https://docs.gitlab.com/ee/user/application_security/dependency_scanning/#customizing-the-dependency-scanning-settings
# Note that environment variables can be set in several places
# See https://docs.gitlab.com/ee/ci/variables/#cicd-variable-precedence
#
# Specify the docker image to use (only used if using docker runners)
# See http://doc.gitlab.com/ee/ci/docker/using_docker_images.html)
default:
image: rikorose/gcc-cmake
stages:
- test
unit-test-job:
stage: test
script:
- mkdir build
- cd build
- cmake ..
- cmake --build .
- export GTEST_OUTPUT="xml:report.xml"
- ls -la
- "./LinearAlgebraTest"
artifacts:
when: always
reports:
junit: build/report.xml
sast:
stage: test
include:
- template: Security/SAST.gitlab-ci.yml

View File

@ -1,394 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Angle.h"
#include <math.h>
#include "FloatSingle.h"
namespace LinearAlgebra {
//===== AngleSingle, AngleOf<float>
template <>
AngleOf<float> AngleOf<float>::Degrees(float degrees) {
if (isfinite(degrees)) {
while (degrees < -180)
degrees += 360;
while (degrees >= 180)
degrees -= 360;
}
return AngleOf<float>(degrees);
}
template <>
AngleOf<float> AngleOf<float>::Radians(float radians) {
if (isfinite(radians)) {
while (radians <= -pi)
radians += 2 * pi;
while (radians > pi)
radians -= 2 * pi;
}
return Binary(radians * Rad2Deg);
}
template <>
float AngleOf<float>::InDegrees() const {
return this->value;
}
template <>
float AngleOf<float>::InRadians() const {
return this->value * Deg2Rad;
}
//===== Angle16, AngleOf<signed short>
template <>
AngleOf<signed short> AngleOf<signed short>::Degrees(float degrees) {
// map float [-180..180) to integer [-32768..32767]
signed short value = (signed short)roundf(degrees / 360.0F * 65536.0F);
return Binary(value);
}
template <>
AngleOf<signed short> AngleOf<signed short>::Radians(float radians) {
if (!isfinite(radians))
return AngleOf<signed short>::zero;
// map float [-PI..PI) to integer [-32768..32767]
signed short value = (signed short)roundf(radians / pi * 32768.0F);
return Binary(value);
}
template <>
float AngleOf<signed short>::InDegrees() const {
float degrees = this->value / 65536.0f * 360.0f;
return degrees;
}
template <>
float AngleOf<signed short>::InRadians() const {
float radians = this->value / 65536.0f * (2 * pi);
return radians;
}
//===== Angle8, AngleOf<signed char>
template <>
AngleOf<signed char> AngleOf<signed char>::Degrees(float degrees) {
// map float [-180..180) to integer [-128..127)
signed char value = (signed char)roundf(degrees / 360.0F * 256.0F);
return Binary(value);
}
template <>
AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
if (!isfinite(radians))
return AngleOf<signed char>::zero;
// map float [-pi..pi) to integer [-128..127)
signed char value = (signed char)roundf(radians / pi * 128.0f);
return Binary(value);
}
template <>
float AngleOf<signed char>::InDegrees() const {
float degrees = this->value / 256.0f * 360.0f;
return degrees;
}
template <>
float AngleOf<signed char>::InRadians() const {
float radians = this->value / 128.0f * pi;
return radians;
}
//===== Generic
template <typename T>
AngleOf<T>::AngleOf() : value(0) {}
template <typename T>
AngleOf<T>::AngleOf(T rawValue) : value(rawValue) {}
template <typename T>
const AngleOf<T> AngleOf<T>::zero = AngleOf<T>();
template <typename T>
AngleOf<T> AngleOf<T>::Binary(T rawValue) {
AngleOf<T> angle = AngleOf<T>();
angle.SetBinary(rawValue);
return angle;
}
template <typename T>
T AngleOf<T>::GetBinary() const {
return this->value;
}
template <typename T>
void AngleOf<T>::SetBinary(T rawValue) {
this->value = rawValue;
}
template <typename T>
bool AngleOf<T>::operator==(const AngleOf<T> angle) const {
return this->value == angle.value;
}
template <typename T>
bool AngleOf<T>::operator>(AngleOf<T> angle) const {
return this->value > angle.value;
}
template <typename T>
bool AngleOf<T>::operator>=(AngleOf<T> angle) const {
return this->value >= angle.value;
}
template <typename T>
bool AngleOf<T>::operator<(AngleOf<T> angle) const {
return this->value < angle.value;
}
template <typename T>
bool AngleOf<T>::operator<=(AngleOf<T> angle) const {
return this->value <= angle.value;
}
template <typename T>
signed int AngleOf<T>::Sign(AngleOf<T> angle) {
if (angle.value < 0)
return -1;
if (angle.value > 0)
return 1;
return 0;
}
template <typename T>
AngleOf<T> AngleOf<T>::Abs(AngleOf<T> angle) {
if (Sign(angle) < 0)
return -angle;
else
return angle;
}
template <typename T>
AngleOf<T> AngleOf<T>::operator-() const {
AngleOf<T> angle = Binary(-this->value);
return angle;
}
template <>
AngleOf<float> AngleOf<float>::operator-(const AngleOf<float>& angle) const {
AngleOf<float> r = Binary(this->value - angle.value);
r = Normalize(r);
return r;
}
template <typename T>
AngleOf<T> AngleOf<T>::operator-(const AngleOf<T>& angle) const {
AngleOf<T> r = Binary(this->value - angle.value);
return r;
}
template <>
AngleOf<float> AngleOf<float>::operator+(const AngleOf<float>& angle) const {
AngleOf<float> r = Binary(this->value + angle.value);
r = Normalize(r);
return r;
}
template <typename T>
AngleOf<T> AngleOf<T>::operator+(const AngleOf<T>& angle) const {
AngleOf<T> r = Binary(this->value + angle.value);
return r;
}
template <>
AngleOf<float> AngleOf<float>::operator+=(const AngleOf<float>& angle) {
this->value += angle.value;
this->Normalize();
return *this;
}
template <typename T>
AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T>& angle) {
this->value += angle.value;
return *this;
}
// This defintion is not matching the declaration in the header file somehow
// template <typename T>
// AngleOf<T> operator*(const AngleOf<T> &angle, float factor) {
// return AngleOf::Degrees((float)angle.InDegrees() * factor);
// }
// This defintion is not matching the declaration in the header file somehow
// template <typename T>
// AngleOf<T> operator*(float factor, const AngleOf<T> &angle) {
// return AngleOf::Degrees((float)factor * angle.InDegrees());
// }
template <typename T>
void AngleOf<T>::Normalize() {
float angleValue = this->InDegrees();
if (!isfinite(angleValue))
return;
while (angleValue <= -180)
angleValue += 360;
while (angleValue > 180)
angleValue -= 360;
*this = AngleOf::Degrees(angleValue);
}
template <typename T>
AngleOf<T> AngleOf<T>::Normalize(AngleOf<T> angle) {
float angleValue = angle.InDegrees();
if (!isfinite(angleValue))
return angle;
while (angleValue <= -180)
angleValue += 360;
while (angleValue > 180)
angleValue -= 360;
return AngleOf::Degrees(angleValue);
}
template <typename T>
AngleOf<T> AngleOf<T>::Clamp(AngleOf<T> angle, AngleOf<T> min, AngleOf<T> max) {
float r = Float::Clamp(angle.InDegrees(), min.InDegrees(), max.InDegrees());
return AngleOf<T>::Degrees(r);
}
template <typename T>
AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle,
AngleOf<T> toAngle,
float maxDegrees) {
maxDegrees = fmaxf(0, maxDegrees); // filter out negative distances
AngleOf<T> d = toAngle - fromAngle;
float dDegrees = Abs(d).InDegrees();
d = AngleOf<T>::Degrees(Float::Clamp(dDegrees, 0, maxDegrees));
if (Sign(d) < 0)
d = -d;
return fromAngle + d;
}
template <typename T>
float AngleOf<T>::Cos(AngleOf<T> angle) {
return cosf(angle.InRadians());
}
template <typename T>
float AngleOf<T>::Sin(AngleOf<T> angle) {
return sinf(angle.InRadians());
}
template <typename T>
float AngleOf<T>::Tan(AngleOf<T> angle) {
return tanf(angle.InRadians());
}
template <typename T>
AngleOf<T> AngleOf<T>::Acos(float f) {
return AngleOf<T>::Radians(acosf(f));
}
template <typename T>
AngleOf<T> AngleOf<T>::Asin(float f) {
return AngleOf<T>::Radians(asinf(f));
}
template <typename T>
AngleOf<T> AngleOf<T>::Atan(float f) {
return AngleOf<T>::Radians(atanf(f));
}
template <typename T>
AngleOf<T> AngleOf<T>::Atan2(float y, float x) {
return AngleOf<T>::Radians(atan2f(y, x));
}
// template <>
// float AngleOf<float>::CosineRuleSide(float a, float b, AngleOf<float> gamma)
// {
// float a2 = a * a;
// float b2 = b * b;
// float d =
// a2 + b2 -
// 2 * a * b * Cos(gamma); // cosf(gamma *
// Passer::LinearAlgebra::Deg2Rad);
// // Catch edge cases where float inacuracies lead tot nans
// if (d < 0)
// return 0.0f;
// float c = sqrtf(d);
// return c;
// }
template <typename T>
float AngleOf<T>::CosineRuleSide(float a, float b, AngleOf<T> gamma) {
float a2 = a * a;
float b2 = b * b;
float d =
a2 + b2 -
2 * a * b * Cos(gamma); // cosf(gamma * Passer::LinearAlgebra::Deg2Rad);
// Catch edge cases where float inacuracies lead tot nans
if (d < 0)
return 0;
float c = sqrtf(d);
return c;
}
// template <>
// AngleOf<float> AngleOf<float>::CosineRuleAngle(float a, float b, float c) {
// float a2 = a * a;
// float b2 = b * b;
// float c2 = c * c;
// float d = (a2 + b2 - c2) / (2 * a * b);
// // Catch edge cases where float inacuracies lead tot nans
// if (d >= 1)
// return 0.0f;
// if (d <= -1)
// return 180.0f;
// float gamma = acosf(d) * Rad2Deg;
// return gamma;
// }
template <typename T>
AngleOf<T> AngleOf<T>::CosineRuleAngle(float a, float b, float c) {
float a2 = a * a;
float b2 = b * b;
float c2 = c * c;
float d = (a2 + b2 - c2) / (2 * a * b);
// Catch edge cases where float inacuracies lead tot nans
if (d >= 1)
return AngleOf<T>();
if (d <= -1)
return AngleOf<T>::Degrees(180);
// float gamma = acosf(d) * Rad2Deg;
AngleOf<T> gamma = Acos(d);
return gamma;
}
// template <>
// AngleOf<float> AngleOf<float>::SineRuleAngle(float a,
// AngleOf<float> beta,
// float b) {
// float deg2rad = Deg2Rad;
// float alpha = asinf(a * sinf(beta.InDegrees() * deg2rad) / b);
// return alpha;
// }
template <typename T>
AngleOf<T> AngleOf<T>::SineRuleAngle(float a, AngleOf<T> beta, float b) {
// float deg2rad = Deg2Rad;
// float alpha = asinf(a * sinf(beta.InDegrees() * deg2rad) / b);
AngleOf<T> alpha = Asin(a * Sin(beta) / b);
return alpha;
}
template class AngleOf<float>;
template class AngleOf<signed char>;
template class AngleOf<signed short>;
} // namespace LinearAlgebra

View File

@ -1,227 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef ANGLE_H
#define ANGLE_H
namespace LinearAlgebra {
static float pi = 3.1415927410125732421875F;
static float Rad2Deg = 360.0f / (pi * 2);
static float Deg2Rad = (pi * 2) / 360.0f;
/// @brief An angle in various representations.
/// @tparam T The internal type used for the representation of the angle.
/// The angle is internally limited to (-180..180] degrees or (-PI...PI]
/// radians. When an angle exceeds this range, it is normalized to a value
/// within the range.
template <typename T>
class AngleOf {
public:
/// @brief Create a new angle with a zero value
AngleOf<T>();
/// @brief An zero value angle
const static AngleOf<T> zero;
// const static AngleOf<T> deg90;
// const static AngleOf<T> deg180;
/// @brief Creates an angle in degrees
/// @param degrees the angle in degrees
/// @return The angle value
static AngleOf<T> Degrees(float degrees);
/// @brief Creates an angle in radians
/// @param radians the angle in radians
/// @return The angle value
static AngleOf<T> Radians(float radians);
/// @brief Creates an angle from a raw value
/// @param rawValue the raw value to use for the angle
/// @return The the angle
static AngleOf<T> Binary(T rawValue);
/// @brief Get the angle value in degrees
/// @return The angle value in degrees
float InDegrees() const;
/// @brief Get the angle value in radians
/// @return The angle value in radians
float InRadians() const;
/// @brief Get the raw value for the angle
/// @return The raw value
T GetBinary() const;
/// @brief Set the raw value of the angle
/// @param rawValue The raw value
void SetBinary(T rawValue);
/// @brief Tests whether this angle is equal to the given angle
/// @param angle The angle to compare to
/// @return True when the angles are equal, False otherwise
/// @note The equality is determine within the limits of precision of the raw
/// type T
bool operator==(const AngleOf<T> angle) const;
/// @brief Tests if this angle is greater than the given angle
/// @param angle The given angle
/// @return True when this angle is greater than the given angle, False
/// otherwise
bool operator>(AngleOf<T> angle) const;
/// @brief Tests if this angle is greater than or equal to the given angle
/// @param angle The given angle
/// @return True when this angle is greater than or equal to the given angle.
/// False otherwise.
bool operator>=(AngleOf<T> angle) const;
/// @brief Tests if this angle is less than the given angle
/// @param angle The given angle
/// @return True when this angle is less than the given angle. False
/// otherwise.
bool operator<(AngleOf<T> angle) const;
/// @brief Tests if this angle is less than or equal to the given angle
/// @param angle The given angle
/// @return True when this angle is less than or equal to the given angle.
/// False otherwise.
bool operator<=(AngleOf<T> angle) const;
/// @brief Returns the sign of the angle
/// @param angle The angle
/// @return -1 when the angle is negative, 1 when it is positive and 0
/// otherwise.
static signed int Sign(AngleOf<T> angle);
/// @brief Returns the magnitude of the angle
/// @param angle The angle
/// @return The positive magitude of the angle.
/// Negative values are negated to get a positive result
static AngleOf<T> Abs(AngleOf<T> angle);
/// @brief Negate the angle
/// @return The negated angle
AngleOf<T> operator-() const;
/// @brief Substract another angle from this angle
/// @param angle The angle to subtract from this angle
/// @return The result of the subtraction
AngleOf<T> operator-(const AngleOf<T>& angle) const;
/// @brief Add another angle from this angle
/// @param angle The angle to add to this angle
/// @return The result of the addition
AngleOf<T> operator+(const AngleOf<T>& angle) const;
/// @brief Add another angle to this angle
/// @param angle The angle to add to this angle
/// @return The result of the addition
AngleOf<T> operator+=(const AngleOf<T>& angle);
/// @brief Mutliplies the angle
/// @param angle The angle to multiply
/// @param factor The factor by which the angle is multiplied
/// @return The multiplied angle
friend AngleOf<T> operator*(const AngleOf<T>& angle, float factor) {
return AngleOf::Degrees((float)angle.InDegrees() * factor);
}
/// @brief Multiplies the angle
/// @param factor The factor by which the angle is multiplies
/// @param angle The angle to multiply
/// @return The multiplied angle
friend AngleOf<T> operator*(float factor, const AngleOf<T>& angle) {
return AngleOf::Degrees((float)factor * angle.InDegrees());
}
/// @brief Normalizes the angle to (-180..180] or (-PI..PI]
/// Should not be needed but available in case it is.
void Normalize();
/// @brief Normalizes the angle to (-180..180] or (-PI..PI]
/// @param angle The angle to normalize
/// @return The normalized angle;
static AngleOf<T> Normalize(AngleOf<T> angle);
/// @brief Clamps the angle value between the two given angles
/// @param angle The angle to clamp
/// @param min The minimum angle
/// @param max The maximum angle
/// @return The clamped value
/// @remark When the min value is greater than the max value, angle is
/// returned unclamped.
static AngleOf<T> Clamp(AngleOf<T> angle, AngleOf<T> min, AngleOf<T> max);
// static AngleOf<T> Difference(AngleOf<T> a, AngleOf<T> b) {
// AngleOf<T> r = Normalize(b.InDegrees() - a.InDegrees());
// return r;
// };
/// @brief Rotates an angle towards another angle with a max distance
/// @param fromAngle The angle to start from
/// @param toAngle The angle to rotate towards
/// @param maxAngle The maximum angle to rotate
/// @return The rotated angle
static AngleOf<T> MoveTowards(AngleOf<T> fromAngle,
AngleOf<T> toAngle,
float maxAngle);
/// @brief Calculates the cosine of an angle
/// @param angle The given angle
/// @return The cosine of the angle
static float Cos(AngleOf<T> angle);
/// @brief Calculates the sine of an angle
/// @param angle The given angle
/// @return The sine of the angle
static float Sin(AngleOf<T> angle);
/// @brief Calculates the tangent of an angle
/// @param angle The given angle
/// @return The tangent of the angle
static float Tan(AngleOf<T> angle);
/// @brief Calculates the arc cosine angle
/// @param f The value
/// @return The arc cosine for the given value
static AngleOf<T> Acos(float f);
/// @brief Calculates the arc sine angle
/// @param f The value
/// @return The arc sine for the given value
static AngleOf<T> Asin(float f);
/// @brief Calculates the arc tangent angle
/// @param f The value
/// @return The arc tangent for the given value
static AngleOf<T> Atan(float f);
/// @brief Calculates the tangent for the given values
/// @param y The vertical value
/// @param x The horizontal value
/// @return The tanget for the given values
/// Uses the y and x signs to compute the quadrant
static AngleOf<T> Atan2(float y, float x);
/// @brief Computes the length of a side using the rule of cosines
/// @param a The length of side A
/// @param b The length of side B
/// @param gamma The angle of the corner opposing side C
/// @return The length of side C
static float CosineRuleSide(float a, float b, AngleOf<T> gamma);
/// @brief Computes the angle of a corner using the rule of cosines
/// @param a The length of side A
/// @param b The length of side B
/// @param c The length of side C
/// @return The angle of the corner opposing side C
static AngleOf<T> CosineRuleAngle(float a, float b, float c);
/// @brief Computes the angle of a corner using the rule of sines
/// @param a The length of side A
/// @param beta the angle of the corner opposing side B
/// @param c The length of side C
/// @return The angle of the corner opposing side A
static AngleOf<T> SineRuleAngle(float a, AngleOf<T> beta, float c);
private:
T value;
AngleOf<T>(T rawValue);
};
using AngleSingle = AngleOf<float>;
using Angle16 = AngleOf<signed short>;
using Angle8 = AngleOf<signed char>;
#if defined(ARDUINO)
using Angle = Angle16;
#else
using Angle = AngleSingle;
#endif
} // namespace LinearAlgebra
#endif

View File

@ -1,65 +0,0 @@
cmake_minimum_required(VERSION 3.13) # CMake version check
if(ESP_PLATFORM)
idf_component_register(
SRC_DIRS "."
INCLUDE_DIRS "."
)
else()
project(LinearAlgebra)
set(CMAKE_CXX_STANDARD 17) # Enable c++11 standard
set(CMAKE_POSITION_INDEPENDENT_CODE ON)
add_compile_definitions(GTEST)
include(FetchContent)
FetchContent_Declare(
googletest
DOWNLOAD_EXTRACT_TIMESTAMP ON
URL https://github.com/google/googletest/archive/refs/heads/main.zip
)
# For Windows: Prevent overriding the parent project's compiler/linker settings
set(gtest_force_shared_crt ON CACHE BOOL "" FORCE)
FetchContent_MakeAvailable(googletest)
include_directories(.)
file(GLOB srcs
*.cpp
)
add_library(LinearAlgebra STATIC ${srcs}
# "FloatSingle.cpp"
# "Angle.cpp"
# "Vector2.cpp"
# "Vector3.cpp"
# "Quaternion.cpp"
# "Polar.cpp"
# "Spherical.cpp"
# "Matrix.cpp"
# "SwingTwist.cpp"
# "Direction.cpp"
)
enable_testing()
file(GLOB_RECURSE test_srcs test/*_test.cc)
add_executable(
LinearAlgebraTest
${test_srcs}
)
target_link_libraries(
LinearAlgebraTest
gtest_main
LinearAlgebra
)
if(MSVC)
target_compile_options(LinearAlgebraTest PRIVATE /W4 /WX)
# else()
# target_compile_options(LinearAlgebraTest PRIVATE -Wall -Wextra -Wpedantic -Werror)
endif()
include(GoogleTest)
gtest_discover_tests(LinearAlgebraTest)
endif()

View File

@ -1,102 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Direction.h"
#include "Quaternion.h"
#include "Vector3.h"
#include <math.h>
template <typename T>
DirectionOf<T>::DirectionOf() {
this->horizontal = AngleOf<T>();
this->vertical = AngleOf<T>();
}
template <typename T>
DirectionOf<T>::DirectionOf(AngleOf<T> horizontal, AngleOf<T> vertical) {
this->horizontal = horizontal;
this->vertical = vertical;
Normalize();
};
template <typename T>
const DirectionOf<T> DirectionOf<T>::forward =
DirectionOf<T>(AngleOf<T>(), AngleOf<T>());
template <typename T>
const DirectionOf<T> DirectionOf<T>::back =
DirectionOf<T>(AngleOf<T>::Degrees(180), AngleOf<T>());
template <typename T>
const DirectionOf<T> DirectionOf<T>::up =
DirectionOf<T>(AngleOf<T>(), AngleOf<T>::Degrees(90));
template <typename T>
const DirectionOf<T> DirectionOf<T>::down =
DirectionOf<T>(AngleOf<T>(), AngleOf<T>::Degrees(-90));
template <typename T>
const DirectionOf<T> DirectionOf<T>::left =
DirectionOf<T>(AngleOf<T>::Degrees(-90), AngleOf<T>());
template <typename T>
const DirectionOf<T> DirectionOf<T>::right =
DirectionOf<T>(AngleOf<T>::Degrees(90), AngleOf<T>());
template <typename T>
Vector3 DirectionOf<T>::ToVector3() const {
Quaternion q = Quaternion::Euler(-this->vertical.InDegrees(),
this->horizontal.InDegrees(), 0);
Vector3 v = q * Vector3::forward;
return v;
}
template <typename T>
DirectionOf<T> DirectionOf<T>::FromVector3(Vector3 vector) {
DirectionOf<T> d;
d.horizontal = AngleOf<T>::Atan2(
vector.Right(),
vector
.Forward()); // AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
d.vertical =
AngleOf<T>::Degrees(-90) -
AngleOf<T>::Acos(
vector.Up()); // AngleOf<T>::Radians(-(0.5f * pi) - acosf(v.Up()));
d.Normalize();
return d;
}
template <typename T>
DirectionOf<T> DirectionOf<T>::Degrees(float horizontal, float vertical) {
return DirectionOf<T>(AngleOf<T>::Degrees(horizontal),
AngleOf<T>::Degrees(vertical));
}
template <typename T>
DirectionOf<T> DirectionOf<T>::Radians(float horizontal, float vertical) {
return DirectionOf<T>(AngleOf<T>::Radians(horizontal),
AngleOf<T>::Radians(vertical));
}
template <typename T>
bool DirectionOf<T>::operator==(const DirectionOf<T> direction) const {
return (this->horizontal == direction.horizontal) &&
(this->vertical == direction.vertical);
}
template <typename T>
DirectionOf<T> DirectionOf<T>::operator-() const {
DirectionOf<T> r = DirectionOf<T>(this->horizontal + AngleOf<T>::Degrees(180),
-this->vertical);
return r;
}
template <typename T>
void DirectionOf<T>::Normalize() {
if (this->vertical > AngleOf<T>::Degrees(90) ||
this->vertical < AngleOf<T>::Degrees(-90)) {
this->horizontal += AngleOf<T>::Degrees(180);
this->vertical = AngleOf<T>::Degrees(180) - this->vertical;
}
}
template class DirectionOf<float>;
template class DirectionOf<signed short>;

View File

@ -1,104 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef DIRECTION_H
#define DIRECTION_H
#include "Angle.h"
namespace LinearAlgebra {
struct Vector3;
/// @brief A direction using angles in various representations
/// @tparam T The implementation type used for the representation of the angles
/// A direction is represented using two angles:
/// * The horizontal angle ranging from -180 (inclusive) to 180 (exclusive)
/// degrees which is a rotation in the horizontal plane
/// * A vertical angle ranging from -90 (inclusive) to 90 (exclusive) degrees
/// which is the rotation in the up/down direction applied after the horizontal
/// rotation has been applied.
/// The angles are automatically normalized to stay within the abovenmentioned
/// ranges.
template <typename T>
class DirectionOf {
public:
/// @brief horizontal angle, range= (-180..180]
AngleOf<T> horizontal;
/// @brief vertical angle, range in degrees = (-90..90]
AngleOf<T> vertical;
/// @brief Create a new direction with zero angles
DirectionOf<T>();
/// @brief Create a new direction
/// @param horizontal The horizontal angle
/// @param vertical The vertical angle.
DirectionOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical);
/// @brief Convert the direction into a carthesian vector
/// @return The carthesian vector corresponding to this direction.
Vector3 ToVector3() const;
/// @brief Convert a carthesian vector into a direction
/// @param v The carthesian vector
/// @return The direction.
/// @note Information about the length of the carthesian vector is not
/// included in this transformation.
static DirectionOf<T> FromVector3(Vector3 vector);
/// @brief Create a direction using angle values in degrees
/// @param horizontal The horizontal angle in degrees
/// @param vertical The vertical angle in degrees
/// @return The direction
static DirectionOf<T> Degrees(float horizontal, float vertical);
/// @brief Create a direction using angle values in radians
/// @param horizontal The horizontal angle in radians
/// @param vertical The vertical angle in radians
/// @return The direction
static DirectionOf<T> Radians(float horizontal, float vertical);
/// @brief A forward direction with zero for both angles
const static DirectionOf forward;
/// @brief A backward direction with horizontal angle -180 and zero vertical
/// angle
const static DirectionOf back;
/// @brief A upward direction with zero horizontal angle and vertical angle 90
const static DirectionOf up;
/// @brief A downward direction with zero horizontal angle and vertical angle
/// -90
const static DirectionOf down;
/// @brief A left-pointing direction with horizontal angle -90 and zero
/// vertical angle
const static DirectionOf left;
/// @brief A right-pointing direction with horizontal angle 90 and zero
/// vertical angle
const static DirectionOf right;
/// @brief Test whether this direction is equal to another direction
/// @param direction The direction to compare to
/// @return True when the direction angles are equal, false otherwise.
bool operator==(const DirectionOf<T> direction) const;
/// @brief Negate/reverse the direction
/// @return The reversed direction.
DirectionOf<T> operator-() const;
protected:
/// @brief Normalize this vector to the specified ranges
void Normalize();
};
using DirectionSingle = DirectionOf<float>;
using Direction16 = DirectionOf<signed short>;
#if defined(ARDUINO)
using Direction = Direction16;
#else
using Direction = DirectionSingle;
#endif
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#endif

View File

@ -1,154 +0,0 @@
warning: source 'images' is not a readable file or directory... skipping.
d:/PlatformIO/linear-algebra/Quaternion.cpp:100: warning: no uniquely matching class member found for
Quaternion Quaternion::operator*(const Quaternion &r2) const
Possible candidates:
'friend AngleOf< T > Passer::LinearAlgebra::AngleOf< T >::operator*(const AngleOf< T > &angle, float factor)' at line 117 of file d:/PlatformIO/linear-algebra/Angle.h
'friend AngleOf< T > Passer::LinearAlgebra::AngleOf< T >::operator*(float factor, const AngleOf< T > &angle)' at line 124 of file d:/PlatformIO/linear-algebra/Angle.h
'Vector3 Passer::LinearAlgebra::MatrixOf< T >::operator*(const Vector3 v) const' at line 64 of file d:/PlatformIO/linear-algebra/Matrix.h
'friend PolarOf Passer::LinearAlgebra::PolarOf< T >::operator*(const PolarOf &v, float f)' at line 118 of file d:/PlatformIO/linear-algebra/Polar.h
'friend PolarOf Passer::LinearAlgebra::PolarOf< T >::operator*(float f, const PolarOf &v)' at line 121 of file d:/PlatformIO/linear-algebra/Polar.h
'Vector3 Passer::LinearAlgebra::Quaternion::operator*(const Vector3 &vector) const' at line 98 of file d:/PlatformIO/linear-algebra/Quaternion.h
'Quaternion Passer::LinearAlgebra::Quaternion::operator*(const Quaternion &rotation) const' at line 106 of file d:/PlatformIO/linear-algebra/Quaternion.h
'friend SphericalOf< T > Passer::LinearAlgebra::SphericalOf< T >::operator*(const SphericalOf< T > &v, float f)' at line 111 of file d:/PlatformIO/linear-algebra/Spherical.h
'friend SphericalOf< T > Passer::LinearAlgebra::SphericalOf< T >::operator*(float f, const SphericalOf< T > &v)' at line 114 of file d:/PlatformIO/linear-algebra/Spherical.h
'SphericalOf< T > Passer::LinearAlgebra::SwingTwistOf< T >::operator*(const SphericalOf< T > &vector) const' at line 46 of file d:/PlatformIO/linear-algebra/SwingTwist.h
'SwingTwistOf< T > Passer::LinearAlgebra::SwingTwistOf< T >::operator*(const SwingTwistOf< T > &rotation) const' at line 54 of file d:/PlatformIO/linear-algebra/SwingTwist.h
'friend Vector2 Passer::LinearAlgebra::Vector2::operator*(const Vector2 &v, float f)' at line 141 of file d:/PlatformIO/linear-algebra/Vector2.h
'friend Vector2 Passer::LinearAlgebra::Vector2::operator*(float f, const Vector2 &v)' at line 144 of file d:/PlatformIO/linear-algebra/Vector2.h
'friend Vector3 Passer::LinearAlgebra::Vector3::operator*(const Vector3 &v, float f)' at line 149 of file d:/PlatformIO/linear-algebra/Vector3.h
'friend Vector3 Passer::LinearAlgebra::Vector3::operator*(float f, const Vector3 &v)' at line 152 of file d:/PlatformIO/linear-algebra/Vector3.h
d:/PlatformIO/linear-algebra/Quaternion.cpp:108: warning: no uniquely matching class member found for
Vector3 Quaternion::operator*(const Vector3 &p) const
Possible candidates:
'friend AngleOf< T > Passer::LinearAlgebra::AngleOf< T >::operator*(const AngleOf< T > &angle, float factor)' at line 117 of file d:/PlatformIO/linear-algebra/Angle.h
'friend AngleOf< T > Passer::LinearAlgebra::AngleOf< T >::operator*(float factor, const AngleOf< T > &angle)' at line 124 of file d:/PlatformIO/linear-algebra/Angle.h
'Vector3 Passer::LinearAlgebra::MatrixOf< T >::operator*(const Vector3 v) const' at line 64 of file d:/PlatformIO/linear-algebra/Matrix.h
'friend PolarOf Passer::LinearAlgebra::PolarOf< T >::operator*(const PolarOf &v, float f)' at line 118 of file d:/PlatformIO/linear-algebra/Polar.h
'friend PolarOf Passer::LinearAlgebra::PolarOf< T >::operator*(float f, const PolarOf &v)' at line 121 of file d:/PlatformIO/linear-algebra/Polar.h
'Vector3 Passer::LinearAlgebra::Quaternion::operator*(const Vector3 &vector) const' at line 98 of file d:/PlatformIO/linear-algebra/Quaternion.h
'Quaternion Passer::LinearAlgebra::Quaternion::operator*(const Quaternion &rotation) const' at line 106 of file d:/PlatformIO/linear-algebra/Quaternion.h
'friend SphericalOf< T > Passer::LinearAlgebra::SphericalOf< T >::operator*(const SphericalOf< T > &v, float f)' at line 111 of file d:/PlatformIO/linear-algebra/Spherical.h
'friend SphericalOf< T > Passer::LinearAlgebra::SphericalOf< T >::operator*(float f, const SphericalOf< T > &v)' at line 114 of file d:/PlatformIO/linear-algebra/Spherical.h
'SphericalOf< T > Passer::LinearAlgebra::SwingTwistOf< T >::operator*(const SphericalOf< T > &vector) const' at line 46 of file d:/PlatformIO/linear-algebra/SwingTwist.h
'SwingTwistOf< T > Passer::LinearAlgebra::SwingTwistOf< T >::operator*(const SwingTwistOf< T > &rotation) const' at line 54 of file d:/PlatformIO/linear-algebra/SwingTwist.h
'friend Vector2 Passer::LinearAlgebra::Vector2::operator*(const Vector2 &v, float f)' at line 141 of file d:/PlatformIO/linear-algebra/Vector2.h
'friend Vector2 Passer::LinearAlgebra::Vector2::operator*(float f, const Vector2 &v)' at line 144 of file d:/PlatformIO/linear-algebra/Vector2.h
'friend Vector3 Passer::LinearAlgebra::Vector3::operator*(const Vector3 &v, float f)' at line 149 of file d:/PlatformIO/linear-algebra/Vector3.h
'friend Vector3 Passer::LinearAlgebra::Vector3::operator*(float f, const Vector3 &v)' at line 152 of file d:/PlatformIO/linear-algebra/Vector3.h
d:/PlatformIO/linear-algebra/Quaternion.cpp:152: warning: no uniquely matching class member found for
Quaternion Quaternion::LookRotation(const Vector3 &forward, const Vector3 &up)
Possible candidates:
'static Quaternion Passer::LinearAlgebra::Quaternion::LookRotation(const Vector3 &forward, const Vector3 &upwards)' at line 132 of file d:/PlatformIO/linear-algebra/Quaternion.h
'static Quaternion Passer::LinearAlgebra::Quaternion::LookRotation(const Vector3 &forward)' at line 143 of file d:/PlatformIO/linear-algebra/Quaternion.h
d:/PlatformIO/linear-algebra/Quaternion.cpp:330: warning: no uniquely matching class member found for
Quaternion Quaternion::Euler(Vector3 euler)
Possible candidates:
'static Quaternion Passer::LinearAlgebra::Quaternion::Euler(float x, float y, float z)' at line 215 of file d:/PlatformIO/linear-algebra/Quaternion.h
'static Quaternion Passer::LinearAlgebra::Quaternion::Euler(Vector3 eulerAngles)' at line 222 of file d:/PlatformIO/linear-algebra/Quaternion.h
d:/PlatformIO/linear-algebra/Quaternion.cpp:362: warning: no uniquely matching class member found for
Quaternion Quaternion::EulerXYZ(Vector3 euler)
Possible candidates:
'static Quaternion Passer::LinearAlgebra::Quaternion::EulerXYZ(float x, float y, float z)' at line 232 of file d:/PlatformIO/linear-algebra/Quaternion.h
'static Quaternion Passer::LinearAlgebra::Quaternion::EulerXYZ(Vector3 eulerAngles)' at line 239 of file d:/PlatformIO/linear-algebra/Quaternion.h
d:/PlatformIO/linear-algebra/Spherical.cpp:137: warning: no uniquely matching class member found for
template < T >
SphericalOf< T > SphericalOf::operator-(const SphericalOf< T > &s2) const
Possible candidates:
'AngleOf< T > Passer::LinearAlgebra::AngleOf< T >::operator-() const' at line 99 of file d:/PlatformIO/linear-algebra/Angle.h
'AngleOf< T > Passer::LinearAlgebra::AngleOf< T >::operator-(const AngleOf< T > &angle) const' at line 103 of file d:/PlatformIO/linear-algebra/Angle.h
'DirectionOf< T > Passer::LinearAlgebra::DirectionOf< T >::operator-() const' at line 84 of file d:/PlatformIO/linear-algebra/Direction.h
'PolarOf Passer::LinearAlgebra::PolarOf< T >::operator-() const' at line 100 of file d:/PlatformIO/linear-algebra/Polar.h
'PolarOf Passer::LinearAlgebra::PolarOf< T >::operator-(const PolarOf &v) const' at line 105 of file d:/PlatformIO/linear-algebra/Polar.h
'SphericalOf< T > Passer::LinearAlgebra::SphericalOf< T >::operator-() const' at line 93 of file d:/PlatformIO/linear-algebra/Spherical.h
'SphericalOf< T > Passer::LinearAlgebra::SphericalOf< T >::operator-(const SphericalOf< T > &v) const' at line 98 of file d:/PlatformIO/linear-algebra/Spherical.h
'Vector2 Passer::LinearAlgebra::Vector2::operator-()' at line 116 of file d:/PlatformIO/linear-algebra/Vector2.h
'Vector2 Passer::LinearAlgebra::Vector2::operator-(const Vector2 &v) const' at line 121 of file d:/PlatformIO/linear-algebra/Vector2.h
'Vector3 Passer::LinearAlgebra::Vector3::operator-() const' at line 124 of file d:/PlatformIO/linear-algebra/Vector3.h
'Vector3 Passer::LinearAlgebra::Vector3::operator-(const Vector3 &v) const' at line 129 of file d:/PlatformIO/linear-algebra/Vector3.h
d:/PlatformIO/linear-algebra/Vector2.cpp:20: warning: no uniquely matching class member found for
Vector2::Vector2(float _x, float _y)
Possible candidates:
'Passer::LinearAlgebra::Vector2::Vector2()' at line 43 of file d:/PlatformIO/linear-algebra/Vector2.h
'Passer::LinearAlgebra::Vector2::Vector2(float right, float forward)' at line 47 of file d:/PlatformIO/linear-algebra/Vector2.h
'Passer::LinearAlgebra::Vector2::Vector2(Vector3 v)' at line 51 of file d:/PlatformIO/linear-algebra/Vector2.h
'Passer::LinearAlgebra::Vector2::Vector2(PolarOf< float > v)' at line 54 of file d:/PlatformIO/linear-algebra/Vector2.h
d:/PlatformIO/linear-algebra/Vector2.cpp:32: warning: no uniquely matching class member found for
Vector2::Vector2(PolarSingle p)
Possible candidates:
'Passer::LinearAlgebra::Vector2::Vector2()' at line 43 of file d:/PlatformIO/linear-algebra/Vector2.h
'Passer::LinearAlgebra::Vector2::Vector2(float right, float forward)' at line 47 of file d:/PlatformIO/linear-algebra/Vector2.h
'Passer::LinearAlgebra::Vector2::Vector2(Vector3 v)' at line 51 of file d:/PlatformIO/linear-algebra/Vector2.h
'Passer::LinearAlgebra::Vector2::Vector2(PolarOf< float > v)' at line 54 of file d:/PlatformIO/linear-algebra/Vector2.h
d:/PlatformIO/linear-algebra/Vector3.cpp:33: warning: no uniquely matching class member found for
Vector3::Vector3(SphericalOf< float > s)
Possible candidates:
'Passer::LinearAlgebra::Vector3::Vector3()' at line 47 of file d:/PlatformIO/linear-algebra/Vector3.h
'Passer::LinearAlgebra::Vector3::Vector3(float right, float up, float forward)' at line 52 of file d:/PlatformIO/linear-algebra/Vector3.h
'Passer::LinearAlgebra::Vector3::Vector3(Vector2 v)' at line 55 of file d:/PlatformIO/linear-algebra/Vector3.h
'Passer::LinearAlgebra::Vector3::Vector3(SphericalOf< float > v)' at line 59 of file d:/PlatformIO/linear-algebra/Vector3.h
d:/PlatformIO/linear-algebra/Direction.h:43: warning: argument 'v' of command @param is not found in the argument list of Passer::LinearAlgebra::DirectionOf< T >::FromVector3(Vector3 vector)
d:/PlatformIO/linear-algebra/Direction.h:43: warning: The following parameter of Passer::LinearAlgebra::DirectionOf::FromVector3(Vector3 vector) is not documented:
parameter 'vector'
d:/PlatformIO/linear-algebra/Matrix.h:12: warning: Member MatrixOf(unsigned int rows, unsigned int cols) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:13: warning: Member MatrixOf(unsigned int rows, unsigned int cols, const T *source) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:17: warning: Member MatrixOf(Vector3 v) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:59: warning: Member Multiply(const MatrixOf< T > *m, MatrixOf< T > *r) const (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:64: warning: Member operator*(const Vector3 v) const (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:66: warning: Member Get(unsigned int rowIx, unsigned int colIx) const (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:71: warning: Member Set(unsigned int rowIx, unsigned int colIx, T value) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:77: warning: Member Set(const T *source) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:84: warning: Member SetRow(unsigned int rowIx, const T *source) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:91: warning: Member SetCol(unsigned int colIx, const T *source) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:98: warning: Member CopyFrom(const MatrixOf< T > *m) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:108: warning: Member RowCount() const (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:109: warning: Member ColCount() const (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:57: warning: Member Multiply(const MatrixOf< T > *m1, const MatrixOf< T > *m2, MatrixOf< T > *r) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Matrix.h:63: warning: Member Multiply(const MatrixOf< T > *m, Vector3 v) (function) of class Passer::LinearAlgebra::MatrixOf is not documented.
d:/PlatformIO/linear-algebra/Polar.h:106: warning: Member operator-=(const PolarOf &v) (function) of class Passer::LinearAlgebra::PolarOf is not documented.
d:/PlatformIO/linear-algebra/Polar.h:111: warning: Member operator+=(const PolarOf &v) (function) of class Passer::LinearAlgebra::PolarOf is not documented.
d:/PlatformIO/linear-algebra/Polar.h:124: warning: Member operator*=(float f) (function) of class Passer::LinearAlgebra::PolarOf is not documented.
d:/PlatformIO/linear-algebra/Polar.h:136: warning: Member operator/=(float f) (function) of class Passer::LinearAlgebra::PolarOf is not documented.
d:/PlatformIO/linear-algebra/Polar.h:121: warning: Member operator*(float f, const PolarOf &v) (friend) of class Passer::LinearAlgebra::PolarOf is not documented.
d:/PlatformIO/linear-algebra/Polar.h:133: warning: Member operator/(float f, const PolarOf &v) (friend) of class Passer::LinearAlgebra::PolarOf is not documented.
d:/PlatformIO/linear-algebra/Polar.h:59: warning: argument 's' of command @param is not found in the argument list of Passer::LinearAlgebra::PolarOf< T >::FromSpherical(SphericalOf< T > v)
d:/PlatformIO/linear-algebra/Polar.h:59: warning: The following parameter of Passer::LinearAlgebra::PolarOf::FromSpherical(SphericalOf< T > v) is not documented:
parameter 'v'
d:/PlatformIO/linear-algebra/Spherical.h:29: warning: Member SphericalOf(float distance, AngleOf< T > horizontal, AngleOf< T > vertical) (function) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:29: warning: Member SphericalOf(float distance, DirectionOf< T > direction) (function) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:99: warning: Member operator-=(const SphericalOf< T > &v) (function) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:104: warning: Member operator+=(const SphericalOf< T > &v) (function) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:117: warning: Member operator*=(float f) (function) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:129: warning: Member operator/=(float f) (function) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:54: warning: Member Rad (variable) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:114: warning: Member operator*(float f, const SphericalOf< T > &v) (friend) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/Spherical.h:126: warning: Member operator/(float f, const SphericalOf< T > &v) (friend) of class Passer::LinearAlgebra::SphericalOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:22: warning: Member SwingTwistOf(DirectionOf< T > swing, AngleOf< T > twist) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:22: warning: Member SwingTwistOf(AngleOf< T > horizontal, AngleOf< T > vertical, AngleOf< T > twist) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:31: warning: Member ToQuaternion() const (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:34: warning: Member ToAngleAxis() const (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:39: warning: Member operator==(const SwingTwistOf< T > d) const (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:55: warning: Member operator*=(const SwingTwistOf< T > &rotation) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:69: warning: Member Normalize() (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:28: warning: Member Degrees(float horizontal, float vertical=0, float twist=0) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:32: warning: Member FromQuaternion(Quaternion q) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:35: warning: Member FromAngleAxis(SphericalOf< T > aa) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:57: warning: Member Inverse(SwingTwistOf< T > rotation) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:67: warning: Member Angle(const SwingTwistOf< T > &r1, const SwingTwistOf< T > &r2) (function) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:21: warning: Member swing (variable) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:22: warning: Member twist (variable) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/SwingTwist.h:37: warning: Member identity (variable) of class Passer::LinearAlgebra::SwingTwistOf is not documented.
d:/PlatformIO/linear-algebra/Vector2.h:122: warning: Member operator-=(const Vector2 &v) (function) of struct Passer::LinearAlgebra::Vector2 is not documented.
d:/PlatformIO/linear-algebra/Vector2.h:127: warning: Member operator+=(const Vector2 &v) (function) of struct Passer::LinearAlgebra::Vector2 is not documented.
d:/PlatformIO/linear-algebra/Vector2.h:148: warning: Member operator*=(float f) (function) of struct Passer::LinearAlgebra::Vector2 is not documented.
d:/PlatformIO/linear-algebra/Vector2.h:159: warning: Member operator/=(float f) (function) of struct Passer::LinearAlgebra::Vector2 is not documented.
d:/PlatformIO/linear-algebra/Vector2.h:144: warning: Member operator*(float f, const Vector2 &v) (friend) of struct Passer::LinearAlgebra::Vector2 is not documented.
d:/PlatformIO/linear-algebra/Vector2.h:156: warning: Member operator/(float f, const Vector2 &v) (friend) of struct Passer::LinearAlgebra::Vector2 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:82: warning: Member Forward() const (function) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:83: warning: Member Up() const (function) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:84: warning: Member Right() const (function) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:130: warning: Member operator-=(const Vector3 &v) (function) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:135: warning: Member operator+=(const Vector3 &v) (function) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:156: warning: Member operator*=(float f) (function) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:168: warning: Member operator/=(float f) (function) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:152: warning: Member operator*(float f, const Vector3 &v) (friend) of struct Passer::LinearAlgebra::Vector3 is not documented.
d:/PlatformIO/linear-algebra/Vector3.h:164: warning: Member operator/(float f, const Vector3 &v) (friend) of struct Passer::LinearAlgebra::Vector3 is not documented.

View File

@ -1,226 +0,0 @@
<doxygenlayout version="1.0">
<!-- Generated by doxygen 1.8.18 -->
<!-- Navigation index tabs for HTML output -->
<navindex>
<tab type="mainpage" visible="yes" title=""/>
<tab type="pages" visible="yes" title="" intro=""/>
<tab type="modules" visible="yes" title="" intro=""/>
<tab type="namespaces" visible="yes" title="">
<tab type="namespacelist" visible="yes" title="" intro=""/>
<tab type="namespacemembers" visible="yes" title="" intro=""/>
</tab>
<tab type="interfaces" visible="yes" title="">
<tab type="interfacelist" visible="yes" title="" intro=""/>
<tab type="interfaceindex" visible="$ALPHABETICAL_INDEX" title=""/>
<tab type="interfacehierarchy" visible="yes" title="" intro=""/>
</tab>
<tab type="classes" visible="yes" title="">
<tab type="classlist" visible="yes" title="" intro=""/>
<tab type="classindex" visible="$ALPHABETICAL_INDEX" title=""/>
<tab type="hierarchy" visible="yes" title="" intro=""/>
<tab type="classmembers" visible="yes" title="" intro=""/>
</tab>
<tab type="structs" visible="yes" title="">
<tab type="structlist" visible="yes" title="" intro=""/>
<tab type="structindex" visible="$ALPHABETICAL_INDEX" title=""/>
</tab>
<tab type="exceptions" visible="yes" title="">
<tab type="exceptionlist" visible="yes" title="" intro=""/>
<tab type="exceptionindex" visible="$ALPHABETICAL_INDEX" title=""/>
<tab type="exceptionhierarchy" visible="yes" title="" intro=""/>
</tab>
<tab type="files" visible="yes" title="">
<tab type="filelist" visible="yes" title="" intro=""/>
<tab type="globals" visible="yes" title="" intro=""/>
</tab>
<tab type="examples" visible="yes" title="" intro=""/>
</navindex>
<!-- Layout definition for a class page -->
<class>
<briefdescription visible="no"/>
<detaileddescription title=""/>
<includes visible="$SHOW_INCLUDE_FILES"/>
<inheritancegraph visible="$CLASS_GRAPH"/>
<collaborationgraph visible="$COLLABORATION_GRAPH"/>
<memberdecl>
<nestedclasses visible="yes" title=""/>
<publictypes title=""/>
<services title=""/>
<interfaces title=""/>
<publicslots title=""/>
<signals title=""/>
<publicmethods title=""/>
<publicstaticmethods title=""/>
<publicattributes title=""/>
<publicstaticattributes title=""/>
<protectedtypes title=""/>
<protectedslots title=""/>
<protectedmethods title=""/>
<protectedstaticmethods title=""/>
<protectedattributes title=""/>
<protectedstaticattributes title=""/>
<packagetypes title=""/>
<packagemethods title=""/>
<packagestaticmethods title=""/>
<packageattributes title=""/>
<packagestaticattributes title=""/>
<properties title=""/>
<events title=""/>
<privatetypes title=""/>
<privateslots title=""/>
<privatemethods title=""/>
<privatestaticmethods title=""/>
<privateattributes title=""/>
<privatestaticattributes title=""/>
<friends title=""/>
<related title="" subtitle=""/>
<membergroups visible="yes"/>
</memberdecl>
<memberdef>
<inlineclasses title=""/>
<typedefs title=""/>
<enums title=""/>
<services title=""/>
<interfaces title=""/>
<constructors title=""/>
<functions title=""/>
<related title=""/>
<variables title=""/>
<properties title=""/>
<events title=""/>
</memberdef>
<allmemberslink visible="yes"/>
<usedfiles visible="$SHOW_USED_FILES"/>
<authorsection visible="yes"/>
</class>
<!-- Layout definition for a namespace page -->
<namespace>
<briefdescription visible="yes"/>
<memberdecl>
<nestednamespaces visible="yes" title=""/>
<constantgroups visible="yes" title=""/>
<interfaces visible="yes" title=""/>
<classes visible="yes" title=""/>
<structs visible="yes" title=""/>
<exceptions visible="yes" title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
<membergroups visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
<memberdef>
<inlineclasses title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
</memberdef>
<authorsection visible="yes"/>
</namespace>
<!-- Layout definition for a file page -->
<file>
<briefdescription visible="yes"/>
<includes visible="$SHOW_INCLUDE_FILES"/>
<includegraph visible="$INCLUDE_GRAPH"/>
<includedbygraph visible="$INCLUDED_BY_GRAPH"/>
<sourcelink visible="yes"/>
<memberdecl>
<interfaces visible="yes" title=""/>
<classes visible="yes" title=""/>
<structs visible="yes" title=""/>
<exceptions visible="yes" title=""/>
<namespaces visible="yes" title=""/>
<constantgroups visible="yes" title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
<membergroups visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
<memberdef>
<inlineclasses title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<functions title=""/>
<variables title=""/>
</memberdef>
<authorsection/>
</file>
<!-- Layout definition for a group page -->
<group>
<briefdescription visible="yes"/>
<groupgraph visible="$GROUP_GRAPHS"/>
<memberdecl>
<nestedgroups visible="yes" title=""/>
<dirs visible="yes" title=""/>
<files visible="yes" title=""/>
<namespaces visible="yes" title=""/>
<classes visible="yes" title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<enumvalues title=""/>
<functions title=""/>
<variables title=""/>
<signals title=""/>
<publicslots title=""/>
<protectedslots title=""/>
<privateslots title=""/>
<events title=""/>
<properties title=""/>
<friends title=""/>
<membergroups visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
<memberdef>
<pagedocs/>
<inlineclasses title=""/>
<defines title=""/>
<typedefs title=""/>
<sequences title=""/>
<dictionaries title=""/>
<enums title=""/>
<enumvalues title=""/>
<functions title=""/>
<variables title=""/>
<signals title=""/>
<publicslots title=""/>
<protectedslots title=""/>
<privateslots title=""/>
<events title=""/>
<properties title=""/>
<friends title=""/>
</memberdef>
<authorsection visible="yes"/>
</group>
<!-- Layout definition for a directory page -->
<directory>
<briefdescription visible="yes"/>
<directorygraph visible="yes"/>
<memberdecl>
<dirs visible="yes"/>
<files visible="yes"/>
</memberdecl>
<detaileddescription title=""/>
</directory>
</doxygenlayout>

View File

@ -1,12 +0,0 @@
/* Custom PasserVR CSS for DoxyGen */
a {
color: #e77505;
}
.contents a:visited {
color: #e77505;
}
a:hover {
color: #10659C;
}

View File

@ -1,19 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "FloatSingle.h"
#include <math.h>
const float Float::epsilon = 1e-05f;
const float Float::sqrEpsilon = 1e-10f;
float Float::Clamp(float f, float min, float max) {
if (max < min)
return f;
if (f < min)
return min;
if (f > max)
return max;
return f;
}

View File

@ -1,22 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef FLOAT_H
#define FLOAT_H
namespace LinearAlgebra {
class Float {
public:
static const float epsilon;
static const float sqrEpsilon;
static float Clamp(float f, float min, float max);
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#endif

View File

@ -1,62 +0,0 @@
#include "Matrix.h"
template <> MatrixOf<float>::MatrixOf(unsigned int rows, unsigned int cols) {
if (rows <= 0 || cols <= 0) {
this->rows = 0;
this->cols = 0;
this->data = nullptr;
return;
}
this->rows = rows;
this->cols = cols;
unsigned int matrixSize = this->cols * this->rows;
this->data = new float[matrixSize]{0.0f};
}
template <> MatrixOf<float>::MatrixOf(Vector3 v) : MatrixOf(3, 1) {
Set(0, 0, v.Right());
Set(1, 0, v.Up());
Set(2, 0, v.Forward());
}
template <>
void MatrixOf<float>::Multiply(const MatrixOf<float> *m1,
const MatrixOf<float> *m2, MatrixOf<float> *r) {
for (unsigned int rowIx1 = 0; rowIx1 < m1->rows; rowIx1++) {
for (unsigned int colIx2 = 0; colIx2 < m2->cols; colIx2++) {
unsigned int rDataIx = colIx2 * m2->cols + rowIx1;
r->data[rDataIx] = 0.0F;
for (unsigned int kIx = 0; kIx < m2->rows; kIx++) {
unsigned int dataIx1 = rowIx1 * m1->cols + kIx;
unsigned int dataIx2 = kIx * m2->cols + colIx2;
r->data[rDataIx] += m1->data[dataIx1] * m2->data[dataIx2];
}
}
}
}
template <>
Vector3 MatrixOf<float>::Multiply(const MatrixOf<float> *m, Vector3 v) {
MatrixOf<float> v_m = MatrixOf<float>(v);
MatrixOf<float> r_m = MatrixOf<float>(3, 1);
Multiply(m, &v_m, &r_m);
Vector3 r = Vector3(r_m.data[0], r_m.data[1], r_m.data[2]);
return r;
}
template <typename T> Vector3 MatrixOf<T>::operator*(const Vector3 v) const {
float *vData = new float[3]{v.Right(), v.Up(), v.Forward()};
MatrixOf<float> v_m = MatrixOf<float>(3, 1, vData);
float *rData = new float[3]{};
MatrixOf<float> r_m = MatrixOf<float>(3, 1, rData);
Multiply(this, &v_m, &r_m);
Vector3 r = Vector3(r_m.data[0], r_m.data[1], r_m.data[2]);
delete[] vData;
delete[] rData;
return r;
}

View File

@ -1,121 +0,0 @@
#ifndef MATRIX_H
#define MATRIX_H
#include "Vector3.h"
namespace LinearAlgebra {
/// @brief Single precision float matrix
template <typename T>
class MatrixOf {
public:
MatrixOf(unsigned int rows, unsigned int cols);
MatrixOf(unsigned int rows, unsigned int cols, const T* source)
: MatrixOf(rows, cols) {
Set(source);
}
MatrixOf(Vector3 v); // creates a 3,1 matrix
~MatrixOf() {
if (this->data == nullptr)
return;
delete[] this->data;
}
/// @brief Transpose with result in matrix m
/// @param r The matrix in which the transposed matrix is stored
void Transpose(MatrixOf<T>* r) const {
// Check dimensions first
// We dont care about the rows and cols (we overwrite them)
// but the data size should be equal to avoid problems
// We cannot check the data size directly, but the row*col should be equal
unsigned int matrixSize = this->cols * this->rows;
unsigned int resultSize = r->rows * r->cols;
if (matrixSize != resultSize) {
// Return a null matrix;
// We dont set data to nullptr because it is allocated memory
// Instead we write all zeros
for (unsigned int dataIx = 0; dataIx < resultSize; dataIx++)
r->data[dataIx] = 0.0f;
r->rows = 0;
r->cols = 0;
return;
}
r->cols = this->rows;
r->rows = this->cols;
for (unsigned int rDataIx = 0; rDataIx < matrixSize; rDataIx++) {
unsigned int rowIx = rDataIx / this->rows;
unsigned int colIx = rDataIx % this->rows;
unsigned int mDataIx = this->cols * colIx + rowIx;
r->data[rDataIx] = this->data[mDataIx];
}
}
static void Multiply(const MatrixOf<T>* m1,
const MatrixOf<T>* m2,
MatrixOf<T>* r);
void Multiply(const MatrixOf<T>* m, MatrixOf<T>* r) const {
Multiply(this, m, r);
}
static Vector3 Multiply(const MatrixOf<T>* m, Vector3 v);
Vector3 operator*(const Vector3 v) const;
T Get(unsigned int rowIx, unsigned int colIx) const {
unsigned int dataIx = rowIx * this->cols + colIx;
return this->data[dataIx];
}
void Set(unsigned int rowIx, unsigned int colIx, T value) {
unsigned int dataIx = rowIx * this->cols + colIx;
this->data[dataIx] = value;
}
// This function does not check on source size!
void Set(const T* source) {
unsigned int matrixSize = this->cols * this->rows;
for (unsigned int dataIx = 0; dataIx < matrixSize; dataIx++)
this->data[dataIx] = source[dataIx];
}
// This function does not check on source size!
void SetRow(unsigned int rowIx, const T* source) {
unsigned int dataIx = rowIx * this->cols;
for (unsigned int sourceIx = 0; sourceIx < this->cols; dataIx++, sourceIx++)
this->data[dataIx] = source[sourceIx];
}
// This function does not check on source size!
void SetCol(unsigned int colIx, const T* source) {
unsigned int dataIx = colIx;
for (unsigned int sourceIx = 0; sourceIx < this->cols;
dataIx += this->cols, sourceIx++)
this->data[dataIx] = source[sourceIx];
}
void CopyFrom(const MatrixOf<T>* m) {
unsigned int thisMatrixSize = this->cols * this->rows;
unsigned int mMatrixSize = m->cols * m->rows;
if (mMatrixSize != thisMatrixSize)
return;
for (unsigned int dataIx = 0; dataIx < thisMatrixSize; dataIx++)
this->data[dataIx] = m->data[dataIx];
}
unsigned int RowCount() const { return rows; }
unsigned int ColCount() const { return cols; }
private:
unsigned int rows;
unsigned int cols;
T* data;
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#endif

View File

@ -1,179 +0,0 @@
#include <math.h>
#include "Polar.h"
#include "Vector2.h"
template <typename T>
PolarOf<T>::PolarOf() {
this->distance = 0.0f;
this->angle = AngleOf<T>();
}
template <typename T>
PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) {
// distance should always be 0 or greater
if (distance < 0.0f) {
this->distance = -distance;
this->angle = AngleOf<T>::Normalize(angle - AngleOf<T>::Degrees(180));
} else {
this->distance = distance;
if (this->distance == 0.0f)
// angle is always 0 if distance is 0
this->angle = AngleOf<T>();
else
this->angle = AngleOf<T>::Normalize(angle);
}
}
template <typename T>
PolarOf<T> PolarOf<T>::Degrees(float distance, float degrees) {
AngleOf<T> angle = AngleOf<T>::Degrees(degrees);
PolarOf<T> r = PolarOf<T>(distance, angle);
return r;
}
template <typename T>
PolarOf<T> PolarOf<T>::Radians(float distance, float radians) {
return PolarOf<T>(distance, AngleOf<T>::Radians(radians));
}
template <typename T>
PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) {
float distance = v.magnitude();
AngleOf<T> angle =
AngleOf<T>::Degrees(Vector2::SignedAngle(Vector2::forward, v));
PolarOf<T> p = PolarOf(distance, angle);
return p;
}
template <typename T>
PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) {
float distance =
v.distance * cosf(v.direction.vertical.InDegrees() * Deg2Rad);
AngleOf<T> angle = v.direction.horizontal;
PolarOf<T> p = PolarOf(distance, angle);
return p;
}
template <typename T>
const PolarOf<T> PolarOf<T>::zero = PolarOf(0.0f, AngleOf<T>());
template <typename T>
const PolarOf<T> PolarOf<T>::forward = PolarOf(1.0f, AngleOf<T>());
template <typename T>
const PolarOf<T> PolarOf<T>::back = PolarOf(1.0, AngleOf<T>::Degrees(180));
template <typename T>
const PolarOf<T> PolarOf<T>::right = PolarOf(1.0, AngleOf<T>::Degrees(90));
template <typename T>
const PolarOf<T> PolarOf<T>::left = PolarOf(1.0, AngleOf<T>::Degrees(-90));
template <typename T>
bool PolarOf<T>::operator==(const PolarOf& v) const {
return (this->distance == v.distance &&
this->angle.InDegrees() == v.angle.InDegrees());
}
template <typename T>
PolarOf<T> PolarOf<T>::Normalize(const PolarOf& v) {
PolarOf<T> r = PolarOf(1, v.angle);
return r;
}
template <typename T>
PolarOf<T> PolarOf<T>::normalized() const {
PolarOf<T> r = PolarOf(1, this->angle);
return r;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-() const {
PolarOf<T> v =
PolarOf(this->distance, this->angle + AngleOf<T>::Degrees(180));
return v;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-(const PolarOf& v) const {
PolarOf<T> r = -v;
return *this + r;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator-=(const PolarOf& v) {
*this = *this - v;
return *this;
// angle = AngleOf<T>::Normalize(newAngle);
// distance = newDistance;
}
// Polar::Polar(Vector2 v) {
// float signY = (v.y >= 0) - (v.y < 0);
// angle = atan2(v.y, signY * sqrt(v.y * v.y + v.x * v.x)) * Angle::Rad2Deg;
// distance = v.magnitude();
// }
// const Polar Polar::zero = Polar(0, 0);
// float Polar::Distance(const Polar &v1, const Polar &v2) {
// float d =
// Angle::CosineRuleSide(v1.distance, v2.distance, v2.angle - v1.angle);
// return d;
// }
template <typename T>
PolarOf<T> PolarOf<T>::operator+(const PolarOf& v) const {
if (v.distance == 0)
return PolarOf(this->distance, this->angle);
if (this->distance == 0.0f)
return v;
float deltaAngle = AngleOf<T>::Normalize(v.angle - this->angle).InDegrees();
float rotation =
deltaAngle < 0.0f ? 180.0f + deltaAngle : 180.0f - deltaAngle;
if (rotation == 180.0f && v.distance > 0.0f) {
// angle is too small, take this angle and add the distances
return PolarOf(this->distance + v.distance, this->angle);
}
float newDistance = AngleOf<T>::CosineRuleSide(v.distance, this->distance,
AngleOf<T>::Degrees(rotation));
float angle =
AngleSingle::CosineRuleAngle(newDistance, this->distance, v.distance)
.InDegrees();
float newAngle = deltaAngle < 0.0f ? this->angle.InDegrees() - angle
: this->angle.InDegrees() + angle;
AngleOf<T> newAngleA = AngleOf<T>::Normalize(AngleOf<T>::Degrees(newAngle));
PolarOf vector = PolarOf(newDistance, newAngleA);
return vector;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator+=(const PolarOf& v) {
*this = *this + v;
return *this;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator*=(float f) {
this->distance *= f;
return *this;
}
template <typename T>
PolarOf<T> PolarOf<T>::operator/=(float f) {
this->distance /= f;
return *this;
}
template <typename T>
float PolarOf<T>::Distance(const PolarOf& v1, const PolarOf& v2) {
float d =
AngleOf<T>::CosineRuleSide(v1.distance, v2.distance, v2.angle - v1.angle);
return d;
}
template <typename T>
PolarOf<T> PolarOf<T>::Rotate(const PolarOf& v, AngleOf<T> angle) {
AngleOf<T> a = AngleOf<T>::Normalize(v.angle + angle);
PolarOf<T> r = PolarOf(v.distance, a);
return r;
}
template class PolarOf<float>;
template class PolarOf<signed short>;

View File

@ -1,162 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef POLAR_H
#define POLAR_H
#include "Angle.h"
namespace LinearAlgebra {
struct Vector2;
template <typename T>
class SphericalOf;
/// @brief A polar vector using an angle in various representations
/// @tparam T The implementation type used for the representation of the angle
template <typename T>
class PolarOf {
public:
/// @brief The distance in meters
/// @remark The distance shall never be negative
float distance;
/// @brief The angle in degrees clockwise rotation
/// @remark The angle shall be between -180 .. 180
AngleOf<T> angle;
/// @brief A new vector with polar coordinates with zero degrees and
/// distance
PolarOf();
/// @brief A new vector with polar coordinates
/// @param distance The distance in meters
/// @param angle The angle in degrees, clockwise rotation
/// @note The distance is automatically converted to a positive value.
/// @note The angle is automatically normalized to -180 .. 180
PolarOf(float distance, AngleOf<T> angle);
/// @brief Create polar vector without using AngleOf type. All given angles
/// are in degrees
/// @param distance The distance in meters
/// @param degrees The angle in degrees
/// @return The polar vector
static PolarOf<T> Degrees(float distance, float degrees);
/// @brief Short-hand Deg alias for the Degrees function
constexpr static auto Deg = Degrees;
/// @brief Create polar vector without using AngleOf type. All given angles
/// are in radians.
/// @param distance The distance in meters
/// @param radians The angle in radians
/// @return The polar vector
static PolarOf<T> Radians(float distance, float radians);
/// @brief Short-hand Rad alias for the Radians function
constexpr static auto Rad = Radians;
/// @brief Convert a vector from 2D carthesian coordinates to polar
/// coordinates
/// @param v The vector to convert
static PolarOf<T> FromVector2(Vector2 v);
/// @brief Convert a vector from spherical coordinates to polar coordinates
/// @param s The vector to convert
/// @note The resulting vector will be projected on the horizontal plane
static PolarOf<T> FromSpherical(SphericalOf<T> v);
/// @brief A polar vector with zero degrees and distance
const static PolarOf zero;
/// @brief A normalized forward-oriented vector
const static PolarOf forward;
/// @brief A normalized back-oriented vector
const static PolarOf back;
/// @brief A normalized right-oriented vector
const static PolarOf right;
/// @brief A normalized left-oriented vector
const static PolarOf left;
/// @brief Equality test to another vector
/// @param v The vector to check against
/// @return true: if it is identical to the given vector
/// @note This uses float comparison to check equality which may have
/// strange effects. Equality on floats should be avoided.
bool operator==(const PolarOf& v) const;
/// @brief The vector length
/// @param v The vector for which you need the length
/// @return The vector length;
inline static float Magnitude(const PolarOf& v) { return v.distance; }
/// @brief The vector length
/// @return The vector length
inline float magnitude() const { return this->distance; }
/// @brief Convert the vector to a length of 1
/// @param v The vector to convert
/// @return The vector normalized to a length of 1
static PolarOf Normalize(const PolarOf& v);
/// @brief Convert the vector to a length of a
/// @return The vector normalized to a length of 1
PolarOf normalized() const;
/// @brief Negate the vector
/// @return The negated vector
/// This will rotate the vector by 180 degrees. Distance will stay the same.
PolarOf operator-() const;
/// @brief Subtract a polar vector from this vector
/// @param v The vector to subtract
/// @return The result of the subtraction
PolarOf operator-(const PolarOf& v) const;
PolarOf operator-=(const PolarOf& v);
/// @brief Add a polar vector to this vector
/// @param v The vector to add
/// @return The result of the addition
PolarOf operator+(const PolarOf& v) const;
PolarOf operator+=(const PolarOf& v);
/// @brief Scale the vector uniformly up
/// @param f The scaling factor
/// @return The scaled vector
/// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected.
friend PolarOf operator*(const PolarOf& v, float f) {
return PolarOf(v.distance * f, v.angle);
}
friend PolarOf operator*(float f, const PolarOf& v) {
return PolarOf(f * v.distance, v.angle);
}
PolarOf operator*=(float f);
/// @brief Scale the vector uniformly down
/// @param f The scaling factor
/// @return The scaled factor
/// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected.
friend PolarOf operator/(const PolarOf& v, float f) {
return PolarOf(v.distance / f, v.angle);
}
friend PolarOf operator/(float f, const PolarOf& v) {
return PolarOf(f / v.distance, v.angle);
}
PolarOf operator/=(float f);
/// @brief The distance between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The distance between the two vectors
static float Distance(const PolarOf& v1, const PolarOf& v2);
/// @brief Rotate a vector
/// @param v The vector to rotate
/// @param a The angle in degreesto rotate
/// @return The rotated vector
static PolarOf Rotate(const PolarOf& v, AngleOf<T> a);
};
using PolarSingle = PolarOf<float>;
using Polar16 = PolarOf<signed short>;
// using Polar = PolarSingle;
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#include "Spherical.h"
#include "Vector2.h"
#endif

View File

@ -1,418 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Quaternion.h"
#include <float.h>
#include <math.h>
#include "Angle.h"
#include "Vector3.h"
void CopyQuat(const Quat& q1, Quat& q2) {
q2.x = q1.x;
q2.y = q1.y;
q2.z = q1.z;
q2.w = q1.w;
}
const float Deg2Rad = 0.0174532924F;
const float Rad2Deg = 57.29578F;
Quaternion::Quaternion() {
x = 0;
y = 0;
z = 0;
w = 1;
}
Quaternion::Quaternion(float _x, float _y, float _z, float _w) {
x = _x;
y = _y;
z = _z;
w = _w;
}
Quaternion::Quaternion(Quat q) {
x = q.x;
y = q.y;
z = q.z;
w = q.w;
}
Quaternion::~Quaternion() {}
const Quaternion Quaternion::identity = Quaternion(0, 0, 0, 1);
Vector3 Quaternion::xyz() const {
return Vector3(x, y, z);
}
float Quaternion::GetLength() const {
return sqrtf(x * x + y * y + z * z + w * w);
}
float Quaternion::GetLengthSquared() const {
return x * x + y * y + z * z + w * w;
}
float Quaternion::GetLengthSquared(const Quaternion& q) {
return q.x * q.x + q.y * q.y + q.z * q.z + q.w * q.w;
}
void Quaternion::Normalize() {
float length = GetLength();
x /= length;
y /= length;
z /= length;
w /= length;
}
Quaternion Quaternion::Normalize(const Quaternion& q) {
Quaternion result;
float length = q.GetLength();
result = Quaternion(q.x / length, q.y / length, q.z / length, q.w / length);
return result;
};
float Quaternion::Dot(Quaternion a, Quaternion b) {
return a.x * b.x + a.y * b.y + a.z * b.z + a.w * b.w;
}
Vector3 Quaternion::ToAngles(const Quaternion& q1) {
float test = q1.x * q1.y + q1.z * q1.w;
if (test > 0.499f) { // singularity at north pole
return Vector3(0, 2 * (float)atan2(q1.x, q1.w) * Rad2Deg, 90);
} else if (test < -0.499f) { // singularity at south pole
return Vector3(0, -2 * (float)atan2(q1.x, q1.w) * Rad2Deg, -90);
} else {
float sqx = q1.x * q1.x;
float sqy = q1.y * q1.y;
float sqz = q1.z * q1.z;
return Vector3(
atan2f(2 * q1.x * q1.w - 2 * q1.y * q1.z, 1 - 2 * sqx - 2 * sqz) *
Rad2Deg,
atan2f(2 * q1.y * q1.w - 2 * q1.x * q1.z, 1 - 2 * sqy - 2 * sqz) *
Rad2Deg,
asinf(2 * test) * Rad2Deg);
}
}
Quaternion Quaternion::operator*(const Quaternion& r2) const {
return Quaternion(
this->x * r2.w + this->y * r2.z - this->z * r2.y + this->w * r2.x,
-this->x * r2.z + this->y * r2.w + this->z * r2.x + this->w * r2.y,
this->x * r2.y - this->y * r2.x + this->z * r2.w + this->w * r2.z,
-this->x * r2.x - this->y * r2.y - this->z * r2.z + this->w * r2.w);
};
Vector3 Quaternion::operator*(const Vector3& p) const {
float num = this->x * 2;
float num2 = this->y * 2;
float num3 = this->z * 2;
float num4 = this->x * num;
float num5 = this->y * num2;
float num6 = this->z * num3;
float num7 = this->x * num2;
float num8 = this->x * num3;
float num9 = this->y * num3;
float num10 = this->w * num;
float num11 = this->w * num2;
float num12 = this->w * num3;
float px = p.Right();
float py = p.Up();
float pz = p.Forward();
// Vector3 result = Vector3::zero;
// result.x =
float rx =
(1 - (num5 + num6)) * px + (num7 - num12) * py + (num8 + num11) * pz;
// result.y =
float ry =
(num7 + num12) * px + (1 - (num4 + num6)) * py + (num9 - num10) * pz;
// result.z =
float rz =
(num8 - num11) * px + (num9 + num10) * py + (1 - (num4 + num5)) * pz;
Vector3 result = Vector3(rx, ry, rz);
return result;
}
bool Quaternion::operator==(const Quaternion& q) const {
return (this->x == q.x && this->y == q.y && this->z == q.z && this->w == q.w);
}
Quaternion Quaternion::Inverse(Quaternion r) {
float n = sqrtf(r.x * r.x + r.y * r.y + r.z * r.z + r.w * r.w);
return Quaternion(-r.x / n, -r.y / n, -r.z / n, r.w / n);
}
Quaternion Quaternion::LookRotation(const Vector3& forward) {
Vector3 up = Vector3(0, 1, 0);
return LookRotation(forward, up);
}
Quaternion Quaternion::LookRotation(const Vector3& forward, const Vector3& up) {
Vector3 nForward = Vector3::Normalize(forward);
Vector3 nRight = Vector3::Normalize(Vector3::Cross(up, nForward));
Vector3 nUp = Vector3::Cross(nForward, nRight);
float m00 = nRight.Right(); // x;
float m01 = nRight.Up(); // y;
float m02 = nRight.Forward(); // z;
float m10 = nUp.Right(); // x;
float m11 = nUp.Up(); // y;
float m12 = nUp.Forward(); // z;
float m20 = nForward.Right(); // x;
float m21 = nForward.Up(); // y;
float m22 = nForward.Forward(); // z;
float num8 = (m00 + m11) + m22;
Quaternion quaternion = Quaternion();
if (num8 > 0) {
float num = sqrtf(num8 + 1);
quaternion.w = num * 0.5f;
num = 0.5f / num;
quaternion.x = (m12 - m21) * num;
quaternion.y = (m20 - m02) * num;
quaternion.z = (m01 - m10) * num;
return quaternion;
}
if ((m00 >= m11) && (m00 >= m22)) {
float num7 = sqrtf(((1 + m00) - m11) - m22);
float num4 = 0.5F / num7;
quaternion.x = 0.5f * num7;
quaternion.y = (m01 + m10) * num4;
quaternion.z = (m02 + m20) * num4;
quaternion.w = (m12 - m21) * num4;
return quaternion;
}
if (m11 > m22) {
float num6 = sqrtf(((1 + m11) - m00) - m22);
float num3 = 0.5F / num6;
quaternion.x = (m10 + m01) * num3;
quaternion.y = 0.5F * num6;
quaternion.z = (m21 + m12) * num3;
quaternion.w = (m20 - m02) * num3;
return quaternion;
}
float num5 = sqrtf(((1 + m22) - m00) - m11);
float num2 = 0.5F / num5;
quaternion.x = (m20 + m02) * num2;
quaternion.y = (m21 + m12) * num2;
quaternion.z = 0.5F * num5;
quaternion.w = (m01 - m10) * num2;
return quaternion;
}
Quaternion Quaternion::FromToRotation(Vector3 fromDirection,
Vector3 toDirection) {
Vector3 axis = Vector3::Cross(fromDirection, toDirection);
axis = Vector3::Normalize(axis);
AngleOf<float> angle = Vector3::SignedAngle(fromDirection, toDirection, axis);
Quaternion rotation = Quaternion::AngleAxis(angle.InDegrees(), axis);
return rotation;
}
Quaternion Quaternion::RotateTowards(const Quaternion& from,
const Quaternion& to,
float maxDegreesDelta) {
float num = Quaternion::Angle(from, to);
if (num == 0) {
return to;
}
float t = (float)fmin(1, maxDegreesDelta / num);
return SlerpUnclamped(from, to, t);
}
Quaternion Quaternion::AngleAxis(float angle, const Vector3& axis) {
if (Vector3::SqrMagnitude(axis) == 0.0f)
return Quaternion();
Quaternion result = Quaternion();
float radians = angle * Deg2Rad;
radians *= 0.5f;
Vector3 axis2 = axis * (float)sin(radians);
result.x = axis2.Right(); // x;
result.y = axis2.Up(); // y;
result.z = axis2.Forward(); // z;
result.w = (float)cos(radians);
return Quaternion::Normalize(result);
}
float Quaternion::Angle(Quaternion a, Quaternion b) {
float f = Quaternion::Dot(a, b);
return (float)acos(fmin(fabs(f), 1)) * 2 * Rad2Deg;
}
void Quaternion::ToAngleAxis(float* angle, Vector3* axis) {
Quaternion::ToAxisAngleRad(*this, axis, angle);
*angle *= Rad2Deg;
}
void Quaternion::ToAxisAngleRad(const Quaternion& q,
Vector3* const axis,
float* angle) {
Quaternion q1 = (fabs(q.w) > 1.0f) ? Quaternion::Normalize(q) : q;
*angle = 2.0f * acosf(q1.w); // angle
float den = sqrtf(1.0F - q1.w * q1.w);
if (den > 0.0001f) {
*axis = Vector3::Normalize(q1.xyz() / den);
} else {
// This occurs when the angle is zero.
// Not a problem: just set an arbitrary normalized axis.
*axis = Vector3(1, 0, 0);
}
}
Quaternion Quaternion::SlerpUnclamped(const Quaternion& a,
const Quaternion& b,
float t) {
// if either input is zero, return the other.
if (Quaternion::GetLengthSquared(a) == 0.0f) {
if (Quaternion::GetLengthSquared(b) == 0.0f) {
return Quaternion();
}
return b;
} else if (Quaternion::GetLengthSquared(b) == 0.0f) {
return a;
}
const Vector3 axyz = a.xyz();
const Vector3 bxyz = b.xyz();
float cosHalfAngle = a.w * b.w + Vector3::Dot(axyz, bxyz);
Quaternion b2 = b;
if (cosHalfAngle >= 1.0f || cosHalfAngle <= -1.0f) {
// angle = 0.0f, so just return one input.
return a;
} else if (cosHalfAngle < 0.0f) {
b2.x = -b.x;
b2.y = -b.y;
b2.z = -b.z;
b2.w = -b.w;
cosHalfAngle = -cosHalfAngle;
}
float blendA;
float blendB;
if (cosHalfAngle < 0.99f) {
// do proper slerp for big angles
float halfAngle = acosf(cosHalfAngle);
float sinHalfAngle = sinf(halfAngle);
float oneOverSinHalfAngle = 1.0F / sinHalfAngle;
blendA = sinf(halfAngle * (1.0F - t)) * oneOverSinHalfAngle;
blendB = sinf(halfAngle * t) * oneOverSinHalfAngle;
} else {
// do lerp if angle is really small.
blendA = 1.0f - t;
blendB = t;
}
Vector3 v = axyz * blendA + b2.xyz() * blendB;
Quaternion result =
Quaternion(v.Right(), v.Up(), v.Forward(), blendA * a.w + blendB * b2.w);
if (result.GetLengthSquared() > 0.0f)
return Quaternion::Normalize(result);
else
return Quaternion();
}
Quaternion Quaternion::Slerp(const Quaternion& a,
const Quaternion& b,
float t) {
if (t > 1)
t = 1;
if (t < 0)
t = 0;
return Quaternion::SlerpUnclamped(a, b, t);
}
Quaternion Quaternion::Euler(float x, float y, float z) {
return Quaternion::Euler(Vector3(x, y, z));
}
Quaternion Quaternion::Euler(Vector3 euler) {
return Quaternion::FromEulerRad(euler * Deg2Rad);
}
Quaternion Quaternion::FromEulerRad(Vector3 euler) {
float yaw = euler.Right();
float pitch = euler.Up();
float roll = euler.Forward();
float rollOver2 = roll * 0.5f;
float sinRollOver2 = (float)sin((float)rollOver2);
float cosRollOver2 = (float)cos((float)rollOver2);
float pitchOver2 = pitch * 0.5f;
float sinPitchOver2 = (float)sin((float)pitchOver2);
float cosPitchOver2 = (float)cos((float)pitchOver2);
float yawOver2 = yaw * 0.5f;
float sinYawOver2 = (float)sin((float)yawOver2);
float cosYawOver2 = (float)cos((float)yawOver2);
Quaternion result;
result.w = cosYawOver2 * cosPitchOver2 * cosRollOver2 +
sinYawOver2 * sinPitchOver2 * sinRollOver2;
result.x = sinYawOver2 * cosPitchOver2 * cosRollOver2 +
cosYawOver2 * sinPitchOver2 * sinRollOver2;
result.y = cosYawOver2 * sinPitchOver2 * cosRollOver2 -
sinYawOver2 * cosPitchOver2 * sinRollOver2;
result.z = cosYawOver2 * cosPitchOver2 * sinRollOver2 -
sinYawOver2 * sinPitchOver2 * cosRollOver2;
return result;
}
Quaternion Quaternion::EulerXYZ(float x, float y, float z) {
return Quaternion::EulerXYZ(Vector3(x, y, z));
}
Quaternion Quaternion::EulerXYZ(Vector3 euler) {
return Quaternion::FromEulerRadXYZ(euler * Deg2Rad);
}
Quaternion Quaternion::FromEulerRadXYZ(Vector3 euler) {
float yaw = euler.Right(); // x;
float pitch = euler.Up(); // y;
float roll = euler.Forward(); // z;
float rollOver2 = roll * 0.5f;
float sinRollOver2 = (float)sin((float)rollOver2);
float cosRollOver2 = (float)cos((float)rollOver2);
float pitchOver2 = pitch * 0.5f;
float sinPitchOver2 = (float)sin((float)pitchOver2);
float cosPitchOver2 = (float)cos((float)pitchOver2);
float yawOver2 = yaw * 0.5f;
float sinYawOver2 = (float)sin((float)yawOver2);
float cosYawOver2 = (float)cos((float)yawOver2);
Quaternion result;
result.w = cosYawOver2 * cosPitchOver2 * cosRollOver2 +
sinYawOver2 * sinPitchOver2 * sinRollOver2;
result.x = sinYawOver2 * cosPitchOver2 * cosRollOver2 -
cosYawOver2 * sinPitchOver2 * sinRollOver2;
result.y = cosYawOver2 * sinPitchOver2 * cosRollOver2 +
sinYawOver2 * cosPitchOver2 * sinRollOver2;
result.z = cosYawOver2 * cosPitchOver2 * sinRollOver2 -
sinYawOver2 * sinPitchOver2 * cosRollOver2;
return result;
}
float Quaternion::GetAngleAround(Vector3 axis, Quaternion rotation) {
Quaternion secondaryRotation = GetRotationAround(axis, rotation);
float rotationAngle;
Vector3 rotationAxis;
secondaryRotation.ToAngleAxis(&rotationAngle, &rotationAxis);
// Do the axis point in opposite directions?
if (Vector3::Dot(axis, rotationAxis) < 0)
rotationAngle = -rotationAngle;
return rotationAngle;
}
Quaternion Quaternion::GetRotationAround(Vector3 axis, Quaternion rotation) {
Vector3 ra = Vector3(rotation.x, rotation.y, rotation.z); // rotation axis
Vector3 p = Vector3::Project(
ra, axis); // return projection ra on to axis (parallel component)
Quaternion twist = Quaternion(p.Right(), p.Up(), p.Forward(), rotation.w);
twist = Quaternion::Normalize(twist);
return twist;
}
void Quaternion::GetSwingTwist(Vector3 axis,
Quaternion rotation,
Quaternion* swing,
Quaternion* twist) {
*twist = GetRotationAround(axis, rotation);
*swing = rotation * Quaternion::Inverse(*twist);
}

View File

@ -1,293 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef QUATERNION_H
#define QUATERNION_H
#include "Vector3.h"
extern "C" {
/// <summary>
/// A quaternion (C-style)
/// </summary>
/// This is a C-style implementation
typedef struct Quat {
/// <summary>
/// The x component
/// </summary>
float x;
/// <summary>
/// The y component
/// </summary>
float y;
/// <summary>
/// The z component
/// </summary>
float z;
/// <summary>
/// The w component
/// </summary>
float w;
} Quat;
}
namespace LinearAlgebra {
/// <summary>
/// A quaternion
/// </summary>
struct Quaternion : Quat {
public:
/// <summary>
/// Create a new identity quaternion
/// </summary>
Quaternion();
/// <summary>
/// create a new quaternion with the given values
/// </summary>
/// <param name="_x">x component</param>
/// <param name="_y">y component</param>
/// <param name="_z">z component</param>
/// <param name="_w">w component</param>
Quaternion(float _x, float _y, float _z, float _w);
/// <summary>
/// Create a quaternion from C-style Quat
/// </summary>
/// <param name="q"></param>
Quaternion(Quat q);
/// <summary>
/// Quaternion destructor
/// </summary>
~Quaternion();
/// <summary>
/// An identity quaternion
/// </summary>
const static Quaternion identity;
/// <summary>
/// Convert to unit quaternion
/// </summary>
/// This will preserve the orientation,
/// but ensures that it is a unit quaternion.
void Normalize();
/// <summary>
/// Convert to unity quaternion
/// </summary>
/// <param name="q">The quaternion to convert</param>
/// <returns>A unit quaternion</returns>
/// This will preserve the orientation,
/// but ensures that it is a unit quaternion.
static Quaternion Normalize(const Quaternion& q);
/// <summary>
/// Convert to euler angles
/// </summary>
/// <param name="q">The quaternion to convert</param>
/// <returns>A vector containing euler angles</returns>
/// The euler angles performed in the order: Z, X, Y
static Vector3 ToAngles(const Quaternion& q);
/// <summary>
/// Rotate a vector using this quaterion
/// </summary>
/// <param name="vector">The vector to rotate</param>
/// <returns>The rotated vector</returns>
Vector3 operator*(const Vector3& vector) const;
/// <summary>
/// Multiply this quaternion with another quaternion
/// </summary>
/// <param name="rotation">The quaternion to multiply with</param>
/// <returns>The resulting rotation</returns>
/// The result will be this quaternion rotated according to
/// the give rotation.
Quaternion operator*(const Quaternion& rotation) const;
/// <summary>
/// Check the equality of two quaternions
/// </summary>
/// <param name="quaternion">The quaternion to compare to</param>
/// <returns>True when the components of the quaternions are
/// identical</returns> Note that this does not compare the rotations
/// themselves. Two quaternions with the same rotational effect may have
/// different components. Use Quaternion::Angle to check if the rotations are
/// the same.
bool operator==(const Quaternion& quaternion) const;
/// <summary>
/// The inverse of quaterion
/// </summary>
/// <param name="quaternion">The quaternion for which the inverse is
/// needed</param> <returns>The inverted quaternion</returns>
static Quaternion Inverse(Quaternion quaternion);
/// <summary>
/// A rotation which looks in the given direction
/// </summary>
/// <param name="forward">The look direction</param>
/// <param name="upwards">The up direction</param>
/// <returns>The look rotation</returns>
static Quaternion LookRotation(const Vector3& forward,
const Vector3& upwards);
/// <summary>
/// Creates a quaternion with the given forward direction with up =
/// Vector3::up
/// </summary>
/// <param name="forward">The look direction</param>
/// <returns>The rotation for this direction</returns>
/// For the rotation, Vector::up is used for the up direction.
/// Note: if the forward direction == Vector3::up, the result is
/// Quaternion::identity
static Quaternion LookRotation(const Vector3& forward);
/// <summary>
/// Calculat the rotation from on vector to another
/// </summary>
/// <param name="fromDirection">The from direction</param>
/// <param name="toDirection">The to direction</param>
/// <returns>The rotation from the first to the second vector</returns>
static Quaternion FromToRotation(Vector3 fromDirection, Vector3 toDirection);
/// <summary>
/// Rotate form one orientation to anther with a maximum amount of degrees
/// </summary>
/// <param name="from">The from rotation</param>
/// <param name="to">The destination rotation</param>
/// <param name="maxDegreesDelta">The maximum amount of degrees to
/// rotate</param> <returns>The possibly limited rotation</returns>
static Quaternion RotateTowards(const Quaternion& from,
const Quaternion& to,
float maxDegreesDelta);
/// <summary>
/// Convert an angle/axis representation to a quaternion
/// </summary>
/// <param name="angle">The angle</param>
/// <param name="axis">The axis</param>
/// <returns>The resulting quaternion</returns>
static Quaternion AngleAxis(float angle, const Vector3& axis);
/// <summary>
/// Convert this quaternion to angle/axis representation
/// </summary>
/// <param name="angle">A pointer to the angle for the result</param>
/// <param name="axis">A pointer to the axis for the result</param>
void ToAngleAxis(float* angle, Vector3* axis);
/// <summary>
/// Get the angle between two orientations
/// </summary>
/// <param name="orientation1">The first orientation</param>
/// <param name="orientation2">The second orientation</param>
/// <returns>The smallest angle in degrees between the two
/// orientations</returns>
static float Angle(Quaternion orientation1, Quaternion orientation2);
/// <summary>
/// Sherical lerp between two rotations
/// </summary>
/// <param name="rotation1">The first rotation</param>
/// <param name="rotation2">The second rotation</param>
/// <param name="factor">The factor between 0 and 1.</param>
/// <returns>The resulting rotation</returns>
/// A factor 0 returns rotation1, factor1 returns rotation2.
static Quaternion Slerp(const Quaternion& rotation1,
const Quaternion& rotation2,
float factor);
/// <summary>
/// Unclamped sherical lerp between two rotations
/// </summary>
/// <param name="rotation1">The first rotation</param>
/// <param name="rotation2">The second rotation</param>
/// <param name="factor">The factor</param>
/// <returns>The resulting rotation</returns>
/// A factor 0 returns rotation1, factor1 returns rotation2.
/// Values outside the 0..1 range will result in extrapolated rotations
static Quaternion SlerpUnclamped(const Quaternion& rotation1,
const Quaternion& rotation2,
float factor);
/// <summary>
/// Create a rotation from euler angles
/// </summary>
/// <param name="x">The angle around the right axis</param>
/// <param name="y">The angle around the upward axis</param>
/// <param name="z">The angle around the forward axis</param>
/// <returns>The resulting quaternion</returns>
/// Rotation are appied in the order Z, X, Y.
static Quaternion Euler(float x, float y, float z);
/// <summary>
/// Create a rotation from a vector containing euler angles
/// </summary>
/// <param name="eulerAngles">Vector with the euler angles</param>
/// <returns>The resulting quaternion</returns>
/// Rotation are appied in the order Z, X, Y.
static Quaternion Euler(Vector3 eulerAngles);
/// <summary>
/// Create a rotation from euler angles
/// </summary>
/// <param name="x">The angle around the right axis</param>
/// <param name="y">The angle around the upward axis</param>
/// <param name="z">The angle around the forward axis</param>
/// <returns>The resulting quaternion</returns>
/// Rotation are appied in the order X, Y, Z.
static Quaternion EulerXYZ(float x, float y, float z);
/// <summary>
/// Create a rotation from a vector containing euler angles
/// </summary>
/// <param name="eulerAngles">Vector with the euler angles</param>
/// <returns>The resulting quaternion</returns>
/// Rotation are appied in the order X, Y, Z.
static Quaternion EulerXYZ(Vector3 eulerAngles);
/// <summary>
/// Returns the angle of around the give axis for a rotation
/// </summary>
/// <param name="axis">The axis around which the angle should be
/// computed</param> <param name="rotation">The source rotation</param>
/// <returns>The signed angle around the axis</returns>
static float GetAngleAround(Vector3 axis, Quaternion rotation);
/// <summary>
/// Returns the rotation limited around the given axis
/// </summary>
/// <param name="axis">The axis which which the rotation should be
/// limited</param> <param name="rotation">The source rotation</param>
/// <returns>The rotation around the given axis</returns>
static Quaternion GetRotationAround(Vector3 axis, Quaternion rotation);
/// <summary>
/// Swing-twist decomposition of a rotation
/// </summary>
/// <param name="axis">The base direction for the decomposition</param>
/// <param name="rotation">The source rotation</param>
/// <param name="swing">A pointer to the quaternion for the swing
/// result</param> <param name="twist">A pointer to the quaternion for the
/// twist result</param>
static void GetSwingTwist(Vector3 axis,
Quaternion rotation,
Quaternion* swing,
Quaternion* twist);
/// <summary>
/// Calculate the dot product of two quaternions
/// </summary>
/// <param name="rotation1">The first rotation</param>
/// <param name="rotation2">The second rotation</param>
/// <returns></returns>
static float Dot(Quaternion rotation1, Quaternion rotation2);
private:
float GetLength() const;
float GetLengthSquared() const;
static float GetLengthSquared(const Quaternion& q);
void ToAxisAngleRad(const Quaternion& q, Vector3* const axis, float* angle);
static Quaternion FromEulerRad(Vector3 euler);
static Quaternion FromEulerRadXYZ(Vector3 euler);
Vector3 xyz() const;
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#endif

View File

@ -1,21 +0,0 @@
\mainpage Linear Algebra
Linear algebra library
Main components
---------------
Carthesian coordinate systems
* [Vector3](#Passer::LinearAlgebra::Vector3): A 3D carthesian vector
* [Vector2](#Passer::LinearAlgebra::Vector2): A 2D carthesian vector
Other coodinate systems
* [Polar](#Passer::LinearAlgebra::PolarOf): A 2D polar vector
* [Spherical](#Passer::LinearAlgebra::SphericalOf): A 3D spherical vector
Rotations
* [Quaternion](#Passer::LinearAlgebra::Quaternion): A quaternion rotation
* [SwingTwist](#Passer::LinearAlgebra::SwingTwistOf): A swing/twist angular rotation
Basics
* [Angle](#Passer::LinearAlgebra::AngleOf): An angle
* [Direction](#Passer::LinearAlgebra::DirectionOf): A direction using angles

View File

@ -1,303 +0,0 @@
#include "Spherical.h"
#include "Angle.h"
#include "Quaternion.h"
#include <math.h>
template <typename T>
SphericalOf<T>::SphericalOf() {
this->distance = 0.0f;
this->direction = DirectionOf<T>();
}
template <typename T>
SphericalOf<T>::SphericalOf(float distance,
AngleOf<T> horizontal,
AngleOf<T> vertical) {
if (distance < 0) {
this->distance = -distance;
this->direction = -DirectionOf<T>(horizontal, vertical);
} else {
this->distance = distance;
this->direction = DirectionOf<T>(horizontal, vertical);
}
}
template <typename T>
SphericalOf<T>::SphericalOf(float distance, DirectionOf<T> direction) {
if (distance < 0) {
this->distance = -distance;
this->direction = -direction;
} else {
this->distance = distance;
this->direction = direction;
}
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Degrees(float distance,
float horizontal,
float vertical) {
AngleOf<T> horizontalAngle = AngleOf<T>::Degrees(horizontal);
AngleOf<T> verticalAngle = AngleOf<T>::Degrees(vertical);
SphericalOf<T> r = SphericalOf<T>(distance, horizontalAngle, verticalAngle);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Radians(float distance,
float horizontal,
float vertical) {
return SphericalOf<T>(distance, AngleOf<T>::Radians(horizontal),
AngleOf<T>::Radians(vertical));
}
template <typename T>
SphericalOf<T> SphericalOf<T>::FromPolar(PolarOf<T> polar) {
AngleOf<T> horizontal = polar.angle;
AngleOf<T> vertical = AngleOf<T>();
SphericalOf<T> r = SphericalOf(polar.distance, horizontal, vertical);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
float distance = v.magnitude();
if (distance == 0.0f) {
return SphericalOf(distance, AngleOf<T>(), AngleOf<T>());
} else {
AngleOf<T> verticalAngle =
AngleOf<T>::Radians((pi / 2 - acosf(v.Up() / distance)));
AngleOf<T> horizontalAngle =
AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
return SphericalOf(distance, horizontalAngle, verticalAngle);
}
}
/**
* @brief Converts spherical coordinates to a 3D vector.
*
* This function converts the spherical coordinates represented by the
* SphericalOf object to a 3D vector (Vector3). The conversion is based
* on the distance and direction (vertical and horizontal angles) of the
* spherical coordinates.
*
* @tparam T The type of the distance and direction values.
* @return Vector3 The 3D vector representation of the spherical coordinates.
*/
template <typename T>
Vector3 SphericalOf<T>::ToVector3() const {
float verticalRad = (pi / 2) - this->direction.vertical.InRadians();
float horizontalRad = this->direction.horizontal.InRadians();
float cosVertical = cosf(verticalRad);
float sinVertical = sinf(verticalRad);
float cosHorizontal = cosf(horizontalRad);
float sinHorizontal = sinf(horizontalRad);
float x = this->distance * sinVertical * sinHorizontal;
float y = this->distance * cosVertical;
float z = this->distance * sinVertical * cosHorizontal;
Vector3 v = Vector3(x, y, z);
return v;
}
template <typename T>
const SphericalOf<T> SphericalOf<T>::zero =
SphericalOf<T>(0.0f, AngleOf<T>(), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::forward =
SphericalOf<T>(1.0f, AngleOf<T>(), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::back =
SphericalOf<T>(1.0f, AngleOf<T>::Degrees(180), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::right =
SphericalOf<T>(1.0f, AngleOf<T>::Degrees(90), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::left =
SphericalOf<T>(1.0f, AngleOf<T>::Degrees(-90), AngleOf<T>());
template <typename T>
const SphericalOf<T> SphericalOf<T>::up =
SphericalOf<T>(1.0f, AngleOf<T>(), AngleOf<T>::Degrees(90));
template <typename T>
const SphericalOf<T> SphericalOf<T>::down =
SphericalOf<T>(1.0f, AngleOf<T>(), AngleOf<T>::Degrees(-90));
template <typename T>
SphericalOf<T> SphericalOf<T>::WithDistance(float distance) {
SphericalOf<T> v = SphericalOf<T>(distance, this->direction);
return v;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator-() const {
SphericalOf<T> v = SphericalOf<T>(
this->distance, this->direction.horizontal + AngleOf<T>::Degrees(180),
this->direction.vertical + AngleOf<T>::Degrees(180));
return v;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T>& s2) const {
// let's do it the easy way...
Vector3 v1 = this->ToVector3();
Vector3 v2 = s2.ToVector3();
Vector3 v = v1 - v2;
SphericalOf<T> r = SphericalOf<T>::FromVector3(v);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator-=(const SphericalOf<T>& v) {
*this = *this - v;
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T>& s2) const {
// let's do it the easy way...
Vector3 v1 = this->ToVector3();
Vector3 v2 = s2.ToVector3();
Vector3 v = v1 + v2;
SphericalOf<T> r = SphericalOf<T>::FromVector3(v);
return r;
/*
// This is the hard way...
if (v2.distance <= 0)
return Spherical(this->distance, this->horizontalAngle,
this->verticalAngle);
if (this->distance <= 0)
return v2;
float deltaHorizontalAngle =
(float)Angle::Normalize(v2.horizontalAngle - this->horizontalAngle);
float horizontalRotation = deltaHorizontalAngle < 0
? 180 + deltaHorizontalAngle
: 180 - deltaHorizontalAngle;
float deltaVerticalAngle =
Angle::Normalize(v2.verticalAngle - this->verticalAngle);
float verticalRotation = deltaVerticalAngle < 0 ? 180 + deltaVerticalAngle
: 180 - deltaVerticalAngle;
if (horizontalRotation == 180 && verticalRotation == 180)
// angle is too small, take this angle and add the distances
return Spherical(this->distance + v2.distance, this->horizontalAngle,
this->verticalAngle);
Angle rotation = AngleBetween(*this, v2);
float newDistance =
Angle::CosineRuleSide(v2.distance, this->distance, rotation);
float angle =
Angle::CosineRuleAngle(newDistance, this->distance, v2.distance);
// Now we have to project the angle to the horizontal and vertical planes...
// The axis for the angle is the cross product of the two spherical vectors
// (which function we do not have either...)
float horizontalAngle = 0;
float verticalAngle = 0;
float newHorizontalAngle =
deltaHorizontalAngle < 0
? Angle::Normalize(this->horizontalAngle - horizontalAngle)
: Angle::Normalize(this->horizontalAngle + horizontalAngle);
float newVerticalAngle =
deltaVerticalAngle < 0
? Angle::Normalize(this->verticalAngle - verticalAngle)
: Angle::Normalize(this->verticalAngle + verticalAngle);
Spherical v = Spherical(newDistance, newHorizontalAngle, newVerticalAngle);
*/
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator+=(const SphericalOf<T>& v) {
*this = *this + v;
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator*=(float f) {
this->distance *= f;
return *this;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::operator/=(float f) {
this->distance /= f;
return *this;
}
#include "FloatSingle.h"
#include "Vector3.h"
const float epsilon = 1E-05f;
template <typename T>
float SphericalOf<T>::DistanceBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2) {
// SphericalOf<T> difference = v1 - v2;
// return difference.distance;
Vector3 vec1 = v1.ToVector3();
Vector3 vec2 = v2.ToVector3();
float distance = Vector3::Distance(vec1, vec2);
return distance;
}
template <typename T>
AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf& v1,
const SphericalOf& v2) {
// float denominator = v1.distance * v2.distance;
// if (denominator < epsilon)
// return 0.0f;
Vector3 v1_3 = v1.ToVector3();
Vector3 v2_3 = v2.ToVector3();
// float dot = Vector3::Dot(v1_3, v2_3);
// float fraction = dot / denominator;
// if (isnan(fraction))
// return fraction; // short cut to returning NaN universally
// float cdot = Float::Clamp(fraction, -1.0, 1.0);
// float r = ((float)acos(cdot)) * Rad2Deg;
AngleSingle r = Vector3::Angle(v1_3, v2_3);
return AngleOf<T>::Degrees(r.InDegrees());
}
template <typename T>
AngleOf<T> SphericalOf<T>::SignedAngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2,
const SphericalOf<T>& axis) {
Vector3 v1_vector = v1.ToVector3();
Vector3 v2_vector = v2.ToVector3();
Vector3 axis_vector = axis.ToVector3();
AngleSingle r = Vector3::SignedAngle(v1_vector, v2_vector, axis_vector);
return AngleOf<T>::Degrees(r.InDegrees());
}
template <typename T>
SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T>& v,
AngleOf<T> horizontalAngle,
AngleOf<T> verticalAngle) {
SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal + horizontalAngle,
v.direction.vertical + verticalAngle);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::RotateHorizontal(const SphericalOf<T>& v,
AngleOf<T> a) {
SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal + a, v.direction.vertical);
return r;
}
template <typename T>
SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T>& v,
AngleOf<T> a) {
SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal, v.direction.vertical + a);
return r;
}
template class SphericalOf<float>;
template class SphericalOf<signed short>;

View File

@ -1,194 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef SPHERICAL_H
#define SPHERICAL_H
#include "Direction.h"
namespace LinearAlgebra {
struct Vector3;
template <typename T>
class PolarOf;
/// @brief A spherical vector using angles in various representations
/// @tparam T The implementation type used for the representations of the agles
template <typename T>
class SphericalOf {
public:
/// @brief The distance in meters
/// @remark The distance should never be negative
float distance;
/// @brief The direction of the vector
DirectionOf<T> direction;
SphericalOf<T>();
SphericalOf<T>(float distance, AngleOf<T> horizontal, AngleOf<T> vertical);
SphericalOf<T>(float distance, DirectionOf<T> direction);
/// @brief Create spherical vector without using AngleOf type. All given
/// angles are in degrees
/// @param distance The distance in meters
/// @param horizontal The horizontal angle in degrees
/// @param vertical The vertical angle in degrees
/// @return The spherical vector
static SphericalOf<T> Degrees(float distance,
float horizontal,
float vertical);
/// @brief Short-hand Deg alias for the Degrees function
constexpr static auto Deg = Degrees;
/// @brief Create sperical vector without using the AngleOf type. All given
/// angles are in radians
/// @param distance The distance in meters
/// @param horizontal The horizontal angle in radians
/// @param vertical The vertical angle in radians
/// @return The spherical vectpr
static SphericalOf<T> Radians(float distance,
float horizontal,
float vertical);
// Short-hand Rad alias for the Radians function
constexpr static auto Rad = Radians;
/// @brief Create a Spherical coordinate from a Polar coordinate
/// @param v The polar coordinate
/// @return The spherical coordinate with the vertical angle set to zero.
static SphericalOf<T> FromPolar(PolarOf<T> v);
/// @brief Create a Spherical coordinate from a Vector3 coordinate
/// @param v The vector coordinate
/// @return The spherical coordinate
static SphericalOf<T> FromVector3(Vector3 v);
/// @brief Convert the spherical coordinate to a Vector3 coordinate
/// @return The vector coordinate
Vector3 ToVector3() const;
/// @brief A spherical vector with zero degree angles and distance
const static SphericalOf<T> zero;
/// @brief A normalized forward-oriented vector
const static SphericalOf<T> forward;
/// @brief A normalized back-oriented vector
const static SphericalOf<T> back;
/// @brief A normalized right-oriented vector
const static SphericalOf<T> right;
/// @brief A normalized left-oriented vector
const static SphericalOf<T> left;
/// @brief A normalized up-oriented vector
const static SphericalOf<T> up;
/// @brief A normalized down-oriented vector
const static SphericalOf<T> down;
/// @brief Update the distance component of the spherical coordinate
/// @param distance The new distance
/// @return The updated coordinate
SphericalOf<T> WithDistance(float distance);
/// @brief Negate the vector
/// @return The negated vector
/// This will rotate the vector by 180 degrees horizontally and
/// vertically. Distance will stay the same.
SphericalOf<T> operator-() const;
/// @brief Subtract a spherical vector from this vector
/// @param v The vector to subtract
/// @return The result of the subtraction
SphericalOf<T> operator-(const SphericalOf<T>& v) const;
SphericalOf<T> operator-=(const SphericalOf<T>& v);
/// @brief Add a spherical vector to this vector
/// @param v The vector to add
/// @return The result of the addition
SphericalOf<T> operator+(const SphericalOf<T>& v) const;
SphericalOf<T> operator+=(const SphericalOf<T>& v);
/// @brief Scale the vector uniformly up
/// @param f The scaling factor
/// @return The scaled vector
/// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected.
friend SphericalOf<T> operator*(const SphericalOf<T>& v, float f) {
return SphericalOf<T>(v.distance * f, v.direction);
}
friend SphericalOf<T> operator*(float f, const SphericalOf<T>& v) {
return SphericalOf<T>(f * v.distance, v.direction);
}
SphericalOf<T> operator*=(float f);
/// @brief Scale the vector uniformly down
/// @param f The scaling factor
/// @return The scaled factor
/// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected.
friend SphericalOf<T> operator/(const SphericalOf<T>& v, float f) {
return SphericalOf<T>(v.distance / f, v.direction);
}
friend SphericalOf<T> operator/(float f, const SphericalOf<T>& v) {
return SphericalOf<T>(f / v.distance, v.direction);
}
SphericalOf<T> operator/=(float f);
/// @brief Calculate the distance between two spherical coordinates
/// @param v1 The first coordinate
/// @param v2 The second coordinate
/// @return The distance between the coordinates in meters
static float DistanceBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2);
/// @brief Calculate the unsigned angle between two spherical vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The unsigned angle between the vectors
static AngleOf<T> AngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2);
/// @brief Calculate the signed angle between two spherical vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @param axis The axis are which the angle is calculated
/// @return The signed angle between the vectors
static AngleOf<T> SignedAngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T>& v2,
const SphericalOf<T>& axis);
/// @brief Rotate a spherical vector
/// @param v The vector to rotate
/// @param horizontalAngle The horizontal rotation angle in local space
/// @param verticalAngle The vertical rotation angle in local space
/// @return The rotated vector
static SphericalOf<T> Rotate(const SphericalOf& v,
AngleOf<T> horizontalAngle,
AngleOf<T> verticalAngle);
/// @brief Rotate a spherical vector horizontally
/// @param v The vector to rotate
/// @param angle The horizontal rotation angle in local space
/// @return The rotated vector
static SphericalOf<T> RotateHorizontal(const SphericalOf<T>& v,
AngleOf<T> angle);
/// @brief Rotate a spherical vector vertically
/// @param v The vector to rotate
/// @param angle The vertical rotation angle in local space
/// @return The rotated vector
static SphericalOf<T> RotateVertical(const SphericalOf<T>& v,
AngleOf<T> angle);
};
/// @brief Shorthand notation for a spherical vector using single precision
/// floats for the angles This is the fastest implementation on devices with
/// floating point harware
using SphericalSingle = SphericalOf<float>;
/// @brief Shorthand notation for a spherical vector using signed 16-bit words
/// for the angles
/// @note This is the fastest implementation on devices without floating point
/// hardware
using Spherical16 = SphericalOf<signed short>;
#if defined(ARDUINO)
using Spherical = Spherical16;
#else
using Spherical = SphericalSingle;
#endif
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#include "Polar.h"
#include "Vector3.h"
#endif

View File

@ -1,168 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "SwingTwist.h"
template <typename T>
SwingTwistOf<T>::SwingTwistOf() {
this->swing = DirectionOf<T>(AngleOf<T>(), AngleOf<T>());
this->twist = AngleOf<T>();
}
template <typename T>
SwingTwistOf<T>::SwingTwistOf(DirectionOf<T> swing, AngleOf<T> twist) {
// Normalize angles
AngleOf<T> deg90 = AngleOf<T>::Degrees(90);
AngleOf<T> deg180 = AngleOf<T>::Degrees(180);
if (swing.vertical > deg90 || swing.vertical < -deg90) {
swing.horizontal += deg180;
swing.vertical = deg180 - swing.vertical;
twist += deg180;
}
this->swing = swing;
this->twist = twist;
}
template <typename T>
SwingTwistOf<T>::SwingTwistOf(AngleOf<T> horizontal,
AngleOf<T> vertical,
AngleOf<T> twist) {
// Normalize angles
AngleOf<T> deg90 = AngleOf<T>::Degrees(90);
AngleOf<T> deg180 = AngleOf<T>::Degrees(180);
if (vertical > deg90 || vertical < -deg90) {
horizontal += deg180;
vertical = deg180 - vertical;
twist += deg180;
}
this->swing = DirectionOf<T>(horizontal, vertical);
this->twist = twist;
}
template <typename T>
SwingTwistOf<T> SwingTwistOf<T>::Degrees(float horizontal,
float vertical,
float twist) {
SwingTwistOf<T> orientation = SwingTwistOf<T>(AngleOf<T>::Degrees(horizontal),
-AngleOf<T>::Degrees(vertical),
AngleOf<T>::Degrees(twist));
// DirectionOf<T> swing = DirectionOf<T>::Degrees(horizontal, vertical);
// AngleOf<T> twistAngle = AngleOf<T>::Degrees(twist);
// SwingTwistOf<T> orientation = SwingTwistOf(swing, twistAngle);
return orientation;
}
template <typename T>
Quaternion SwingTwistOf<T>::ToQuaternion() const {
Quaternion q = Quaternion::Euler(-this->swing.vertical.InDegrees(),
this->swing.horizontal.InDegrees(),
this->twist.InDegrees());
return q;
}
template <typename T>
SwingTwistOf<T> SwingTwistOf<T>::FromQuaternion(Quaternion q) {
Vector3 angles = Quaternion::ToAngles(q);
SwingTwistOf<T> r =
SwingTwistOf<T>::Degrees(angles.Up(), angles.Right(), angles.Forward());
r.Normalize();
return r;
}
template <typename T>
SphericalOf<T> SwingTwistOf<T>::ToAngleAxis() const {
Quaternion q = this->ToQuaternion();
float angle;
Vector3 axis;
q.ToAngleAxis(&angle, &axis);
DirectionOf<T> direction = DirectionOf<T>::FromVector3(axis);
SphericalOf<T> aa = SphericalOf<T>(angle, direction);
return aa;
}
template <typename T>
SwingTwistOf<T> SwingTwistOf<T>::FromAngleAxis(SphericalOf<T> aa) {
Vector3 vectorAxis = aa.direction.ToVector3();
Quaternion q = Quaternion::AngleAxis(aa.distance, vectorAxis);
return SwingTwistOf<T>();
}
template <typename T>
bool SwingTwistOf<T>::operator==(const SwingTwistOf<T> s) const {
return (this->swing == s.swing) && (this->twist == s.twist);
}
template <typename T>
const SwingTwistOf<T> SwingTwistOf<T>::identity = SwingTwistOf();
template <typename T>
SphericalOf<T> SwingTwistOf<T>::operator*(const SphericalOf<T>& vector) const {
SphericalOf<T> v = SphericalOf<T>(
vector.distance, vector.direction.horizontal + this->swing.horizontal,
vector.direction.vertical + this->swing.vertical);
return v;
}
template <typename T>
SwingTwistOf<T> SwingTwistOf<T>::operator*(
const SwingTwistOf<T>& rotation) const {
SwingTwistOf<T> r =
SwingTwistOf(this->swing.horizontal + rotation.swing.horizontal,
this->swing.vertical + rotation.swing.vertical,
this->twist + rotation.twist);
return r;
}
template <typename T>
SwingTwistOf<T> SwingTwistOf<T>::operator*=(const SwingTwistOf<T>& rotation) {
this->swing.horizontal += rotation.swing.horizontal;
this->swing.vertical += rotation.swing.vertical;
this->twist += rotation.twist;
return *this;
}
template <typename T>
SwingTwistOf<T> SwingTwistOf<T>::Inverse(SwingTwistOf<T> rotation) {
SwingTwistOf<T> r = SwingTwistOf<T>(
-rotation.swing.horizontal, -rotation.swing.vertical, -rotation.twist);
return r;
}
template <typename T>
SwingTwistOf<T> SwingTwistOf<T>::AngleAxis(float angle,
const DirectionOf<T>& axis) {
Vector3 axis_vector = axis.ToVector3();
Quaternion q = Quaternion::AngleAxis(angle, axis_vector);
SwingTwistOf<T> r = SwingTwistOf<T>::FromQuaternion(q);
return r;
}
template <typename T>
AngleOf<T> SwingTwistOf<T>::Angle(const SwingTwistOf<T>& r1,
const SwingTwistOf<T>& r2) {
Quaternion q1 = r1.ToQuaternion();
Quaternion q2 = r2.ToQuaternion();
float angle = Quaternion::Angle(q1, q2);
return AngleOf<T>::Degrees(angle);
}
template <typename T>
void SwingTwistOf<T>::Normalize() {
AngleOf<T> deg90 = AngleOf<T>::Degrees(90);
AngleOf<T> deg180 = AngleOf<T>::Degrees(180);
if (this->swing.vertical > deg90 || this->swing.vertical < -deg90) {
this->swing.horizontal += deg180;
this->swing.vertical = deg180 - this->swing.vertical;
this->twist += deg180;
}
}
template class SwingTwistOf<float>;
template class SwingTwistOf<signed short>;

View File

@ -1,85 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef SWINGTWIST_H
#define SWINGTWIST_H
#include "Angle.h"
#include "Direction.h"
#include "Quaternion.h"
#include "Spherical.h"
namespace LinearAlgebra {
/// @brief An orientation using swing and twist angles in various
/// representations
/// @tparam T The implmentation type used for the representation of the angles
template <typename T>
class SwingTwistOf {
public:
DirectionOf<T> swing;
AngleOf<T> twist;
SwingTwistOf<T>();
SwingTwistOf<T>(DirectionOf<T> swing, AngleOf<T> twist);
SwingTwistOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist);
static SwingTwistOf<T> Degrees(float horizontal,
float vertical = 0,
float twist = 0);
Quaternion ToQuaternion() const;
static SwingTwistOf<T> FromQuaternion(Quaternion q);
SphericalOf<T> ToAngleAxis() const;
static SwingTwistOf<T> FromAngleAxis(SphericalOf<T> aa);
const static SwingTwistOf<T> identity;
bool operator==(const SwingTwistOf<T> d) const;
/// <summary>
/// Rotate a vector using this rotation
/// </summary>
/// <param name="vector">The vector to rotate</param>
/// <returns>The rotated vector</returns>
SphericalOf<T> operator*(const SphericalOf<T>& vector) const;
/// <summary>
/// Multiply this rotation with another rotation
/// </summary>
/// <param name="rotation">The swing/twist rotation to multiply with</param>
/// <returns>The resulting swing/twist rotation</returns>
/// The result will be this rotation rotated according to
/// the give rotation.
SwingTwistOf<T> operator*(const SwingTwistOf<T>& rotation) const;
SwingTwistOf<T> operator*=(const SwingTwistOf<T>& rotation);
static SwingTwistOf<T> Inverse(SwingTwistOf<T> rotation);
/// <summary>
/// Convert an angle/axis representation to a swingt
/// </summary>
/// <param name="angle">The angle</param>
/// <param name="axis">The axis</param>
/// <returns>The resulting quaternion</returns>
static SwingTwistOf<T> AngleAxis(float angle, const DirectionOf<T>& axis);
static AngleOf<T> Angle(const SwingTwistOf<T>& r1, const SwingTwistOf<T>& r2);
void Normalize();
};
using SwingTwistSingle = SwingTwistOf<float>;
using SwingTwist16 = SwingTwistOf<signed short>;
#if defined(ARDUINO)
using SwingTwist = SwingTwist16;
#else
using SwingTwist = SwingTwistSingle;
#endif
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#endif

View File

@ -1,182 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Vector2.h"
#include "Angle.h"
#include "FloatSingle.h"
#include "Vector3.h"
// #if defined(AVR)
// #include <Arduino.h>
// #else
#include <math.h>
// #endif
Vector2::Vector2() {
x = 0;
y = 0;
}
Vector2::Vector2(float _x, float _y) {
x = _x;
y = _y;
}
// Vector2::Vector2(Vec2 v) {
// x = v.x;
// y = v.y;
// }
Vector2::Vector2(Vector3 v) {
x = v.Right(); // x;
y = v.Forward(); // z;
}
Vector2::Vector2(PolarSingle p) {
float horizontalRad = p.angle.InDegrees() * Deg2Rad;
float cosHorizontal = cosf(horizontalRad);
float sinHorizontal = sinf(horizontalRad);
x = p.distance * sinHorizontal;
y = p.distance * cosHorizontal;
}
Vector2::~Vector2() {}
const Vector2 Vector2::zero = Vector2(0, 0);
const Vector2 Vector2::one = Vector2(1, 1);
const Vector2 Vector2::right = Vector2(1, 0);
const Vector2 Vector2::left = Vector2(-1, 0);
const Vector2 Vector2::up = Vector2(0, 1);
const Vector2 Vector2::down = Vector2(0, -1);
const Vector2 Vector2::forward = Vector2(0, 1);
const Vector2 Vector2::back = Vector2(0, -1);
bool Vector2::operator==(const Vector2& v) {
return (this->x == v.x && this->y == v.y);
}
float Vector2::Magnitude(const Vector2& v) {
return sqrtf(v.x * v.x + v.y * v.y);
}
float Vector2::magnitude() const {
return (float)sqrtf(x * x + y * y);
}
float Vector2::SqrMagnitude(const Vector2& v) {
return v.x * v.x + v.y * v.y;
}
float Vector2::sqrMagnitude() const {
return (x * x + y * y);
}
Vector2 Vector2::Normalize(const Vector2& v) {
float num = Vector2::Magnitude(v);
Vector2 result = Vector2::zero;
if (num > Float::epsilon) {
result = v / num;
}
return result;
}
Vector2 Vector2::normalized() const {
float num = this->magnitude();
Vector2 result = Vector2::zero;
if (num > Float::epsilon) {
result = ((Vector2) * this) / num;
}
return result;
}
Vector2 Vector2::operator-() {
return Vector2(-this->x, -this->y);
}
Vector2 Vector2::operator-(const Vector2& v) const {
return Vector2(this->x - v.x, this->y - v.y);
}
Vector2 Vector2::operator-=(const Vector2& v) {
this->x -= v.x;
this->y -= v.y;
return *this;
}
Vector2 Vector2::operator+(const Vector2& v) const {
return Vector2(this->x + v.x, this->y + v.y);
}
Vector2 Vector2::operator+=(const Vector2& v) {
this->x += v.x;
this->y += v.y;
return *this;
}
Vector2 Vector2::Scale(const Vector2& v1, const Vector2& v2) {
return Vector2(v1.x * v2.x, v1.y * v2.y);
}
// Vector2 Passer::LinearAlgebra::operator*(const Vector2 &v, float f) {
// return Vector2(v.x * f, v.y * f);
// }
// Vector2 Passer::LinearAlgebra::operator*(float f, const Vector2 &v) {
// return Vector2(v.x * f, v.y * f);
// }
Vector2 Vector2::operator*=(float f) {
this->x *= f;
this->y *= f;
return *this;
}
// Vector2 Passer::LinearAlgebra::operator/(const Vector2 &v, float f) {
// return Vector2(v.x / f, v.y / f);
// }
// Vector2 Passer::LinearAlgebra::operator/(float f, const Vector2 &v) {
// return Vector2(v.x / f, v.y / f);
// }
Vector2 Vector2::operator/=(float f) {
this->x /= f;
this->y /= f;
return *this;
}
float Vector2::Dot(const Vector2& v1, const Vector2& v2) {
return v1.x * v2.x + v1.y * v2.y;
}
float Vector2::Distance(const Vector2& v1, const Vector2& v2) {
return Magnitude(v1 - v2);
}
float Vector2::Angle(const Vector2& v1, const Vector2& v2) {
return (float)fabs(SignedAngle(v1, v2));
}
float Vector2::SignedAngle(const Vector2& v1, const Vector2& v2) {
float sqrMagFrom = v1.sqrMagnitude();
float sqrMagTo = v2.sqrMagnitude();
if (sqrMagFrom == 0 || sqrMagTo == 0)
return 0;
if (!isfinite(sqrMagFrom) || !isfinite(sqrMagTo))
#if defined(AVR)
return NAN;
#else
return nanf("");
#endif
float angleFrom = atan2f(v1.y, v1.x);
float angleTo = atan2f(v2.y, v2.x);
return -(angleTo - angleFrom) * Rad2Deg;
}
Vector2 Vector2::Rotate(const Vector2& v, AngleSingle a) {
float angleRad = a.InDegrees() * Deg2Rad;
#if defined(AVR)
float sinValue = sin(angleRad);
float cosValue = cos(angleRad); // * Angle::Deg2Rad);
#else
float sinValue = (float)sinf(angleRad);
float cosValue = (float)cosf(angleRad);
#endif
float tx = v.x;
float ty = v.y;
Vector2 r = Vector2((cosValue * tx) - (sinValue * ty),
(sinValue * tx) + (cosValue * ty));
return r;
}
Vector2 Vector2::Lerp(const Vector2& v1, const Vector2& v2, float f) {
Vector2 v = v1 + (v2 - v1) * f;
return v;
}

View File

@ -1,209 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef VECTOR2_H
#define VECTOR2_H
#include "Angle.h"
extern "C" {
/// <summary>
/// 2-dimensional Vector representation (C-style)
/// </summary>
/// This is a C-style implementation
/// This uses the right-handed coordinate system.
typedef struct Vec2 {
/// <summary>
/// The right axis of the vector
/// </summary>
float x;
/// <summary>
/// The upward/forward axis of the vector
/// </summary>
float y;
} Vec2;
}
namespace LinearAlgebra {
struct Vector3;
template <typename T>
class PolarOf;
/// @brief A 2-dimensional vector
/// @remark This uses the right=handed carthesian coordinate system.
/// @note This implementation intentionally avoids the use of x and y
struct Vector2 : Vec2 {
friend struct Vec2;
public:
/// @brief A new 2-dimensional zero vector
Vector2();
/// @brief A new 2-dimensional vector
/// @param right The distance in the right direction in meters
/// @param forward The distance in the forward direction in meters
Vector2(float right, float forward);
/// @brief Convert a Vector3 to a Vector2
/// @param v The 3D vector
/// @note This will project the vector to the horizontal plane
Vector2(Vector3 v);
/// @brief Convert a Polar vector to a 2-dimensional vector
/// @param v The vector in polar coordinates
Vector2(PolarOf<float> v);
/// @brief Vector2 destructor
~Vector2();
/// @brief A vector with zero for all axis
const static Vector2 zero;
/// @brief A vector with one for all axis
const static Vector2 one;
/// @brief A normalized forward-oriented vector
const static Vector2 forward;
/// @brief A normalized back-oriented vector
const static Vector2 back;
/// @brief A normalized right-oriented vector
const static Vector2 right;
/// @brief A normalized left-oriented vector
const static Vector2 left;
/// @brief A normalized up-oriented vector
/// @note This is a convenience function which is equal to Vector2::forward
const static Vector2 up;
/// @brief A normalized down-oriented vector
/// @note This is a convenience function which is equal to Vector2::down
const static Vector2 down;
/// @brief Check if this vector to the given vector
/// @param v The vector to check against
/// @return true if it is identical to the given vector
/// @note This uses float comparison to check equality which may have strange
/// effects. Equality on floats should be avoided.
bool operator==(const Vector2& v);
/// @brief The vector length
/// @param v The vector for which you need the length
/// @return The vector length
static float Magnitude(const Vector2& v);
/// @brief The vector length
/// @return The vector length
float magnitude() const;
/// @brief The squared vector length
/// @param v The vector for which you need the squared length
/// @return The squared vector length
/// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This prevents the calculation
/// of the squared root of C.
static float SqrMagnitude(const Vector2& v);
/// @brief The squared vector length
/// @return The squared vector length
/// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This prevents the calculation
/// of the squared root of C.
float sqrMagnitude() const;
/// @brief Convert the vector to a length of 1
/// @param v The vector to convert
/// @return The vector normalized to a length of 1
static Vector2 Normalize(const Vector2& v);
/// @brief Convert the vector to a length 1
/// @return The vector normalized to a length of 1
Vector2 normalized() const;
/// @brief Negate the vector such that it points in the opposite direction
/// @return The negated vector
Vector2 operator-();
/// @brief Subtract a vector from this vector
/// @param v The vector to subtract from this vector
/// @return The result of the subtraction
Vector2 operator-(const Vector2& v) const;
Vector2 operator-=(const Vector2& v);
/// @brief Add a vector to this vector
/// @param v The vector to add to this vector
/// @return The result of the addition
Vector2 operator+(const Vector2& v) const;
Vector2 operator+=(const Vector2& v);
/// @brief Scale the vector using another vector
/// @param v1 The vector to scale
/// @param v2 A vector with the scaling factors
/// @return The scaled vector
/// @remark Each component of the vector v1 will be multiplied with the
/// matching component from the scaling vector v2.
static Vector2 Scale(const Vector2& v1, const Vector2& v2);
/// @brief Scale the vector uniformly up
/// @param f The scaling factor
/// @return The scaled vector
/// @remark Each component of the vector will be multipled with the same
/// factor f.
friend Vector2 operator*(const Vector2& v, float f) {
return Vector2(v.x * f, v.y * f);
}
friend Vector2 operator*(float f, const Vector2& v) {
return Vector2(v.x * f, v.y * f);
// return Vector2(f * v.x, f * v.y);
}
Vector2 operator*=(float f);
/// @brief Scale the vector uniformly down
/// @param f The scaling factor
/// @return The scaled vector
/// @remark Each componet of the vector will be divided by the same factor.
friend Vector2 operator/(const Vector2& v, float f) {
return Vector2(v.x / f, v.y / f);
}
friend Vector2 operator/(float f, const Vector2& v) {
return Vector2(f / v.x, f / v.y);
}
Vector2 operator/=(float f);
/// @brief The dot product of two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The dot product of the two vectors
static float Dot(const Vector2& v1, const Vector2& v2);
/// @brief The distance between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The distance between the two vectors
static float Distance(const Vector2& v1, const Vector2& v2);
/// @brief The angle between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The angle between the two vectors
/// @remark This reterns an unsigned angle which is the shortest distance
/// between the two vectors. Use Vector2::SignedAngle if a signed angle is
/// needed.
static float Angle(const Vector2& v1, const Vector2& v2);
/// @brief The signed angle between two vectors
/// @param v1 The starting vector
/// @param v2 The ending vector
/// @return The signed angle between the two vectors
static float SignedAngle(const Vector2& v1, const Vector2& v2);
/// @brief Rotate the vector
/// @param v The vector to rotate
/// @param a The angle in degrees to rotate
/// @return The rotated vector
static Vector2 Rotate(const Vector2& v, AngleSingle a);
/// @brief Lerp (linear interpolation) between two vectors
/// @param v1 The starting vector
/// @param v2 The end vector
/// @param f The interpolation distance
/// @return The lerped vector
/// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value
/// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference
/// between *v1* and *v2* etc.
static Vector2 Lerp(const Vector2& v1, const Vector2& v2, float f);
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#include "Polar.h"
#endif

View File

@ -1,224 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Vector3.h"
#include "Angle.h"
#include "Spherical.h"
#include <math.h>
const float Deg2Rad = 0.0174532924F;
const float Rad2Deg = 57.29578F;
const float epsilon = 1E-05f;
Vector3::Vector3() {
this->x = 0;
this->y = 0;
this->z = 0;
}
Vector3::Vector3(float right, float up, float forward) {
this->x = right;
this->y = up;
this->z = forward;
}
Vector3::Vector3(Vector2 v) {
this->x = v.x;
this->y = 0.0f;
this->z = v.y;
}
Vector3::Vector3(SphericalOf<float> s) {
float verticalRad = (90.0f - s.direction.vertical.InDegrees()) * Deg2Rad;
float horizontalRad = s.direction.horizontal.InDegrees() * Deg2Rad;
float cosVertical = cosf(verticalRad);
float sinVertical = sinf(verticalRad);
float cosHorizontal = cosf(horizontalRad);
float sinHorizontal = sinf(horizontalRad);
x = s.distance * sinVertical * sinHorizontal;
y = s.distance * cosVertical;
z = s.distance * sinVertical * cosHorizontal;
// Vector3 v = Vector3(s.distance * sinVertical * sinHorizontal,
// s.distance * cosVertical,
// );
// return v;
}
Vector3::~Vector3() {}
const Vector3 Vector3::zero = Vector3(0, 0, 0);
const Vector3 Vector3::one = Vector3(1, 1, 1);
const Vector3 Vector3::right = Vector3(1, 0, 0);
const Vector3 Vector3::left = Vector3(-1, 0, 0);
const Vector3 Vector3::up = Vector3(0, 1, 0);
const Vector3 Vector3::down = Vector3(0, -1, 0);
const Vector3 Vector3::forward = Vector3(0, 0, 1);
const Vector3 Vector3::back = Vector3(0, 0, -1);
// inline float Vector3::Forward() { return z; }
// inline float Vector3::Up() { return y; }
// inline float Vector3::Right() { return x; }
// Vector3 Vector3::FromHorizontal(const Vector2 &v) {
// return Vector3(v.x, 0, v.y);
// }
float Vector3::Magnitude(const Vector3& v) {
return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
}
float Vector3::magnitude() const {
return (float)sqrtf(x * x + y * y + z * z);
}
float Vector3::SqrMagnitude(const Vector3& v) {
return v.x * v.x + v.y * v.y + v.z * v.z;
}
float Vector3::sqrMagnitude() const {
return (x * x + y * y + z * z);
}
Vector3 Vector3::Normalize(const Vector3& v) {
float num = Vector3::Magnitude(v);
Vector3 result = Vector3::zero;
if (num > epsilon) {
result = v / num;
}
return result;
}
Vector3 Vector3::normalized() const {
float num = this->magnitude();
Vector3 result = Vector3::zero;
if (num > epsilon) {
result = ((Vector3) * this) / num;
}
return result;
}
Vector3 Vector3::operator-() const {
return Vector3(-this->x, -this->y, -this->z);
}
Vector3 Vector3::operator-(const Vector3& v) const {
return Vector3(this->x - v.x, this->y - v.y, this->z - v.z);
}
Vector3 Vector3::operator-=(const Vector3& v) {
this->x -= v.x;
this->y -= v.y;
this->z -= v.z;
return *this;
}
Vector3 Vector3::operator+(const Vector3& v) const {
return Vector3(this->x + v.x, this->y + v.y, this->z + v.z);
}
Vector3 Vector3::operator+=(const Vector3& v) {
this->x += v.x;
this->y += v.y;
this->z += v.z;
return *this;
}
Vector3 Vector3::Scale(const Vector3& v1, const Vector3& v2) {
return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);
}
// Vector3 Passer::LinearAlgebra::operator*(const Vector3 &v, float f) {
// return Vector3(v.x * f, v.y * f, v.z * f);
// }
// Vector3 Passer::LinearAlgebra::operator*(float f, const Vector3 &v) {
// return Vector3(v.x * f, v.y * f, v.z * f);
// }
Vector3 Vector3::operator*=(float f) {
this->x *= f;
this->y *= f;
this->z *= f;
return *this;
}
// Vector3 Passer::LinearAlgebra::operator/(const Vector3 &v, float f) {
// return Vector3(v.x / f, v.y / f, v.z / f);
// }
// Vector3 Passer::LinearAlgebra::operator/(float f, const Vector3 &v) {
// return Vector3(v.x / f, v.y / f, v.z / f);
// }
Vector3 Vector3::operator/=(float f) {
this->x /= f;
this->y /= f;
this->z /= f;
return *this;
}
float Vector3::Dot(const Vector3& v1, const Vector3& v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
}
bool Vector3::operator==(const Vector3& v) const {
return (this->x == v.x && this->y == v.y && this->z == v.z);
}
float Vector3::Distance(const Vector3& v1, const Vector3& v2) {
return Magnitude(v1 - v2);
}
Vector3 Vector3::Cross(const Vector3& v1, const Vector3& v2) {
return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x);
}
Vector3 Vector3::Project(const Vector3& v, const Vector3& n) {
float sqrMagnitude = Dot(n, n);
if (sqrMagnitude < epsilon)
return Vector3::zero;
else {
float dot = Dot(v, n);
Vector3 r = n * dot / sqrMagnitude;
return r;
}
}
Vector3 Vector3::ProjectOnPlane(const Vector3& v, const Vector3& n) {
Vector3 r = v - Project(v, n);
return r;
}
float clamp(float x, float lower, float upper) {
float lowerClamp = fmaxf(x, lower);
float upperClamp = fminf(upper, lowerClamp);
return upperClamp;
}
AngleOf<float> Vector3::Angle(const Vector3& v1, const Vector3& v2) {
float denominator = sqrtf(v1.sqrMagnitude() * v2.sqrMagnitude());
if (denominator < epsilon)
return AngleOf<float>();
float dot = Vector3::Dot(v1, v2);
float fraction = dot / denominator;
if (isnan(fraction))
return AngleOf<float>::Degrees(
fraction); // short cut to returning NaN universally
float cdot = clamp(fraction, -1.0, 1.0);
float r = ((float)acos(cdot));
return AngleOf<float>::Radians(r);
}
AngleOf<float> Vector3::SignedAngle(const Vector3& v1,
const Vector3& v2,
const Vector3& axis) {
// angle in [0,180]
AngleOf<float> angle = Vector3::Angle(v1, v2);
Vector3 cross = Vector3::Cross(v1, v2);
float b = Vector3::Dot(axis, cross);
float signd = b < 0 ? -1.0F : (b > 0 ? 1.0F : 0.0F);
// angle in [-179,180]
AngleOf<float> signed_angle = angle * signd;
return AngleOf<float>(signed_angle);
}
Vector3 Vector3::Lerp(const Vector3& v1, const Vector3& v2, float f) {
Vector3 v = v1 + (v2 - v1) * f;
return v;
}

View File

@ -1,233 +0,0 @@
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0.If a copy of the MPL was not distributed with this
// file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#ifndef VECTOR3_H
#define VECTOR3_H
#include "Vector2.h"
extern "C" {
/// <summary>
/// 3-dimensional Vector representation (C-style)
/// </summary>
/// This is a C-style implementation
/// This uses the right-handed coordinate system.
typedef struct Vec3 {
protected:
/// <summary>
/// The right axis of the vector
/// </summary>
float x;
/// <summary>
/// The upward axis of the vector
/// </summary>
float y;
/// <summary>
/// The forward axis of the vector
/// </summary>
float z;
} Vec3;
}
namespace LinearAlgebra {
template <typename T>
class SphericalOf;
/// @brief A 3-dimensional vector
/// @remark This uses a right-handed carthesian coordinate system.
/// @note This implementation intentionally avoids the use of x, y and z values.
struct Vector3 : Vec3 {
friend struct Vec3;
public:
/// @brief A new 3-dimensional zero vector
Vector3();
/// @brief A new 3-dimensional vector
/// @param right The distance in the right direction in meters
/// @param up The distance in the upward direction in meters
/// @param forward The distance in the forward direction in meters
Vector3(float right, float up, float forward);
/// @brief Convert a 2-dimenstional vector to a 3-dimensional vector
/// @param v The vector to convert
Vector3(Vector2 v);
/// @brief Convert vector in spherical coordinates to 3d carthesian
/// coordinates
/// @param v The vector to convert
Vector3(SphericalOf<float> v);
/// @brief Vector3 destructor
~Vector3();
/// @brief A vector with zero for all axis
const static Vector3 zero;
/// @brief A vector with one for all axis
const static Vector3 one;
/// @brief A normalized forward-oriented vector
const static Vector3 forward;
/// @brief A normalized back-oriented vector
const static Vector3 back;
/// @brief A normalized right-oriented vector
const static Vector3 right;
/// @brief A normalized left-oriented vector
const static Vector3 left;
/// @brief A normalized up-oriented vector
const static Vector3 up;
/// @brief A normalized down-oriented vector
const static Vector3 down;
// Access functions which are intended to replace the use of XYZ
inline float Forward() const { return z; };
inline float Up() const { return y; };
inline float Right() const { return x; };
/// @brief Check if this vector to the given vector
/// @param v The vector to check against
/// @return true if it is identical to the given vector
/// @note This uses float comparison to check equality which may have strange
/// effects. Equality on floats should be avoided.
bool operator==(const Vector3& v) const;
/// @brief The vector length
/// @param v The vector for which you need the length
/// @return The vector length
static float Magnitude(const Vector3& v);
/// @brief The vector length
/// @return The vector length
float magnitude() const;
/// @brief The squared vector length
/// @param v The vector for which you need the length
/// @return The squared vector length
/// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This leaves out the
/// calculation of the squared root of C.
static float SqrMagnitude(const Vector3& v);
/// @brief The squared vector length
/// @return The squared vector length
/// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This leaves out the
/// calculation of the squared root of C.
float sqrMagnitude() const;
/// @brief Convert the vector to a length of 1
/// @param v The vector to convert
/// @return The vector normalized to a length of 1
static Vector3 Normalize(const Vector3& v);
/// @brief Convert the vector to a length of 1
/// @return The vector normalized to a length of 1
Vector3 normalized() const;
/// @brief Negate te vector such that it points in the opposite direction
/// @return The negated vector
Vector3 operator-() const;
/// @brief Subtract a vector from this vector
/// @param v The vector to subtract from this vector
/// @return The result of this subtraction
Vector3 operator-(const Vector3& v) const;
Vector3 operator-=(const Vector3& v);
/// @brief Add a vector to this vector
/// @param v The vector to add to this vector
/// @return The result of the addition
Vector3 operator+(const Vector3& v) const;
Vector3 operator+=(const Vector3& v);
/// @brief Scale the vector using another vector
/// @param v1 The vector to scale
/// @param v2 A vector with the scaling factors
/// @return The scaled vector
/// @remark Each component of the vector v1 will be multiplied with the
/// matching component from the scaling vector v2.
static Vector3 Scale(const Vector3& v1, const Vector3& v2);
/// @brief Scale the vector uniformly up
/// @param f The scaling factor
/// @return The scaled vector
/// @remark Each component of the vector will be multipled with the same
/// factor f.
friend Vector3 operator*(const Vector3& v, float f) {
return Vector3(v.x * f, v.y * f, v.z * f);
}
friend Vector3 operator*(float f, const Vector3& v) {
// return Vector3(f * v.x, f * v.y, f * v.z);
return Vector3(v.x * f, v.y * f, v.z * f);
}
Vector3 operator*=(float f);
/// @brief Scale the vector uniformly down
/// @param f The scaling factor
/// @return The scaled vector
/// @remark Each componet of the vector will be divided by the same factor.
friend Vector3 operator/(const Vector3& v, float f) {
return Vector3(v.x / f, v.y / f, v.z / f);
}
friend Vector3 operator/(float f, const Vector3& v) {
// return Vector3(f / v.x, f / v.y, f / v.z);
return Vector3(v.x / f, v.y / f, v.z / f);
}
Vector3 operator/=(float f);
/// @brief The distance between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The distance between the two vectors
static float Distance(const Vector3& v1, const Vector3& v2);
/// @brief The dot product of two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The dot product of the two vectors
static float Dot(const Vector3& v1, const Vector3& v2);
/// @brief The cross product of two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The cross product of the two vectors
static Vector3 Cross(const Vector3& v1, const Vector3& v2);
/// @brief Project the vector on another vector
/// @param v The vector to project
/// @param n The normal vecto to project on
/// @return The projected vector
static Vector3 Project(const Vector3& v, const Vector3& n);
/// @brief Project the vector on a plane defined by a normal orthogonal to the
/// plane.
/// @param v The vector to project
/// @param n The normal of the plane to project on
/// @return Teh projected vector
static Vector3 ProjectOnPlane(const Vector3& v, const Vector3& n);
/// @brief The angle between two vectors
/// @param v1 The first vector
/// @param v2 The second vector
/// @return The angle between the two vectors
/// @remark This reterns an unsigned angle which is the shortest distance
/// between the two vectors. Use Vector3::SignedAngle if a signed angle is
/// needed.
static AngleOf<float> Angle(const Vector3& v1, const Vector3& v2);
/// @brief The signed angle between two vectors
/// @param v1 The starting vector
/// @param v2 The ending vector
/// @param axis The axis to rotate around
/// @return The signed angle between the two vectors
static AngleOf<float> SignedAngle(const Vector3& v1,
const Vector3& v2,
const Vector3& axis);
/// @brief Lerp (linear interpolation) between two vectors
/// @param v1 The starting vector
/// @param v2 The ending vector
/// @param f The interpolation distance
/// @return The lerped vector
/// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value
/// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference
/// between *v1* and *v2* etc.
static Vector3 Lerp(const Vector3& v1, const Vector3& v2, float f);
};
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#include "Spherical.h"
#endif

View File

@ -1 +0,0 @@
COMPONENT_ADD_INCLUDEDIRS = .

View File

@ -1,250 +0,0 @@
//
// FILE: float16.cpp
// AUTHOR: Rob Tillaart
// VERSION: 0.1.8
// PURPOSE: library for Float16s for Arduino
// URL: http://en.wikipedia.org/wiki/Half-precision_floating-point_format
#include "float16.h"
// #include <limits>
#include <math.h>
// CONSTRUCTOR
float16::float16(float f) { _value = f32tof16(f); }
// PRINTING
// size_t float16::printTo(Print& p) const
// {
// double d = this->f16tof32(_value);
// return p.print(d, _decimals);
// }
float float16::toFloat() const { return f16tof32(_value); }
//////////////////////////////////////////////////////////
//
// EQUALITIES
//
bool float16::operator==(const float16 &f) { return (_value == f._value); }
bool float16::operator!=(const float16 &f) { return (_value != f._value); }
bool float16::operator>(const float16 &f) {
if ((_value & 0x8000) && (f._value & 0x8000))
return _value < f._value;
if (_value & 0x8000)
return false;
if (f._value & 0x8000)
return true;
return _value > f._value;
}
bool float16::operator>=(const float16 &f) {
if ((_value & 0x8000) && (f._value & 0x8000))
return _value <= f._value;
if (_value & 0x8000)
return false;
if (f._value & 0x8000)
return true;
return _value >= f._value;
}
bool float16::operator<(const float16 &f) {
if ((_value & 0x8000) && (f._value & 0x8000))
return _value > f._value;
if (_value & 0x8000)
return true;
if (f._value & 0x8000)
return false;
return _value < f._value;
}
bool float16::operator<=(const float16 &f) {
if ((_value & (uint16_t)0x8000) && (f._value & (uint16_t)0x8000))
return _value >= f._value;
if (_value & 0x8000)
return true;
if (f._value & 0x8000)
return false;
return _value <= f._value;
}
//////////////////////////////////////////////////////////
//
// NEGATION
//
float16 float16::operator-() {
float16 f16;
f16.setBinary(_value ^ 0x8000);
return f16;
}
//////////////////////////////////////////////////////////
//
// MATH
//
float16 float16::operator+(const float16 &f) {
return float16(this->toFloat() + f.toFloat());
}
float16 float16::operator-(const float16 &f) {
return float16(this->toFloat() - f.toFloat());
}
float16 float16::operator*(const float16 &f) {
return float16(this->toFloat() * f.toFloat());
}
float16 float16::operator/(const float16 &f) {
return float16(this->toFloat() / f.toFloat());
}
float16 &float16::operator+=(const float16 &f) {
*this = this->toFloat() + f.toFloat();
return *this;
}
float16 &float16::operator-=(const float16 &f) {
*this = this->toFloat() - f.toFloat();
return *this;
}
float16 &float16::operator*=(const float16 &f) {
*this = this->toFloat() * f.toFloat();
return *this;
}
float16 &float16::operator/=(const float16 &f) {
*this = this->toFloat() / f.toFloat();
return *this;
}
//////////////////////////////////////////////////////////
//
// MATH HELPER FUNCTIONS
//
int float16::sign() {
if (_value & 0x8000)
return -1;
if (_value & 0xFFFF)
return 1;
return 0;
}
bool float16::isZero() { return ((_value & 0x7FFF) == 0x0000); }
bool float16::isNaN() {
if ((_value & 0x7C00) != 0x7C00)
return false;
if ((_value & 0x03FF) == 0x0000)
return false;
return true;
}
bool float16::isInf() { return ((_value == 0x7C00) || (_value == 0xFC00)); }
//////////////////////////////////////////////////////////
//
// CORE CONVERSION
//
float float16::f16tof32(uint16_t _value) const {
uint16_t sgn, man;
int exp;
float f;
sgn = (_value & 0x8000) > 0;
exp = (_value & 0x7C00) >> 10;
man = (_value & 0x03FF);
// ZERO
if ((_value & 0x7FFF) == 0) {
return sgn ? -0.0f : 0.0f;
}
// NAN & INF
if (exp == 0x001F) {
if (man == 0)
return sgn ? -INFINITY : INFINITY;
else
return NAN;
}
// SUBNORMAL/NORMAL
if (exp == 0)
f = 0;
else
f = 1;
// PROCESS MANTISSE
for (int i = 9; i >= 0; i--) {
f *= 2;
if (man & (1 << i))
f = f + 1;
}
f = f * powf(2.0f, (float)(exp - 25));
if (exp == 0) {
f = f * powf(2.0f, -13); // 5.96046447754e-8;
}
return sgn ? -f : f;
}
uint16_t float16::f32tof16(float f) const {
// untested code, but will avoid strict aliasing warning
// union {
// float f;
// uint32_t t;
// } u;
// u.f = f;
// uint32_t t = u.t;
uint32_t t = *(uint32_t *)&f;
// man bits = 10; but we keep 11 for rounding
uint16_t man = (t & 0x007FFFFF) >> 12;
int16_t exp = (t & 0x7F800000) >> 23;
bool sgn = (t & 0x80000000);
// handle 0
if ((t & 0x7FFFFFFF) == 0) {
return sgn ? 0x8000 : 0x0000;
}
// denormalized float32 does not fit in float16
if (exp == 0x00) {
return sgn ? 0x8000 : 0x0000;
}
// handle infinity & NAN
if (exp == 0x00FF) {
if (man)
return 0xFE00; // NAN
return sgn ? 0xFC00 : 0x7C00; // -INF : INF
}
// normal numbers
exp = exp - 127 + 15;
// overflow does not fit => INF
if (exp > 30) {
return sgn ? 0xFC00 : 0x7C00; // -INF : INF
}
// subnormal numbers
if (exp < -38) {
return sgn ? 0x8000 : 0x0000; // -0 or 0 ? just 0 ?
}
if (exp <= 0) // subnormal
{
man >>= (exp + 14);
// rounding
man++;
man >>= 1;
if (sgn)
return 0x8000 | man;
return man;
}
// normal
// TODO rounding
exp <<= 10;
man++;
man >>= 1;
if (sgn)
return 0x8000 | exp | man;
return exp | man;
}
// -- END OF FILE --

View File

@ -1,74 +0,0 @@
#pragma once
//
// FILE: float16.h
// AUTHOR: Rob Tillaart
// VERSION: 0.1.8
// PURPOSE: Arduino library to implement float16 data type.
// half-precision floating point format,
// used for efficient storage and transport.
// URL: https://github.com/RobTillaart/float16
#include <stdint.h>
#define FLOAT16_LIB_VERSION (F("0.1.8"))
// typedef uint16_t _fp16;
class float16 {
public:
// Constructors
float16(void) { _value = 0x0000; };
float16(float f);
float16(const float16 &f) { _value = f._value; };
// Conversion
float toFloat(void) const;
// access the 2 byte representation.
uint16_t getBinary() { return _value; };
void setBinary(uint16_t u) { _value = u; };
// Printable
// size_t printTo(Print &p) const;
void setDecimals(uint8_t d) { _decimals = d; };
uint8_t getDecimals() { return _decimals; };
// equalities
bool operator==(const float16 &f);
bool operator!=(const float16 &f);
bool operator>(const float16 &f);
bool operator>=(const float16 &f);
bool operator<(const float16 &f);
bool operator<=(const float16 &f);
// negation
float16 operator-();
// basic math
float16 operator+(const float16 &f);
float16 operator-(const float16 &f);
float16 operator*(const float16 &f);
float16 operator/(const float16 &f);
float16 &operator+=(const float16 &f);
float16 &operator-=(const float16 &f);
float16 &operator*=(const float16 &f);
float16 &operator/=(const float16 &f);
// math helper functions
int sign(); // 1 = positive 0 = zero -1 = negative.
bool isZero();
bool isNaN();
bool isInf();
// CORE CONVERSION
// should be private but for testing...
float f16tof32(uint16_t) const;
uint16_t f32tof16(float) const;
private:
uint8_t _decimals = 4;
uint16_t _value;
};
// -- END OF FILE --

View File

@ -1,241 +0,0 @@
#if GTEST
#include "gtest/gtest.h"
#include <math.h>
#include <limits>
#include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Angle16, Construct) {
float angle = 0.0F;
Angle16 a = Angle16::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = -180.0F;
a = Angle16::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 270.0F;
a = Angle16::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), -90);
}
TEST(Angle16, Negate) {
float angle = 0;
Angle16 a = Angle16::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 90.0F;
a = Angle16::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), -angle);
}
TEST(Angle16, Subtract) {
Angle16 a = Angle16::Degrees(0);
Angle16 b = Angle16::Degrees(45.0F);
Angle16 r = a - b;
EXPECT_FLOAT_EQ(r.InDegrees(), -45);
}
TEST(Angle16, Add) {
Angle16 a = Angle16::Degrees(-45);
Angle16 b = Angle16::Degrees(45.0F);
Angle16 r = a + b;
EXPECT_FLOAT_EQ(r.InDegrees(), 0);
}
TEST(Angle16, Compare) {
Angle16 a = Angle16::Degrees(45);
bool r = false;
r = a > Angle16::Degrees(0);
EXPECT_TRUE(r) << "45 > 0";
r = a > Angle16::Degrees(90);
EXPECT_FALSE(r) << "45 > 90";
r = a > Angle16::Degrees(-90);
EXPECT_TRUE(r) << "45 > -90";
}
TEST(Angle16, Normalize) {
Angle16 r = Angle16();
r = Angle16::Normalize(Angle16::Degrees(90.0f));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize 90";
r = Angle16::Normalize(Angle16::Degrees(-90));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize -90";
r = Angle16::Normalize(Angle16::Degrees(270));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize 270";
r = Angle16::Normalize(Angle16::Degrees(270 + 360));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize 270+360";
r = Angle16::Normalize(Angle16::Degrees(-270));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize -270";
r = Angle16::Normalize(Angle16::Degrees(-270 - 360));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize -270-360";
r = Angle16::Normalize(Angle16::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0";
if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported
r = Angle16::Normalize(Angle16::Degrees(FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY";
r = Angle16::Normalize(Angle16::Degrees(-FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), -FLOAT_INFINITY) << "Normalize INFINITY";
}
}
TEST(Angle16, Clamp) {
Angle16 r = Angle16();
// Clamp(1, 0, 2) will fail because Angle16 does not have enough resolution
// for this. Instead we use Clamp(10, 0, 20) etc.
r = Angle16::Clamp(Angle16::Degrees(10), Angle16::Degrees(0),
Angle16::Degrees(20));
EXPECT_NEAR(r.InDegrees(), 10, 1.0e-2) << "Clamp 10 0 20";
r = Angle16::Clamp(Angle16::Degrees(-10), Angle16::Degrees(0),
Angle16::Degrees(20));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp -10 0 20";
r = Angle16::Clamp(Angle16::Degrees(30), Angle16::Degrees(0),
Angle16::Degrees(20));
EXPECT_NEAR(r.InDegrees(), 20, 1.0e-2) << "Clamp 30 0 20";
r = Angle16::Clamp(Angle16::Degrees(10), Angle16::Degrees(0),
Angle16::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 10 0 0";
r = Angle16::Clamp(Angle16::Degrees(0), Angle16::Degrees(0),
Angle16::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 0 0";
r = Angle16::Clamp(Angle16::Degrees(0), Angle16::Degrees(10),
Angle16::Degrees(-10));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10";
if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported
r = Angle16::Clamp(Angle16::Degrees(10), Angle16::Degrees(0),
Angle16::Degrees(FLOAT_INFINITY));
EXPECT_NEAR(r.InDegrees(), 10, 1.0e-2) << "Clamp 1 0 INFINITY";
r = Angle16::Clamp(Angle16::Degrees(10), Angle16::Degrees(-FLOAT_INFINITY),
Angle16::Degrees(10));
EXPECT_NEAR(r.InDegrees(), 10, 1.0e-2) << "Clamp 1 -INFINITY 1";
}
}
// TEST(Angle16, Difference) {
// Angle16 r = 0;
// r = Angle16::Difference(0, 90);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference 0 90";
// r = Angle16::Difference(0, -90);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 0 -90";
// r = Angle16::Difference(0, 270);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 0 270";
// r = Angle16::Difference(0, -270);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference 0 -270";
// r = Angle16::Difference(90, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 90 0";
// r = Angle16::Difference(-90, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference -90 0";
// r = Angle16::Difference(0, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Difference 0 0";
// r = Angle16::Difference(90, 90);
// EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Difference 90 90";
// if (std::numeric_limits<float>::is_iec559) {
// r = Angle16::Difference(0, INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), INFINITY) << "Difference 0 INFINITY";
// r = Angle16::Difference(0, -INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), -INFINITY) << "Difference 0 -INFINITY";
// r = Angle16::Difference(-INFINITY, INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), INFINITY) << "Difference -INFINITY
// INFINITY";
// }
// }
TEST(Angle16, MoveTowards) {
Angle16 r = Angle16();
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90), 30);
EXPECT_NEAR(r.InDegrees(), 30, 1.0e-2) << "MoveTowards 0 90 30";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90), 90);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 90";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(-90), 180);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 -90 -180";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90), 270);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 270";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 90 -30";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(-90), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -30";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(-90), -90);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -90";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(-90), -180);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -180";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(-90), -270);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -270";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90), 0);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 90 0";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(0), 0);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 0";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(0), 30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30";
if (false) { // std::numeric_limits<float>::is_iec559) {
// infinites are not supported
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90),
FLOAT_INFINITY);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 FLOAT_INFINITY";
r = Angle16::MoveTowards(Angle16::Degrees(0),
Angle16::Degrees(FLOAT_INFINITY), 30);
EXPECT_FLOAT_EQ(r.InDegrees(), 30) << "MoveTowards 0 FLOAT_INFINITY 30";
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(-90),
-FLOAT_INFINITY);
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY)
<< "MoveTowards 0 -90 -FLOAT_INFINITY";
r = Angle16::MoveTowards(Angle16::Degrees(0),
Angle16::Degrees(-FLOAT_INFINITY), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 30) << "MoveTowards 0 -FLOAT_INFINITY -30";
}
}
#endif

View File

@ -1,241 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Angle8, Construct) {
float angle = 0.0F;
Angle8 a = Angle8::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = -180.0F;
a = Angle8::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 270.0F;
a = Angle8::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), -90);
}
TEST(Angle8, Negate) {
float angle = 0;
Angle8 a = Angle8::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 90.0F;
a = Angle8::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), -angle);
}
TEST(Angle8, Add) {
Angle8 a = Angle8::Degrees(-45);
Angle8 b = Angle8::Degrees(45.0F);
Angle8 r = a + b;
EXPECT_FLOAT_EQ(r.InDegrees(), 0);
}
TEST(Angle8, Subtract) {
Angle8 a = Angle8::Degrees(0);
Angle8 b = Angle8::Degrees(45.0F);
Angle8 r = a - b;
EXPECT_FLOAT_EQ(r.InDegrees(), -45);
}
TEST(Angle8, Compare) {
Angle8 a = Angle8::Degrees(45);
bool r = false;
r = a > Angle8::Degrees(0);
EXPECT_TRUE(r) << "45 > 0";
r = a > Angle8::Degrees(90);
EXPECT_FALSE(r) << "45 > 90";
r = a > Angle8::Degrees(-90);
EXPECT_TRUE(r) << "45 > -90";
}
TEST(Angle8, Normalize) {
Angle8 r = Angle8();
r = Angle8::Normalize(Angle8::Degrees(90.0f));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize 90";
r = Angle8::Normalize(Angle8::Degrees(-90));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize -90";
r = Angle8::Normalize(Angle8::Degrees(270));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize 270";
r = Angle8::Normalize(Angle8::Degrees(270 + 360));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize 270+360";
r = Angle8::Normalize(Angle8::Degrees(-270));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize -270";
r = Angle8::Normalize(Angle8::Degrees(-270 - 360));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize -270-360";
r = Angle8::Normalize(Angle8::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0";
if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported
r = Angle8::Normalize(Angle8::Degrees(FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY";
r = Angle8::Normalize(Angle8::Degrees(-FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), -FLOAT_INFINITY) << "Normalize INFINITY";
}
}
TEST(Angle8, Clamp) {
Angle8 r = Angle8();
// Clamp(1, 0, 2) will fail because Angle8 does not have enough resolution for
// this. Instead we use Clamp(10, 0, 20) etc.
r = Angle8::Clamp(Angle8::Degrees(10), Angle8::Degrees(0),
Angle8::Degrees(20));
EXPECT_NEAR(r.InDegrees(), 10, 1.0e-0) << "Clamp 10 0 20";
r = Angle8::Clamp(Angle8::Degrees(-10), Angle8::Degrees(0),
Angle8::Degrees(20));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp -10 0 20";
r = Angle8::Clamp(Angle8::Degrees(30), Angle8::Degrees(0),
Angle8::Degrees(20));
EXPECT_NEAR(r.InDegrees(), 20, 1.0e-0) << "Clamp 30 0 20";
r = Angle8::Clamp(Angle8::Degrees(10), Angle8::Degrees(0),
Angle8::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 10 0 0";
r = Angle8::Clamp(Angle8::Degrees(0), Angle8::Degrees(0), Angle8::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 0 0";
r = Angle8::Clamp(Angle8::Degrees(0), Angle8::Degrees(10),
Angle8::Degrees(-10));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10";
if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported
r = Angle8::Clamp(Angle8::Degrees(10), Angle8::Degrees(0),
Angle8::Degrees(FLOAT_INFINITY));
EXPECT_NEAR(r.InDegrees(), 10, 1.0e-0) << "Clamp 1 0 INFINITY";
r = Angle8::Clamp(Angle8::Degrees(10), Angle8::Degrees(-FLOAT_INFINITY),
Angle8::Degrees(10));
EXPECT_NEAR(r.InDegrees(), 10, 1.0e-0) << "Clamp 1 -INFINITY 1";
}
}
// TEST(Angle8, Difference) {
// Angle8 r = 0;
// r = Angle8::Difference(0, 90);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference 0 90";
// r = Angle8::Difference(0, -90);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 0 -90";
// r = Angle8::Difference(0, 270);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 0 270";
// r = Angle8::Difference(0, -270);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference 0 -270";
// r = Angle8::Difference(90, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 90 0";
// r = Angle8::Difference(-90, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference -90 0";
// r = Angle8::Difference(0, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Difference 0 0";
// r = Angle8::Difference(90, 90);
// EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Difference 90 90";
// if (std::numeric_limits<float>::is_iec559) {
// r = Angle8::Difference(0, INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), INFINITY) << "Difference 0 INFINITY";
// r = Angle8::Difference(0, -INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), -INFINITY) << "Difference 0 -INFINITY";
// r = Angle8::Difference(-INFINITY, INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), INFINITY) << "Difference -INFINITY
// INFINITY";
// }
// }
TEST(Angle8, MoveTowards) {
Angle8 r = Angle8();
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90), 30);
EXPECT_NEAR(r.InDegrees(), 30, 1.0e-0) << "MoveTowards 0 90 30";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90), 90);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 90";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(-90), 180);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 -90 -180";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90), 270);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 270";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 90 -30";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(-90), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -30";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(-90), -90);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -90";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(-90), -180);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -180";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(-90), -270);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -270";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90), 0);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 90 0";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(0), 0);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 0";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(0), 30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30";
if (false) { // std::numeric_limits<float>::is_iec559) {
// infinites are not supported
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90),
FLOAT_INFINITY);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 FLOAT_INFINITY";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(FLOAT_INFINITY),
30);
EXPECT_FLOAT_EQ(r.InDegrees(), 30) << "MoveTowards 0 FLOAT_INFINITY 30";
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(-90),
-FLOAT_INFINITY);
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY)
<< "MoveTowards 0 -90 -FLOAT_INFINITY";
r = Angle8::MoveTowards(Angle8::Degrees(0),
Angle8::Degrees(-FLOAT_INFINITY), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 30) << "MoveTowards 0 -FLOAT_INFINITY -30";
}
}
#endif

View File

@ -1,249 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(AngleSingle, Construct) {
float angle = 0.0F;
AngleSingle a = AngleSingle::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = -180.0F;
a = AngleSingle::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 270.0F;
a = AngleSingle::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), -90);
}
TEST(AngleSingle, Negate) {
float angle = 0;
AngleSingle a = AngleSingle::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 90.0F;
a = AngleSingle::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), -angle);
}
TEST(AngleSingle, Add) {
AngleSingle a = AngleSingle::Degrees(-45);
AngleSingle b = AngleSingle::Degrees(45.0F);
AngleSingle r = a + b;
EXPECT_FLOAT_EQ(r.InDegrees(), 0);
}
TEST(AngleSingle, Subtract) {
AngleSingle a = AngleSingle::Degrees(0);
AngleSingle b = AngleSingle::Degrees(45.0F);
AngleSingle r = a - b;
EXPECT_FLOAT_EQ(r.InDegrees(), -45);
}
TEST(AngleSingle, Compare) {
AngleSingle a = AngleSingle::Degrees(45);
bool r = false;
r = a > AngleSingle::Degrees(0);
EXPECT_TRUE(r) << "45 > 0";
r = a > AngleSingle::Degrees(90);
EXPECT_FALSE(r) << "45 > 90";
r = a > AngleSingle::Degrees(-90);
EXPECT_TRUE(r) << "45 > -90";
}
TEST(AngleSingle, Normalize) {
AngleSingle r = AngleSingle();
r = AngleSingle::Normalize(AngleSingle::Degrees(90.0f));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize 90";
r = AngleSingle::Normalize(AngleSingle::Degrees(-90));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize -90";
r = AngleSingle::Normalize(AngleSingle::Degrees(270));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize 270";
r = AngleSingle::Normalize(AngleSingle::Degrees(270 + 360));
EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Normalize 270+360";
r = AngleSingle::Normalize(AngleSingle::Degrees(-270));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize -270";
r = AngleSingle::Normalize(AngleSingle::Degrees(-270 - 360));
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Normalize -270-360";
r = AngleSingle::Normalize(AngleSingle::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0";
if (std::numeric_limits<float>::is_iec559) {
r = AngleSingle::Normalize(AngleSingle::Degrees(FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY";
r = AngleSingle::Normalize(AngleSingle::Degrees(-FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), -FLOAT_INFINITY) << "Normalize INFINITY";
}
}
TEST(AngleSingle, Clamp) {
AngleSingle r = AngleSingle();
r = AngleSingle::Clamp(AngleSingle::Degrees(1), AngleSingle::Degrees(0),
AngleSingle::Degrees(2));
EXPECT_FLOAT_EQ(r.InDegrees(), 1) << "Clamp 1 0 2";
r = AngleSingle::Clamp(AngleSingle::Degrees(-1), AngleSingle::Degrees(0),
AngleSingle::Degrees(2));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp -1 0 2";
r = AngleSingle::Clamp(AngleSingle::Degrees(3), AngleSingle::Degrees(0),
AngleSingle::Degrees(2));
EXPECT_FLOAT_EQ(r.InDegrees(), 2) << "Clamp 3 0 2";
r = AngleSingle::Clamp(AngleSingle::Degrees(1), AngleSingle::Degrees(0),
AngleSingle::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 1 0 0";
r = AngleSingle::Clamp(AngleSingle::Degrees(0), AngleSingle::Degrees(0),
AngleSingle::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 0 0";
r = AngleSingle::Clamp(AngleSingle::Degrees(0), AngleSingle::Degrees(1),
AngleSingle::Degrees(-1));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 1 -1";
if (std::numeric_limits<float>::is_iec559) {
r = AngleSingle::Clamp(AngleSingle::Degrees(1), AngleSingle::Degrees(0),
AngleSingle::Degrees(FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), 1) << "Clamp 1 0 INFINITY";
r = AngleSingle::Clamp(AngleSingle::Degrees(1),
AngleSingle::Degrees(-FLOAT_INFINITY),
AngleSingle::Degrees(1));
EXPECT_FLOAT_EQ(r.InDegrees(), 1) << "Clamp 1 -INFINITY 1";
}
}
// TEST(AngleSingle, Difference) {
// AngleSingle r = 0;
// r = AngleSingle::Difference(0, 90);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference 0 90";
// r = AngleSingle::Difference(0, -90);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 0 -90";
// r = AngleSingle::Difference(0, 270);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 0 270";
// r = AngleSingle::Difference(0, -270);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference 0 -270";
// r = AngleSingle::Difference(90, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), -90) << "Difference 90 0";
// r = AngleSingle::Difference(-90, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "Difference -90 0";
// r = AngleSingle::Difference(0, 0);
// EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Difference 0 0";
// r = AngleSingle::Difference(90, 90);
// EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Difference 90 90";
// if (std::numeric_limits<float>::is_iec559) {
// r = AngleSingle::Difference(0, INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), INFINITY) << "Difference 0 INFINITY";
// r = AngleSingle::Difference(0, -INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), -INFINITY) << "Difference 0 -INFINITY";
// r = AngleSingle::Difference(-INFINITY, INFINITY);
// EXPECT_FLOAT_EQ(r.InDegrees(), INFINITY) << "Difference -INFINITY
// INFINITY";
// }
// }
TEST(AngleSingle, MoveTowards) {
AngleSingle r = AngleSingle();
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(90), 30);
EXPECT_FLOAT_EQ(r.InDegrees(), 30) << "MoveTowards 0 90 30";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(90), 90);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 90";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(90), 180);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 180";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(90), 270);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 270";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(90), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 90 -30";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(-90), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -30";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(-90), -90);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -90";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(-90), -180);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -180";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(-90), -270);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -270";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(90), 0);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 90 0";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0), AngleSingle::Degrees(0),
0);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 0";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0), AngleSingle::Degrees(0),
30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30";
if (std::numeric_limits<float>::is_iec559) {
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(90), FLOAT_INFINITY);
EXPECT_FLOAT_EQ(r.InDegrees(), 90) << "MoveTowards 0 90 FLOAT_INFINITY";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(FLOAT_INFINITY), 30);
EXPECT_FLOAT_EQ(r.InDegrees(), 30) << "MoveTowards 0 FLOAT_INFINITY 30";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(-90), -FLOAT_INFINITY);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -90 -FLOAT_INFINITY";
r = AngleSingle::MoveTowards(AngleSingle::Degrees(0),
AngleSingle::Degrees(-FLOAT_INFINITY), -30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 -FLOAT_INFINITY -30";
}
}
#endif

View File

@ -1,56 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include "Direction.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Direction16, Compare) {
Direction16 d = Direction16::Degrees(45, 135);
bool r;
r = (d == Direction16(Angle16::Degrees(45), Angle16::Degrees(135)));
EXPECT_TRUE(r) << "45,135 == 45, 135";
r = (d ==
Direction16(Angle16::Degrees(45 + 360), Angle16::Degrees(135 - 360)));
EXPECT_TRUE(r) << "45+360, 135-360 == 45, 135";
}
TEST(Direction16, Inverse) {
Direction16 d;
Direction16 r;
d = Direction16::Degrees(45, 135);
r = -d;
EXPECT_EQ(r, Direction16::Degrees(-135, -135)) << "-(45, 135)";
d = Direction16::Degrees(-45, -135);
r = -d;
EXPECT_EQ(r, Direction16::Degrees(135, 135)) << "-(-45, -135)";
d = Direction16::Degrees(0, 0);
r = -d;
EXPECT_EQ(r, Direction16::Degrees(180, 0)) << "-(0, 0)";
d = Direction16::Degrees(0, 45);
r = -d;
EXPECT_EQ(r, Direction16::Degrees(180, -45)) << "-(0, 45)";
}
TEST(Direction16, Equality) {
Direction16 d;
d = Direction16::Degrees(135, 45);
EXPECT_EQ(d, Direction16::Degrees(135, 45)) << "(135, 45) == (135, 45)";
EXPECT_EQ(d, Direction16::Degrees(135 + 360, 45))
<< "(135, 45) == (135 + 360, 45) ";
EXPECT_EQ(d, Direction16::Degrees(135 - 360, 45))
<< "(135, 135) == (135 - 360, 45) ";
d = Direction16::Degrees(0, 45 + 180);
EXPECT_EQ(d, Direction16::Degrees(180, -45)) << "(0, 45+180) == (180, -45)";
}
#endif

View File

@ -1,82 +0,0 @@
/*
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include "Angle.h"
// #include "Angle16.h"
// #include "Angle8.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Angle8, Construct) {
float angle = 0.0F;
Angle8 a = Angle8::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = -180.0F;
a = Angle8::Degrees(angle);
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
}
TEST(Angle8, Negate) {
float angle = 0;
Angle8 a = Angle8::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 90.0F;
a = Angle8::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), -angle);
}
TEST(Angle8, Add) {
Angle8 a = Angle8::Degrees(-45);
Angle8 b = Angle8::Degrees(45.0F);
Angle8 r = a + b;
EXPECT_FLOAT_EQ(r.InDegrees(), 0);
}
TEST(Angle8, Subtract) {
Angle8 a = Angle8::Degrees(0);
Angle8 b = Angle8::Degrees(45.0F);
Angle8 r = a - b;
EXPECT_FLOAT_EQ(r.InDegrees(), -45);
}
TEST(Angle16, Construct) {
Angle16 a = Angle16::Degrees(0.0F);
EXPECT_FLOAT_EQ(a.InDegrees(), 0);
}
TEST(Angle16, Negate) {
float angle = 0;
Angle16 a = Angle16::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), angle);
angle = 90.0F;
a = Angle16::Degrees(angle);
a = -a;
EXPECT_FLOAT_EQ(a.InDegrees(), -angle);
}
TEST(Angle16, Subtract) {
Angle16 a = Angle16::Degrees(0);
Angle16 b = Angle16::Degrees(45.0F);
Angle16 r = a - b;
EXPECT_FLOAT_EQ(r.InDegrees(), -45);
}
TEST(Angle16, Add) {
Angle16 a = Angle16::Degrees(-45);
Angle16 b = Angle16::Degrees(45.0F);
Angle16 r = a + b;
EXPECT_FLOAT_EQ(r.InDegrees(), 0);
}
#endif
*/

View File

@ -1,41 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <limits>
#include <math.h>
#include "FloatSingle.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(FloatC, Clamp) {
float r = 0;
r = Float::Clamp(1, 0, 2);
EXPECT_FLOAT_EQ(r, 1) << "Clamp 1 0 2";
r = Float::Clamp(-1, 0, 2);
EXPECT_FLOAT_EQ(r, 0) << "Clamp -1 0 2";
r = Float::Clamp(3, 0, 2);
EXPECT_FLOAT_EQ(r, 2) << "Clamp 3 0 2";
r = Float::Clamp(1, 0, 0);
EXPECT_FLOAT_EQ(r, 0) << "Clamp 1 0 0";
r = Float::Clamp(0, 0, 0);
EXPECT_FLOAT_EQ(r, 0) << "Clamp 0 0 0";
r = Float::Clamp(0, 1, -1);
EXPECT_FLOAT_EQ(r, 0) << "Clamp 0 1 -1";
if (std::numeric_limits<float>::is_iec559) {
r = Float::Clamp(1, 0, FLOAT_INFINITY);
EXPECT_FLOAT_EQ(r, 1) << "Clamp 1 0 INFINITY";
r = Float::Clamp(1, -FLOAT_INFINITY, 1);
EXPECT_FLOAT_EQ(r, 1) << "Clamp 1 -INFINITY 1";
}
}
#endif

View File

@ -1,135 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <limits>
#include <math.h>
#include "Matrix.h"
TEST(MatrixSingle, Init) {
// zero
MatrixOf<float> m0 = MatrixOf<float>(0, 0);
// one
float data1[] = {1.0F};
MatrixOf<float> m1 = MatrixOf<float>(1, 1, data1);
// two
float data2[] = {1.0F, 2.0F, 3.0F, 4.0F};
MatrixOf<float> m2 = MatrixOf<float>(2, 2, data2);
// negative
// MatrixOf<float> m_1 = MatrixOf<float>(-1, -1);
// parameters are unsigned
}
TEST(MatrixSingle, Transpose) {
float data1[] = {1.0F};
MatrixOf<float> m = MatrixOf<float>(1, 1, data1);
MatrixOf<float> r = MatrixOf<float>(1, 1);
m.Transpose(&r);
// 2 x 2
float data3[] = {1.0F, 2.0F, 3.0F, 4.0F};
MatrixOf<float> m22 = MatrixOf<float>(2, 2, data3);
EXPECT_EQ(m22.RowCount(), 2);
EXPECT_EQ(m22.ColCount(), 2);
float data4[] = {0.0F, 0.0F, 0.0F, 0.0F};
MatrixOf<float> r22 = MatrixOf<float>(2, 2, data4);
EXPECT_EQ(r22.RowCount(), 2);
EXPECT_EQ(r22.ColCount(), 2);
m22.Transpose(&r22);
EXPECT_EQ(r22.RowCount(), 2);
EXPECT_EQ(r22.ColCount(), 2);
EXPECT_FLOAT_EQ(r22.Get(0, 0), 1.0F);
EXPECT_FLOAT_EQ(r22.Get(0, 1), 3.0F);
EXPECT_FLOAT_EQ(r22.Get(1, 0), 2.0F);
EXPECT_FLOAT_EQ(r22.Get(1, 1), 4.0F);
// 1 x 2
float data12[] = {1.0F, 2.0F};
MatrixOf<float> m12 = MatrixOf<float>(1, 2, data12);
EXPECT_EQ(m12.RowCount(), 1);
EXPECT_EQ(m12.ColCount(), 2);
float data21[] = {0.0F, 0.0F};
MatrixOf<float> r21 = MatrixOf<float>(2, 1, data21);
EXPECT_EQ(r21.RowCount(), 2);
EXPECT_EQ(r21.ColCount(), 1);
m12.Transpose(&r21);
EXPECT_EQ(r21.RowCount(), 2);
EXPECT_EQ(r21.ColCount(), 1);
EXPECT_FLOAT_EQ(r21.Get(0, 0), 1.0F);
EXPECT_FLOAT_EQ(r21.Get(1, 0), 2.0F);
// changing dimensions, same size is okay
MatrixOf<float> r12 = MatrixOf<float>(1, 2, data21);
EXPECT_EQ(r12.RowCount(), 1);
EXPECT_EQ(r12.ColCount(), 2);
m12.Transpose(&r12);
EXPECT_EQ(r12.RowCount(), 2);
EXPECT_EQ(r12.ColCount(), 1);
EXPECT_FLOAT_EQ(r12.Get(0, 0), 1.0F);
EXPECT_FLOAT_EQ(r12.Get(0, 1), 2.0F);
}
TEST(MatrixSingle, Multiply) {
float m12data[] = {1.0F, 2.0F};
MatrixOf<float> m12 = MatrixOf<float>(1, 2, m12data);
EXPECT_EQ(m12.RowCount(), 1);
EXPECT_EQ(m12.ColCount(), 2);
EXPECT_FLOAT_EQ(m12.Get(0, 0), 1.0F);
EXPECT_FLOAT_EQ(m12.Get(0, 1), 2.0F);
float m21data[] = {3.0F, 4.0F};
MatrixOf<float> m21 = MatrixOf<float>(2, 1, m21data);
EXPECT_EQ(m21.RowCount(), 2);
EXPECT_EQ(m21.ColCount(), 1);
EXPECT_FLOAT_EQ(m21.Get(0, 0), 3.0F);
EXPECT_FLOAT_EQ(m21.Get(1, 0), 4.0F);
float r11data[] = {0.0F};
MatrixOf<float> r11 = MatrixOf<float>(1, 1, r11data);
EXPECT_EQ(r11.RowCount(), 1);
EXPECT_EQ(r11.ColCount(), 1);
MatrixOf<float>::Multiply(&m12, &m21, &r11);
EXPECT_EQ(r11.RowCount(), 1);
EXPECT_EQ(r11.ColCount(), 1);
EXPECT_FLOAT_EQ(r11.Get(0, 0), 11.0F);
float r22data[] = {0.0F, 0.0F, 0.0F, 0.0F};
MatrixOf<float> r22 = MatrixOf<float>(2, 2, r22data);
MatrixOf<float>::Multiply(&m21, &m12, &r22);
EXPECT_EQ(r22.RowCount(), 2);
EXPECT_EQ(r22.ColCount(), 2);
EXPECT_FLOAT_EQ(r22.Get(0, 0), 3.0F);
EXPECT_FLOAT_EQ(r22.Get(0, 1), 4.0F);
EXPECT_FLOAT_EQ(r22.Get(1, 0), 6.0F);
EXPECT_FLOAT_EQ(r22.Get(1, 1), 8.0F);
}
TEST(MatrixSingle, Multiply_Vector3) {
Vector3 v = Vector3(1.0, 2.0, 3.0);
Vector3 r = Vector3::zero;
// float m13data[] = {3.0, 4.0, 5.0};
// MatrixOf<float> m13 = MatrixOf<float>(1, 3, m13data);
// Vector3 r = MatrixOf<float>::Multiply(&m13, v);
float m33data[] = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0};
MatrixOf<float> m33 = MatrixOf<float>(3, 3, m33data);
r = MatrixOf<float>::Multiply(&m33, v);
EXPECT_FLOAT_EQ(Vector3::Distance(r, Vector3(1.0f, 2.0f, 3.0f)), 0);
}
#endif

View File

@ -1,232 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <limits>
#include <math.h>
#include "Polar.h"
#include "Spherical.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Polar, FromVector2) {
Vector2 v = Vector2(0, 1);
PolarSingle p = PolarSingle::FromVector2(v);
EXPECT_FLOAT_EQ(p.distance, 1.0F) << "p.distance 0 1";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), 0.0F) << "s.angle 0 0 1";
v = Vector2(1, 0);
p = PolarSingle::FromVector2(v);
EXPECT_FLOAT_EQ(p.distance, 1.0F) << "p.distance 1 0";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), 90.0F) << "s.angle 1 0";
v = Vector2(-1, 1);
p = PolarSingle::FromVector2(v);
EXPECT_FLOAT_EQ(p.distance, sqrt(2.0F)) << "p.distance -1 1";
EXPECT_NEAR(p.angle.InDegrees(), -45.0F, 1.0e-05) << "s.angle -1 1";
}
TEST(Polar, FromSpherical) {
SphericalSingle s;
PolarSingle p;
s = SphericalSingle(1, DirectionSingle::forward);
p = PolarSingle::FromSpherical(s);
EXPECT_FLOAT_EQ(p.distance, 1.0F) << "p.distance FromSpherical(1 0 0)";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), 0.0F) << "p.angle FromSpherical(1 0 0)";
s = SphericalSingle(1, AngleSingle::Degrees(45), AngleSingle::Degrees(0));
p = PolarSingle::FromSpherical(s);
EXPECT_FLOAT_EQ(p.distance, 1.0F) << "p.distance FromSpherical(1 45 0)";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), 45.0F)
<< "p.angle FromSpherical(1 45 0)";
s = SphericalSingle(1, AngleSingle::Degrees(-45), AngleSingle::Degrees(0));
p = PolarSingle::FromSpherical(s);
EXPECT_FLOAT_EQ(p.distance, 1.0F) << "p.distance FromSpherical(1 -45 0)";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), -45.0F)
<< "p.angle FromSpherical(1 -45 0)";
s = SphericalSingle(0, AngleSingle::Degrees(0), AngleSingle::Degrees(0));
p = PolarSingle::FromSpherical(s);
EXPECT_FLOAT_EQ(p.distance, 0.0F) << "p.distance FromSpherical(0 0 0)";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), 0.0F) << "p.angle FromSpherical(0 0 0)";
s = SphericalSingle(-1, AngleSingle::Degrees(0), AngleSingle::Degrees(0));
p = PolarSingle::FromSpherical(s);
EXPECT_FLOAT_EQ(p.distance, 1.0F) << "p.distance FromSpherical(-1 0 0)";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), -180.0F)
<< "p.angle FromSpherical(-1 0 0)";
s = SphericalSingle(0, AngleSingle::Degrees(0), AngleSingle::Degrees(90));
p = PolarSingle::FromSpherical(s);
EXPECT_FLOAT_EQ(p.distance, 0.0F) << "p.distance FromSpherical(0 0 90)";
EXPECT_FLOAT_EQ(p.angle.InDegrees(), 0.0F) << "p.angle FromSpherical(0 0 90)";
}
TEST(Polar, Negation) {
PolarSingle v = PolarSingle(2, AngleSingle::Degrees(45));
PolarSingle r = PolarSingle::zero;
r = -v;
EXPECT_FLOAT_EQ(r.distance, 2);
EXPECT_FLOAT_EQ(r.angle.InDegrees(), -135);
EXPECT_TRUE(r == PolarSingle(2, AngleSingle::Degrees(-135)))
<< "Negate(2 45)";
v = PolarSingle::Deg(2, -45);
r = -v;
EXPECT_TRUE(r == PolarSingle(2, AngleSingle::Degrees(135)))
<< "Negate(2 -45)";
v = PolarSingle::Degrees(2, 0);
r = -v;
EXPECT_TRUE(r == PolarSingle(2, AngleSingle::Degrees(180))) << "Negate(2 0)";
v = PolarSingle(0, AngleSingle::Degrees(0));
r = -v;
EXPECT_FLOAT_EQ(r.distance, 0.0f);
EXPECT_FLOAT_EQ(r.angle.InDegrees(), 0.0f);
EXPECT_TRUE(r == PolarSingle(0, AngleSingle::Degrees(0))) << "Negate(0 0)";
}
TEST(Polar, Subtraction) {
PolarSingle v1 = PolarSingle(4, AngleSingle::Degrees(45));
PolarSingle v2 = PolarSingle(1, AngleSingle::Degrees(-90));
PolarSingle r = PolarSingle::zero;
r = v1 - v2;
// don't know what to expect yet
v2 = PolarSingle::zero;
r = v1 - v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Subtraction(0 0)";
}
TEST(Polar, Addition) {
PolarSingle v1 = PolarSingle(1, AngleSingle::Degrees(45));
PolarSingle v2 = PolarSingle(1, AngleSingle::Degrees(-90));
PolarSingle r = PolarSingle::zero;
r = v1 - v2;
// don't know what to expect yet
v2 = PolarSingle::zero;
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0)";
r = v1;
r += v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0)";
v2 = PolarSingle(1, AngleSingle::Degrees(-45));
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, sqrtf(2)) << "Addition(0 0 0)";
EXPECT_FLOAT_EQ(r.angle.InDegrees(), 0) << "Addition(0 0 0)";
}
TEST(Polar, Scale_Multiply) {
PolarSingle v1 = PolarSingle(4, AngleSingle::Degrees(45));
PolarSingle r = PolarSingle::zero;
r = v1 * 2.0f;
EXPECT_FLOAT_EQ(r.distance, v1.distance * 2) << "ScaleMult(4 45, 2)";
EXPECT_FLOAT_EQ(r.angle.InDegrees(), v1.angle.InDegrees())
<< "ScaleMult(4 45, 2)";
}
TEST(Polar, Scale_Divide) {
PolarSingle v1 = PolarSingle(4, AngleSingle::Degrees(45));
PolarSingle r = PolarSingle::zero;
r = v1 / 2.0f;
EXPECT_FLOAT_EQ(r.distance, v1.distance / 2) << "ScaleDiv(4 45, 2)";
EXPECT_FLOAT_EQ(r.angle.InDegrees(), v1.angle.InDegrees())
<< "ScaleDiv(4 45, 2)";
}
TEST(Polar, Distance) {
PolarSingle v1 = PolarSingle(4, AngleSingle::Degrees(45));
PolarSingle v2 = PolarSingle(1, AngleSingle::Degrees(-90));
float d = 0;
d = PolarSingle::Distance(v1, v2);
// don't know what to expect yet
v2 = PolarSingle::zero;
d = PolarSingle::Distance(v1, v2);
EXPECT_FLOAT_EQ(d, v1.distance) << "Distance(4 45, zero)";
}
TEST(Polar, Rotate) {
PolarSingle v = PolarSingle(4, AngleSingle::Degrees(45));
PolarSingle r = PolarSingle::zero;
r = PolarSingle::Rotate(v, AngleSingle::Degrees(45));
EXPECT_FLOAT_EQ(r.distance, v.distance) << "Rotate(4 45, 45)";
EXPECT_FLOAT_EQ(r.angle.InDegrees(), 90.0f) << "Rotate(4 45, 45)";
}
// Performance Test
TEST(PolarOfTest, PerformanceTest) {
const int numIterations = 1000000; // Number of instances to test
std::vector<PolarOf<float>> polarObjects;
// Measure time for creating a large number of PolarOf objects
auto start = std::chrono::high_resolution_clock::now();
for (int i = 0; i < numIterations; ++i) {
float distance =
static_cast<float>(rand() % 100); // Random distance from 0 to 100
AngleOf<float> angle = AngleOf<float>::Degrees(
static_cast<float>(rand() % 360)); // Random angle from 0 to 360 degrees
PolarOf<float> p = PolarOf<float>(distance, angle);
polarObjects.emplace_back(p); // Create and store the object
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> duration = end - start;
std::cout << "Time to construct " << numIterations
<< " PolarOf objects: " << duration.count() << " seconds."
<< std::endl;
// Test completion with a message
ASSERT_GE(duration.count(), 0); // Ensure duration is non-negative
// Assert that the duration is less than or equal to 1 second
ASSERT_LE(duration.count(), 1.0)
<< "Performance test failed: Construction took longer than 1 second.";
}
// Edge Case 1: Testing with distance = 0 and angle = 45
TEST(PolarOfTest, TestDistanceZero) {
PolarOf<float> p1(0.0f, AngleOf<float>::Degrees(45.0f));
EXPECT_EQ(p1.distance, 0.0f); // Ensure distance is 0
EXPECT_EQ(p1.angle.InDegrees(), 0.0f); // Ensure angle is 0 when distance is 0
}
// Edge Case 2: Testing with negative distance, angle should be adjusted
TEST(PolarOfTest, TestNegativeDistance) {
PolarOf<float> p2(-10.0f, AngleOf<float>::Degrees(90.0f));
EXPECT_EQ(p2.distance, 10.0f); // Ensure distance is positive
EXPECT_NEAR(p2.angle.InDegrees(), -90.0f,
0.0001f); // Ensure angle is normalized to 270 degrees (180 + 90)
}
// Edge Case 3: Testing with positive distance and angle = 180
TEST(PolarOfTest, TestPositiveDistance) {
PolarOf<float> p3(100.0f, AngleOf<float>::Degrees(180.0f));
EXPECT_EQ(p3.distance, 100.0f); // Ensure distance is correct
EXPECT_NEAR(p3.angle.InDegrees(), -180.0f,
0.0001f); // Ensure angle is correct
}
#endif

View File

@ -1,190 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include "Quaternion.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Quaternion, Normalize) {
bool r = false;
Quaternion q1 = Quaternion(0, 0, 0, 1);
Quaternion q = Quaternion::identity;
q = q1;
q.Normalize();
r = q == q1;
EXPECT_TRUE(r) << "q.Normalzed 0 0 0 1";
q = Quaternion::Normalize(q1);
r = q == q1;
EXPECT_TRUE(r) << "Quaternion::Normalize 0 0 0 1";
}
TEST(Quaternion, ToAngles) {
bool r = false;
Quaternion q1 = Quaternion(0, 0, 0, 1);
Vector3 v = Vector3::zero;
v = Quaternion::ToAngles(q1);
r = v == Vector3(0, 0, 0);
EXPECT_TRUE(r) << "Quaternion::ToAngles 0 0 0 1";
q1 = Quaternion(1, 0, 0, 0);
v = Quaternion::ToAngles(q1);
r = v == Vector3(180, 0, 0);
// EXPECT_TRUE(r) << "Quaternion::ToAngles 1 0 0 0";
// fails on MacOS?
}
TEST(Quaternion, Multiplication) {
bool r = false;
Quaternion q1 = Quaternion(0, 0, 0, 1);
Quaternion q2 = Quaternion(1, 0, 0, 0);
Quaternion q = Quaternion::identity;
q = q1 * q2;
r = q == Quaternion(1, 0, 0, 0);
EXPECT_TRUE(r) << "0 0 0 1 * 1 0 0 0";
}
TEST(Quaternion, MultiplicationVector) {
bool r = false;
Quaternion q1 = Quaternion(0, 0, 0, 1);
Vector3 v1 = Vector3(0, 1, 0);
Vector3 v = Vector3::zero;
v = q1 * v1;
r = v == Vector3(0, 1, 0);
EXPECT_TRUE(r) << "0 0 0 1 * Vector 0 1 0";
q1 = Quaternion(1, 0, 0, 0);
v = q1 * v1;
r = v == Vector3(0, -1, 0);
EXPECT_TRUE(r) << "1 0 0 0 * Vector 0 1 0";
}
TEST(Quaternion, Equality) {
bool r = false;
Quaternion q1 = Quaternion(0, 0, 0, 1);
Quaternion q2 = Quaternion(1, 0, 0, 0);
r = q1 == q2;
EXPECT_FALSE(r) << " 0 0 0 1 == 1 0 0 0";
q2 = Quaternion(0, 0, 0, 1);
r = q1 == q2;
EXPECT_TRUE(r) << "0 0 0 1 == 0 0 0 1";
}
TEST(Quaternion, Inverse) {
}
TEST(Quaternion, LookRotation) {
}
TEST(Quaternion, FromToRotation) {
}
TEST(Quaternion, RotateTowards) {
}
TEST(Quaternion, AngleAxis) {
}
TEST(Quaternion, Angle) {
}
TEST(Quaternion, Slerp) {
}
TEST(Quaternion, SlerpUnclamped) {
}
TEST(Quaternion, Euler) {
bool r = false;
Vector3 v1 = Vector3(0, 0, 0);
Quaternion q = Quaternion::identity;
q = Quaternion::Euler(v1);
r = q == Quaternion::identity;
EXPECT_TRUE(r) << "Euler Vector 0 0 0";
q = Quaternion::Euler(0, 0, 0);
r = q == Quaternion::identity;
EXPECT_TRUE(r) << "Euler 0 0 0";
v1 = Vector3(90, 90, -90);
q = Quaternion::Euler(v1);
r = q == Quaternion(0, 0.707106709F, -0.707106709F, 0);
EXPECT_TRUE(r) << "Euler Vector 90 90 -90";
q = Quaternion::Euler(90, 90, -90);
r = q == Quaternion(0, 0.707106709F, -0.707106709F, 0);
EXPECT_TRUE(r) << "Euler 90 90 -90";
}
TEST(Quaternion, GetAngleAround) {
bool r = false;
Vector3 v1 = Vector3(0, 1, 0);
Quaternion q1 = Quaternion(0, 0, 0, 1);
float f;
f = Quaternion::GetAngleAround(v1, q1);
EXPECT_FLOAT_EQ(f, 0) << "GetAngleAround 0 1 0 , 0 0 0 1";
q1 = Quaternion(0, 0.707106709F, -0.707106709F, 0);
f = Quaternion::GetAngleAround(v1, q1);
EXPECT_FLOAT_EQ(f, 180) << "GetAngleAround 0 1 0 , 0 0.7 -0.7 0";
v1 = Vector3(0, 0, 0);
f = Quaternion::GetAngleAround(v1, q1);
r = isnan(f);
EXPECT_TRUE(r) << "GetAngleAround 0 0 0 , 0 0.7 -0.7 0";
}
TEST(Quaternion, GetRotationAround) {
bool r = false;
Vector3 v1 = Vector3(0, 1, 0);
Quaternion q1 = Quaternion(0, 0, 0, 1);
Quaternion q = Quaternion::identity;
q = Quaternion::GetRotationAround(v1, q1);
r = q == Quaternion::identity;
EXPECT_TRUE(r) << "GetRotationAround 0 1 0 , 0 0 0 1";
q1 = Quaternion(0, 0.707106709F, -0.707106709F, 0);
q = Quaternion::GetRotationAround(v1, q1);
r = q == Quaternion(0, 1, 0, 0);
EXPECT_TRUE(r) << "GetRotationAround 0 1 0 , 0 0.7 -0.7 0";
v1 = Vector3(0, 0, 0);
q = Quaternion::GetRotationAround(v1, q1);
r = isnan(q.x) && isnan(q.y) && isnan(q.z) && isnan(q.w);
EXPECT_TRUE(r) << "GetRotationAround 0 0 0 , 0 0.7 -0.7 0";
}
TEST(Quaternion, GetSwingTwist) {
}
TEST(Quaternion, Dot) {
}
#endif

View File

@ -1,222 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <limits>
#include <math.h>
#include "Spherical.h"
#include "Vector3.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Spherical16, FromVector3) {
Vector3 v = Vector3(0, 0, 1);
Spherical16 s = Spherical16::FromVector3(v);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 0 0 1";
EXPECT_FLOAT_EQ((float)s.direction.horizontal.InDegrees(), 0.0F)
<< "s.hor 0 0 1";
EXPECT_FLOAT_EQ((float)s.direction.vertical.InDegrees(), 0.0F)
<< "s.vert 0 0 1";
v = Vector3(0, 1, 0);
s = Spherical16::FromVector3(v);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 0 1 0";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F) << "s.hor 0 1 0";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 90.0F) << "s.vert 0 1 0";
v = Vector3(1, 0, 0);
s = Spherical16::FromVector3(v);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 1 0 0";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 90.0F) << "s.hor 1 0 0";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert 1 0 0";
}
TEST(Spherical16, Vector3) {
Vector3 v = Vector3(1, 2, 3);
Spherical16 rd = Spherical16::FromVector3(v);
Vector3 rv = rd.ToVector3();
EXPECT_LT(Vector3::Distance(v, rv), 10e-4) << " 1 2 3 <-> spherical";
v = Vector3(1, 2, -3);
rd = Spherical16::FromVector3(v);
rv = rd.ToVector3();
EXPECT_LT(Vector3::Distance(v, rv), 10e-4) << " 1 2 3 <-> spherical";
}
// TEST(Spherical16, FromPolar) {
// Polar p = Polar(1, 0);
// Spherical16 s = Spherical16::FromPolar(p);
// EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 0)";
// EXPECT_FLOAT_EQ(s.horizontal.InDegrees(), 0.0F) << "s.hor Polar(1 0)";
// EXPECT_FLOAT_EQ(s.vertical.InDegrees(), 0.0F) << "s.vert Polar(1 0)";
// p = Polar(1, 45);
// s = Spherical16::FromPolar(p);
// EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 45)";
// EXPECT_FLOAT_EQ(s.horizontal.InDegrees(), 45.0F) << "s.hor Polar(1 45)";
// EXPECT_FLOAT_EQ(s.vertical.InDegrees(), 0.0F) << "s.vert Polar(1 45)";
// p = Polar(1, -45);
// s = Spherical16::FromPolar(p);
// EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 -45)";
// EXPECT_FLOAT_EQ(s.horizontal.InDegrees(), -45.0F) << "s.hor Polar(1 -45)";
// EXPECT_FLOAT_EQ(s.vertical.InDegrees(), 0.0F) << "s.vert Polar(1 -45)";
// p = Polar(0, 0);
// s = Spherical16::FromPolar(p);
// EXPECT_FLOAT_EQ(s.distance, 0.0F) << "s.distance Polar(0 0)";
// EXPECT_FLOAT_EQ(s.horizontal.InDegrees(), 0.0F) << "s.hor Polar(0 0)";
// EXPECT_FLOAT_EQ(s.vertical.InDegrees(), 0.0F) << "s.vert Polar(0 0)";
// p = Polar(-1, 0);
// s = Spherical16::FromPolar(p);
// EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(-1 0)";
// EXPECT_FLOAT_EQ(s.horizontal.InDegrees(), -180.0F) << "s.hor Polar(-1 0)";
// EXPECT_FLOAT_EQ(s.vertical.InDegrees(), 0.0F) << "s.vert Polar(-1 0)";
// }
TEST(Spherical16, Incident1) {
Vector3 v = Vector3(2.242557f, 1.027884f, -0.322347f);
Spherical16 s = Spherical16::FromVector3(v);
Spherical16 sr =
Spherical16(2.49F, Angle16::Degrees(98.18f), Angle16::Degrees(24.4F));
EXPECT_NEAR(s.distance, sr.distance, 1.0e-01);
EXPECT_NEAR(s.direction.horizontal.InDegrees(),
sr.direction.horizontal.InDegrees(), 1.0e-02);
EXPECT_NEAR(s.direction.vertical.InDegrees(),
sr.direction.vertical.InDegrees(), 1.0e-02);
Vector3 r =
Spherical16(sr.distance, sr.direction.horizontal, sr.direction.vertical)
.ToVector3();
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-02) << "toVector3.x 1 0 0";
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-02) << "toVector3.y 1 0 0";
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-02) << "toVector3.z 1 0 0";
}
TEST(Spherical16, Incident2) {
Vector3 v = Vector3(1.0f, 0.0f, 1.0f);
Spherical16 s = Spherical16::FromVector3(v);
Spherical16 sr = Spherical16(1.4142135623F, Angle16::Degrees(45.0f),
Angle16::Degrees(0.0F));
EXPECT_NEAR(s.distance, sr.distance, 1.0e-05);
EXPECT_NEAR(s.direction.horizontal.InDegrees(),
sr.direction.horizontal.InDegrees(), 1.0e-05);
EXPECT_NEAR(s.direction.vertical.InDegrees(),
sr.direction.vertical.InDegrees(), 1.0e-05);
Vector3 r =
Spherical16(sr.distance, sr.direction.horizontal, sr.direction.vertical)
.ToVector3();
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06);
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06);
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06);
v = Vector3(0.0f, 1.0f, 1.0f);
s = Spherical16::FromVector3(v);
sr = Spherical16(1.4142135623F, Angle16::Degrees(0), Angle16::Degrees(45));
EXPECT_NEAR(s.distance, sr.distance, 1.0e-05);
EXPECT_NEAR(s.direction.horizontal.InDegrees(),
sr.direction.horizontal.InDegrees(), 1.0e-05);
EXPECT_NEAR(s.direction.vertical.InDegrees(),
sr.direction.vertical.InDegrees(), 1.0e-05);
r = Spherical16(sr.distance, sr.direction.horizontal, sr.direction.vertical)
.ToVector3();
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06);
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06);
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06);
v = Vector3(1.0f, 1.0f, 1.0f);
s = Spherical16::FromVector3(v);
r = Spherical16(s.distance, s.direction.horizontal, s.direction.vertical)
.ToVector3();
EXPECT_NEAR(s.distance, 1.73205080F, 1.0e-02);
EXPECT_NEAR(s.direction.horizontal.InDegrees(), 45.0F, 1.0e-02);
EXPECT_NEAR(s.direction.vertical.InDegrees(), 35.26F, 1.0e-02);
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-04);
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-04);
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-04);
// s = Spherical16(10, 45, 45);
// r = s.ToVector3();
// EXPECT_NEAR(r.x, 5, 1.0e-06);
// EXPECT_NEAR(r.y, 7.07, 1.0e-06);
// EXPECT_NEAR(r.z, 5, 1.0e-06);
}
TEST(Spherical16, Addition) {
Spherical16 v1 = Spherical16(1, Angle16::Degrees(45), Angle16::Degrees(0));
Spherical16 v2 = Spherical16::zero;
Spherical16 r = Spherical16::zero;
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0 0)";
r = v1;
r += v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0 0)";
v2 = Spherical16(1, Angle16::Degrees(-45), Angle16::Degrees(0));
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, sqrtf(2)) << "Addition(1 -45 0)";
EXPECT_FLOAT_EQ(r.direction.horizontal.InDegrees(), 0) << "Addition(1 -45 0)";
EXPECT_FLOAT_EQ(r.direction.vertical.InDegrees(), 0) << "Addition(1 -45 0)";
v2 = Spherical16(1, Angle16::Degrees(0), Angle16::Degrees(90));
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, sqrtf(2)) << "Addition(1 0 90)";
EXPECT_FLOAT_EQ(r.direction.horizontal.InDegrees(), 45) << "Addition(1 0 90)";
EXPECT_FLOAT_EQ(r.direction.vertical.InDegrees(), 45) << "Addition(1 0 90)";
}
TEST(Spherical16, AdditionPerformance) {
const int numIterations = 1000000; // Number of additions to test
std::vector<Spherical16> sphericalObjects;
// Populate the vector with random SphericalOf objects
for (int i = 0; i < numIterations; ++i) {
float distance = (float)(rand() % 100);
float horizontal = (float)(rand() % 180);
float vertical = (float)(rand() % 360);
Spherical16 s = Spherical16::Deg(distance, horizontal, vertical);
sphericalObjects.push_back(s);
}
// Measure the time to perform multiple additions
auto start = std::chrono::high_resolution_clock::now();
Spherical16 result = Spherical16::zero; // Start with a
// zero-initialized object
for (int i = 0; i < numIterations - 1; ++i) {
result = result + sphericalObjects[i]; // Add objects
// together
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> duration = end - start;
std::cout << "Time to perform " << numIterations - 1
<< " additions: " << duration.count() << " seconds." << std::endl;
// Assert that the time taken is less than
// 1 second (or any other performance
// requirement)
ASSERT_LE(duration.count(), 2.0) << "Performance test failed: "
"Additions took longer than 1 "
"second.";
}
#endif

View File

@ -1,213 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <limits>
#include <math.h>
#include "Spherical.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(SphericalSingle, FromVector3) {
Vector3 v = Vector3(0, 0, 1);
SphericalSingle s = SphericalSingle ::FromVector3(v);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 0 0 1";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F) << "s.hor 0 0 1";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert 0 0 1";
v = Vector3(0, 1, 0);
s = SphericalSingle ::FromVector3(v);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 0 1 0";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F) << "s.hor 0 1 0";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 90.0F) << "s.vert 0 1 0";
v = Vector3(1, 0, 0);
s = SphericalSingle ::FromVector3(v);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance 1 0 0";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 90.0F) << "s.hor 1 0 0";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F) << "s.vert 1 0 0";
}
TEST(SphericalSingle, FromPolar) {
PolarSingle p = PolarSingle(1, AngleSingle::Degrees(0));
SphericalSingle s = SphericalSingle ::FromPolar(p);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 0)";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F)
<< "s.hor Polar(1 0)";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F)
<< "s.vert Polar(1 0)";
p = PolarSingle(1, AngleSingle::Degrees(45));
s = SphericalSingle ::FromPolar(p);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 45)";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 45.0F)
<< "s.hor Polar(1 45)";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F)
<< "s.vert Polar(1 45)";
p = PolarSingle(1, AngleSingle::Degrees(-45));
s = SphericalSingle ::FromPolar(p);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(1 -45)";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), -45.0F)
<< "s.hor Polar(1 -45)";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F)
<< "s.vert Polar(1 -45)";
p = PolarSingle(0, AngleSingle::Degrees(0));
s = SphericalSingle ::FromPolar(p);
EXPECT_FLOAT_EQ(s.distance, 0.0F) << "s.distance Polar(0 0)";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), 0.0F)
<< "s.hor Polar(0 0)";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F)
<< "s.vert Polar(0 0)";
p = PolarSingle(-1, AngleSingle::Degrees(0));
s = SphericalSingle ::FromPolar(p);
EXPECT_FLOAT_EQ(s.distance, 1.0F) << "s.distance Polar(-1 0)";
EXPECT_FLOAT_EQ(s.direction.horizontal.InDegrees(), -180.0F)
<< "s.hor Polar(-1 0)";
EXPECT_FLOAT_EQ(s.direction.vertical.InDegrees(), 0.0F)
<< "s.vert Polar(-1 0)";
}
TEST(SphericalSingle, Incident1) {
Vector3 v = Vector3(2.242557f, 1.027884f, -0.322347f);
SphericalSingle s = SphericalSingle ::FromVector3(v);
SphericalSingle sr = SphericalSingle(2.49F, AngleSingle::Degrees(98.18f),
AngleSingle::Degrees(24.4F));
EXPECT_NEAR(s.distance, sr.distance, 1.0e-01);
EXPECT_NEAR(s.direction.horizontal.InDegrees(),
sr.direction.horizontal.InDegrees(), 1.0e-02);
EXPECT_NEAR(s.direction.vertical.InDegrees(),
sr.direction.vertical.InDegrees(), 1.0e-02);
Vector3 r = Vector3(sr);
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-02) << "toVector3.x 1 0 0";
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-02) << "toVector3.y 1 0 0";
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-02) << "toVector3.z 1 0 0";
}
TEST(SphericalSingle, Incident2) {
Vector3 v = Vector3(1.0f, 0.0f, 1.0f);
SphericalSingle s = SphericalSingle ::FromVector3(v);
SphericalSingle sr = SphericalSingle(
1.4142135623F, AngleSingle::Degrees(45.0f), AngleSingle::Degrees(0.0F));
EXPECT_NEAR(s.distance, sr.distance, 1.0e-05);
EXPECT_NEAR(s.direction.horizontal.InDegrees(),
sr.direction.horizontal.InDegrees(), 1.0e-05);
EXPECT_NEAR(s.direction.vertical.InDegrees(),
sr.direction.vertical.InDegrees(), 1.0e-05);
Vector3 r = Vector3(sr);
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06);
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06);
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06);
v = Vector3(0.0f, 1.0f, 1.0f);
s = SphericalSingle ::FromVector3(v);
sr = SphericalSingle(1.4142135623F, AngleSingle::Degrees(0.0f),
AngleSingle::Degrees(45.0F));
EXPECT_NEAR(s.distance, sr.distance, 1.0e-05);
EXPECT_NEAR(s.direction.horizontal.InDegrees(),
sr.direction.horizontal.InDegrees(), 1.0e-05);
EXPECT_NEAR(s.direction.vertical.InDegrees(),
sr.direction.vertical.InDegrees(), 1.0e-05);
r = Vector3(sr);
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06);
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06);
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06);
v = Vector3(1.0f, 1.0f, 1.0f);
s = SphericalSingle ::FromVector3(v);
r = Vector3(s);
EXPECT_NEAR(s.distance, 1.73205080F, 1.0e-02);
EXPECT_NEAR(s.direction.horizontal.InDegrees(), 45.0F, 1.0e-02);
EXPECT_NEAR(s.direction.vertical.InDegrees(), 35.26F, 1.0e-02);
EXPECT_NEAR(r.Right(), v.Right(), 1.0e-06);
EXPECT_NEAR(r.Up(), v.Up(), 1.0e-06);
EXPECT_NEAR(r.Forward(), v.Forward(), 1.0e-06);
// s = SphericalSingle(10, 45, 45);
// r = s.ToVector3();
// EXPECT_NEAR(r.x, 5, 1.0e-06);
// EXPECT_NEAR(r.y, 7.07, 1.0e-06);
// EXPECT_NEAR(r.z, 5, 1.0e-06);
}
TEST(SphericalSingle, Addition) {
SphericalSingle v1 =
SphericalSingle(1, AngleSingle::Degrees(45), AngleSingle::Degrees(0));
SphericalSingle v2 = SphericalSingle ::zero;
SphericalSingle r = SphericalSingle ::zero;
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0 0)";
r = v1;
r += v2;
EXPECT_FLOAT_EQ(r.distance, v1.distance) << "Addition(0 0 0)";
v2 = SphericalSingle(1, AngleSingle::Degrees(-45), AngleSingle::Degrees(0));
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, sqrtf(2)) << "Addition(1 -45 0)";
EXPECT_FLOAT_EQ(r.direction.horizontal.InDegrees(), 0) << "Addition(1 -45 0)";
EXPECT_FLOAT_EQ(r.direction.vertical.InDegrees(), 0) << "Addition(1 -45 0)";
v2 = SphericalSingle(1, AngleSingle::Degrees(0), AngleSingle::Degrees(90));
r = v1 + v2;
EXPECT_FLOAT_EQ(r.distance, sqrtf(2)) << "Addition(1 0 90)";
EXPECT_FLOAT_EQ(r.direction.horizontal.InDegrees(), 45) << "Addition(1 0 90)";
EXPECT_FLOAT_EQ(r.direction.vertical.InDegrees(), 45) << "Addition(1 0 90)";
}
TEST(SphericalSingle, AdditionPerformance) {
const int numIterations = 1000000; // Number of additions to test
std::vector<SphericalSingle> sphericalObjects;
// Populate the vector with random SphericalOf objects
for (int i = 0; i < numIterations; ++i) {
float distance = (float)(rand() % 100);
float horizontal = (float)(rand() % 180);
float vertical = (float)(rand() % 360);
SphericalSingle s = SphericalSingle::Deg(distance, horizontal, vertical);
sphericalObjects.push_back(s);
}
// Measure the time to perform multiple additions
auto start = std::chrono::high_resolution_clock::now();
SphericalSingle result = SphericalSingle::zero; // Start with a
// zero-initialized object
for (int i = 0; i < numIterations - 1; ++i) {
result = result + sphericalObjects[i]; // Add objects
// together
}
auto end = std::chrono::high_resolution_clock::now();
std::chrono::duration<double> duration = end - start;
std::cout << "Time to perform " << numIterations - 1
<< " additions: " << duration.count() << " seconds." << std::endl;
// Assert that the time taken is less than
// 1 second (or any other performance
// requirement)
ASSERT_LE(duration.count(), 1.0) << "Performance test failed: "
"Additions took longer than 1 "
"second.";
}
#endif

View File

@ -1,131 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <math.h>
#include <limits>
#include "SwingTwist.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(SwingTwistSingle, Quaternion) {
Quaternion q;
SwingTwistSingle s;
Quaternion rq;
q = Quaternion::identity;
s = SwingTwistSingle::FromQuaternion(q);
rq = s.ToQuaternion();
EXPECT_EQ(q, rq) << " 0 0 0 1 <-> SwingTwist";
q = Quaternion::Euler(90, 0, 0);
s = SwingTwistSingle::FromQuaternion(q);
rq = s.ToQuaternion();
EXPECT_LT(Quaternion::Angle(q, rq), 10e-2) << " Euler 90 0 0 <-> SwingTwist";
q = Quaternion::Euler(0, 90, 0);
s = SwingTwistSingle::FromQuaternion(q);
rq = s.ToQuaternion();
EXPECT_LT(Quaternion::Angle(q, rq), 10e-2) << " Euler 0 90 0 <-> SwingTwist";
q = Quaternion::Euler(0, 0, 90);
s = SwingTwistSingle::FromQuaternion(q);
rq = s.ToQuaternion();
EXPECT_EQ(q, rq) << " Euler 0 0 90 <-> SwingTwist";
q = Quaternion::Euler(0, 180, 0); // ==> spherical S(180 0)T0
s = SwingTwistSingle::FromQuaternion(q);
rq = s.ToQuaternion();
EXPECT_LT(Quaternion::Angle(q, rq), 10e-2) << " Euler 0 90 0 <-> SwingTwist";
q = Quaternion::Euler(0, 135, 0); // ==> spherical S(180 45)T0
s = SwingTwistSingle::FromQuaternion(q);
rq = s.ToQuaternion();
EXPECT_LT(Quaternion::Angle(q, rq), 10e-2) << " Euler 0 90 0 <-> SwingTwist";
}
TEST(SwingTwistSingle, AngleAxis) {
SwingTwistSingle s;
SwingTwistSingle r;
s = SwingTwistSingle::AngleAxis(0, DirectionSingle::up);
EXPECT_EQ(s, SwingTwistSingle::Degrees(0, 0, 0)) << "0 up";
r = SwingTwistSingle::AngleAxis(90, DirectionSingle::up);
s = SwingTwistSingle::Degrees(90, 0, 0);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "90 up";
r = SwingTwistSingle::AngleAxis(180, DirectionSingle::up);
s = SwingTwistSingle::Degrees(180, 0, 0);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "180 up";
r = SwingTwistSingle::AngleAxis(270, DirectionSingle::up);
s = SwingTwistSingle::Degrees(-90, 0, 0);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "270 up";
r = SwingTwistSingle::AngleAxis(90, DirectionSingle::right);
s = SwingTwistSingle::Degrees(0, 90, 0);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "90 right";
r = SwingTwistSingle::AngleAxis(180, DirectionSingle::right);
s = SwingTwistSingle::Degrees(0, 180, 0);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "180 right";
r = SwingTwistSingle::AngleAxis(270, DirectionSingle::right);
s = SwingTwistSingle::Degrees(0, -90, 0);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "270 right";
r = SwingTwistSingle::AngleAxis(90, DirectionSingle::forward);
s = SwingTwistSingle::Degrees(0, 0, 90);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "90 up";
r = SwingTwistSingle::AngleAxis(180, DirectionSingle::forward);
s = SwingTwistSingle::Degrees(0, 0, 180);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "180 up";
r = SwingTwistSingle::AngleAxis(270, DirectionSingle::forward);
s = SwingTwistSingle::Degrees(0, 0, -90);
EXPECT_LT(SwingTwistSingle::Angle(r, s), AngleSingle::Degrees(10e-2f))
<< "270 up";
auto r16 = SwingTwist16::AngleAxis(13, Direction16::down);
auto s16 = SwingTwist16::Degrees(-13, 0, 0);
EXPECT_LT(SwingTwist16::Angle(r16, s16), Angle16::Degrees(10e-2f))
<< "270 up";
}
TEST(SwingTwistSingle, Normalize) {
SwingTwistSingle s;
s = SwingTwistSingle::Degrees(0, 0, 0);
EXPECT_EQ(s, SwingTwistSingle::Degrees(0, 0, 0)) << "0 0 0 Normalized";
s = SwingTwistSingle::Degrees(0, 180, 0);
EXPECT_EQ(s, SwingTwistSingle::Degrees(180, 0, 180)) << "0 180 0 Normalized";
s = SwingTwistSingle::Degrees(0, 180, 180);
EXPECT_EQ(s, SwingTwistSingle::Degrees(180, 0, 0)) << "0 180 180 Normalized";
s = SwingTwistSingle::Degrees(270, 90, 0);
EXPECT_EQ(s, SwingTwistSingle::Degrees(-90, 90, 0)) << "270 90 0 Normalized";
s = SwingTwistSingle::Degrees(270, 270, 0);
EXPECT_EQ(s, SwingTwistSingle::Degrees(-90, -90, 0))
<< "270 270 0 Normalized";
s = SwingTwistSingle::Degrees(270, 225, 0);
EXPECT_EQ(s, SwingTwistSingle::Degrees(90, -45, -180))
<< "270 225 0 Normalized";
s = SwingTwistSingle::Degrees(270, 0, 225);
EXPECT_EQ(s, SwingTwistSingle::Degrees(-90, 0, -135))
<< "270 0 225 Normalized";
}
#endif

View File

@ -1,499 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <limits>
#include <math.h>
#include "Vector2.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Vector2, FromPolar) {
Vector2 v;
PolarSingle p;
Vector2 r;
v = Vector2(0, 1);
p = PolarSingle::FromVector2(v);
r = Vector2(p);
EXPECT_FLOAT_EQ(r.x, 0.0F) << "FromPolar(0 1)";
EXPECT_FLOAT_EQ(r.y, 1.0F) << "FromPolar(0 1)";
v = Vector2(1, 0);
p = PolarSingle::FromVector2(v);
r = Vector2(p);
EXPECT_FLOAT_EQ(r.x, 1.0F) << "FromPolar(1 0)";
EXPECT_NEAR(r.y, 0.0F, 1.0e-07) << "FromPolar(1 0)";
v = Vector2(0, 0);
p = PolarSingle::FromVector2(v);
r = Vector2(p);
EXPECT_FLOAT_EQ(r.x, 0.0F) << "FromPolar(0 0)";
EXPECT_FLOAT_EQ(r.y, 0.0F) << "FromPolar(0 0)";
}
TEST(Vector2, Magnitude) {
Vector2 v = Vector2(1, 2);
float m = 0;
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude 1 2";
m = Vector2::Magnitude(v);
EXPECT_FLOAT_EQ(m, 2.236068F) << "Vector2::Magnitude 1 2";
v = Vector2(-1, -2);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 2.236068F) << "v.magnitude -1 -2";
v = Vector2(0, 0);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.magnitude 0 0 ";
if (std::numeric_limits<float>::is_iec559) {
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude INFINITY INFINITY ";
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.magnitude -INFINITY -INFINITY ";
}
}
TEST(Vector2, SqrMagnitude) {
Vector2 v = Vector2(1, 2);
float m = 0;
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 5) << "v.sqrMagnitude 1 2";
m = Vector2::SqrMagnitude(v);
EXPECT_FLOAT_EQ(m, 5) << "Vector2::SqrMagnitude 1 2";
v = Vector2(-1, -2);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 5) << "v.sqrMagnitude -1 -2";
v = Vector2(0, 0);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.sqrMagnitude 0 0 ";
if (std::numeric_limits<float>::is_iec559) {
v = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.sqrMagnitude INFINITY INFINITY ";
v = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY) << "v.sqrMagnitude -INFINITY -INFINITY ";
}
}
TEST(Vector2, Normalize) {
bool r = false;
Vector2 v1 = Vector2(0, 2);
Vector2 v = Vector2::zero;
v = v1.normalized();
EXPECT_TRUE(v == Vector2(0, 1)) << "v.normalized 0 2";
v = Vector2::Normalize(v1);
EXPECT_TRUE(v == Vector2(0, 1)) << "Vector3::Normalize 0 2";
v1 = Vector2(0, -2);
v = v1.normalized();
EXPECT_TRUE(v == Vector2(0, -1)) << "v.normalized 0 -2";
v1 = Vector2(0, 0);
v = v1.normalized();
EXPECT_TRUE(v == Vector2(0, 0)) << "v.normalized 0 0";
if (std::numeric_limits<float>::is_iec559) {
v1 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = v1.normalized();
r = isnan(v.x) && isnan(v.y);
EXPECT_TRUE(r) << "v.normalized INFINITY INFINITY";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1.normalized();
r = isnan(v.x) && isnan(v.y);
EXPECT_TRUE(r) << "v.normalized -INFINITY -INFINITY";
}
}
TEST(Vector2, Negate) {
Vector2 v1 = Vector2(4, 5);
Vector2 v = Vector2::zero;
v = -v1;
EXPECT_TRUE(v == Vector2(-4, -5)) << "- 4 5";
v1 = Vector2(-4, -5);
v = -v1;
EXPECT_TRUE(v == Vector2(4, 5)) << "- -4 -5";
v1 = Vector2(0, 0);
v = -v1;
EXPECT_TRUE(v == Vector2(0, 0)) << "- 0 0";
if (std::numeric_limits<float>::is_iec559) {
v1 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = -v1;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY))
<< "- INFINITY INFINITY";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = -v1;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY))
<< "- -INFINITY -INFINITY";
}
}
TEST(Vector2, Subtract) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
Vector2 v = Vector2::zero;
v = v1 - v2;
EXPECT_TRUE(v == Vector2(3, 3)) << "4 5 - 1 2";
v2 = Vector2(-1, -2);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(5, 7)) << "4 5 - -1 -2";
v2 = Vector2(4, 5);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 - 4 5";
v = v1;
v -= v2;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 - 4 5";
v2 = Vector2(0, 0);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(4, 5)) << "4 5 - 0 0";
v -= v2;
EXPECT_TRUE(v == Vector2(4, 5)) << "4 5 - 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 - INFINITY INFINITY";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1 - v2;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 - -INFINITY -INFINITY";
}
}
TEST(Vector2, Addition) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
Vector2 v = Vector2::zero;
v = v1 + v2;
EXPECT_TRUE(v == Vector2(5, 7)) << "4 5 + 1 2";
v2 = Vector2(-1, -2);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(3, 3)) << "4 5 + -1 -2";
v = v1;
v += v2;
EXPECT_TRUE(v == Vector2(3, 3)) << "4 5 + -1 -2";
v2 = Vector2(0, 0);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(4, 5)) << "4 5 + 0 0";
v += v2;
EXPECT_TRUE(v == Vector2(4, 5)) << "4 5 + 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 + INFINITY INFINITY";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1 + v2;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 + -INFINITY -INFINITY";
}
}
TEST(Vector2, Scale) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
Vector2 v = Vector2::zero;
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(4, 10)) << "Scale 4 5 , 1 2";
v2 = Vector2(-1, -2);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(-4, -10)) << "Scale 4 5 , -1 -2";
v2 = Vector2(0, 0);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(0, 0)) << "Scale 4 5 , 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 + INFINITY INFINITY";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
v = Vector2::Scale(v1, v2);
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 + -INFINITY -INFINITY";
}
}
TEST(Vector2, Multiply) {
Vector2 v1 = Vector2(4, 5);
float f = 3;
Vector2 v = Vector2::zero;
v = v1 * f;
EXPECT_TRUE(v == Vector2(12, 15)) << "4 5 * 3";
f = -3;
v = v1 * f;
EXPECT_TRUE(v == Vector2(-12, -15)) << "4 5 * -3";
f = 0;
v = v1 * f;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 * 0";
if (std::numeric_limits<float>::is_iec559) {
f = FLOAT_INFINITY;
v = v1 * f;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 * INFINITY";
f = -FLOAT_INFINITY;
v = v1 * f;
EXPECT_TRUE(v == Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 * -INFINITY";
}
}
TEST(Vector2, Divide) {
Vector2 v1 = Vector2(4, 5);
float f = 2;
Vector2 v = Vector2::zero;
v = v1 / f;
EXPECT_TRUE(v == Vector2(2, 2.5F)) << "4 5 / 3";
f = -2;
v = v1 / f;
EXPECT_TRUE(v == Vector2(-2, -2.5F)) << "4 5 / -3";
if (std::numeric_limits<float>::is_iec559) {
f = 0;
v = v1 / f;
EXPECT_TRUE(v == Vector2(FLOAT_INFINITY, FLOAT_INFINITY)) << "4 5 / 0";
f = FLOAT_INFINITY;
v = v1 / f;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 / INFINITY";
f = -FLOAT_INFINITY;
v = v1 / f;
EXPECT_TRUE(v == Vector2(0, 0)) << "4 5 / -INFINITY";
}
}
TEST(Vector2, Dot) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 14) << "Dot(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -14) << "Dot(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "Dot(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Dot(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -FLOAT_INFINITY) << "Dot(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, Equality) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
bool r = false;
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == 1 2";
v2 = Vector2(4, 5);
r = v1 == v2;
EXPECT_TRUE(r) << "4 5 == 1 2";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 == INFINITY INFINITY";
v1 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "-INFINITY -INFINITY == INFINITY INFINITY";
}
}
TEST(Vector2, Distance) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 4.24264F) << "Distance(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 8.602325F) << "Distance(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 6.403124F) << "Distance(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Distance(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY) << "Distance(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, Angle) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
bool r = false;
f = Vector2::Angle(v1, v2);
EXPECT_FLOAT_EQ(f, 12.09476F) << "Angle(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::Angle(v1, v2);
EXPECT_FLOAT_EQ(f, 167.9052F) << "Angle(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::Angle(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "Angle(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::Angle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "Angle(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::Angle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "Angle(4 5, -INFINITY -INFINITY)";
}
}
TEST(Vector2, SignedAngle) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
float f = 0;
bool r = false;
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, -12.09476F) << "SignedAngle(4 5, 1 2)";
v2 = Vector2(-1, -2);
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, 167.9052F) << "SignedAngle(4 5, -1 -2)";
v2 = Vector2(0, 0);
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "SignedAngle(4 5, 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector2(FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector2::SignedAngle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "SignedAngle(4 5, INFINITY INFINITY)";
v2 = Vector2(-FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector2::SignedAngle(v1, v2);
r = isnan(f);
EXPECT_TRUE(r) << "SignedAngle(4 5, -INFINITY -INFINITY)";
}
v1 = Vector2(0, 1);
v2 = Vector2(1, 0);
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, 90.0F) << "SignedAngle(0 1, 1 0)";
v1 = Vector2(0, 1);
v2 = Vector2(0, -1);
f = Vector2::SignedAngle(v1, v2);
EXPECT_FLOAT_EQ(f, 180.0F) << "SignedAngle(0 1, 1 0)";
}
TEST(Vector2, Rotate) {
Vector2 v1 = Vector2(1, 2);
Vector2 r = Vector2(0, 0);
r = Vector2::Rotate(v1, AngleSingle::Degrees(0));
EXPECT_FLOAT_EQ(Vector2::Distance(r, v1), 0);
r = Vector2::Rotate(v1, AngleSingle::Degrees(180));
EXPECT_NEAR(Vector2::Distance(r, Vector2(-1, -2)), 0, 1.0e-06);
r = Vector2::Rotate(v1, AngleSingle::Degrees(-90));
EXPECT_NEAR(Vector2::Distance(r, Vector2(2, -1)), 0, 1.0e-06);
r = Vector2::Rotate(v1, AngleSingle::Degrees(270));
EXPECT_NEAR(Vector2::Distance(r, Vector2(2, -1)), 0, 1.0e-06);
}
TEST(Vector2, Lerp) {
Vector2 v1 = Vector2(4, 5);
Vector2 v2 = Vector2(1, 2);
Vector2 r = Vector2(0, 0);
r = Vector2::Lerp(v1, v2, 0);
EXPECT_FLOAT_EQ(Vector2::Distance(r, v1), 0);
r = Vector2::Lerp(v1, v2, 1);
EXPECT_FLOAT_EQ(Vector2::Distance(r, v2), 0);
r = Vector2::Lerp(v1, v2, 0.5f);
EXPECT_FLOAT_EQ(Vector2::Distance(r, Vector2(2.5f, 3.5f)), 0);
r = Vector2::Lerp(v1, v2, -1);
EXPECT_FLOAT_EQ(Vector2::Distance(r, Vector2(7.0f, 8.0f)), 0);
r = Vector2::Lerp(v1, v2, 2);
EXPECT_FLOAT_EQ(Vector2::Distance(r, Vector2(-2.0, -1.0f)), 0);
}
#endif

View File

@ -1,583 +0,0 @@
#if GTEST
#include <gtest/gtest.h>
#include <limits>
#include <math.h>
#include "Vector3.h"
#define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Vector3, FromSpherical) {
Vector3 v = Vector3(0, 0, 1);
SphericalOf<float> s = SphericalOf<float>::FromVector3(v);
Vector3 r = Vector3(s);
EXPECT_FLOAT_EQ(r.Right(), 0.0F) << "toVector3.x 0 0 1";
EXPECT_NEAR(r.Up(), 0.0F, 1.0e-06) << "toVector3.y 0 0 1";
EXPECT_FLOAT_EQ(r.Forward(), 1.0F) << "toVector3.z 0 0 1";
v = Vector3(0, 1, 0);
s = SphericalOf<float>::FromVector3(v);
r = Vector3(s);
EXPECT_FLOAT_EQ(r.Right(), 0.0F) << "toVector3.x 0 1 0";
EXPECT_FLOAT_EQ(r.Up(), 1.0F) << "toVector3.y 0 1 0";
EXPECT_NEAR(r.Forward(), 0.0F, 1.0e-06) << "toVector3.z 0 1 0";
v = Vector3(1, 0, 0);
s = SphericalOf<float>::FromVector3(v);
r = Vector3(s);
EXPECT_FLOAT_EQ(r.Right(), 1.0F) << "toVector3.x 1 0 0";
EXPECT_NEAR(r.Up(), 0.0F, 1.0e-06) << "toVector3.y 1 0 0";
EXPECT_NEAR(r.Forward(), 0.0F, 1.0e-06) << "toVector3.z 1 0 0";
}
TEST(Vector3, Magnitude) {
Vector3 v = Vector3(1, 2, 3);
float m = 0;
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 3.741657F) << "v.magnitude 1 2 3";
m = Vector3::Magnitude(v);
EXPECT_FLOAT_EQ(m, 3.741657F) << "Vector3::Magnitude 1 2 3";
v = Vector3(-1, -2, -3);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 3.741657F) << "v.magnitude -1 -2 -3";
v = Vector3(0, 0, 0);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.magnitude 0 0 0 ";
if (std::numeric_limits<float>::is_iec559) {
v = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY)
<< "v.magnitude INFINITY INFINITY INFINITY ";
v = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.magnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY)
<< "v.magnitude -INFINITY -INFINITY -INFINITY ";
}
}
TEST(Vector3, SqrMagnitude) {
Vector3 v = Vector3(1, 2, 3);
float m = 0;
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 14) << "v.sqrMagnitude 1 2 3";
m = Vector3::SqrMagnitude(v);
EXPECT_FLOAT_EQ(m, 14) << "Vector3::SqrMagnitude 1 2 3";
v = Vector3(-1, -2, -3);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 14) << "v.sqrMagnitude -1 -2 -3";
v = Vector3(0, 0, 0);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, 0) << "v.sqrMagnitude 0 0 0 ";
if (std::numeric_limits<float>::is_iec559) {
v = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY)
<< "v.sqrMagnitude INFINITY INFINITY INFINITY ";
v = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
m = v.sqrMagnitude();
EXPECT_FLOAT_EQ(m, FLOAT_INFINITY)
<< "v.sqrMagnitude -INFINITY -INFINITY -INFINITY ";
}
}
TEST(Vector3, Normalize) {
bool r = false;
Vector3 v1 = Vector3(0, 2, 0);
Vector3 v = Vector3::zero;
v = v1.normalized();
EXPECT_TRUE(v == Vector3(0, 1, 0)) << "v.normalized 0 2 0";
v = Vector3::Normalize(v1);
EXPECT_TRUE(v == Vector3(0, 1, 0)) << "Vector3::Normalize 0 2 0";
v1 = Vector3(0, -2, 0);
v = v1.normalized();
EXPECT_TRUE(v == Vector3(0, -1, 0)) << "v.normalized 0 -2 0";
v1 = Vector3(0, 0, 0);
v = v1.normalized();
EXPECT_TRUE(v == Vector3(0, 0, 0)) << "v.normalized 0 0 0";
if (std::numeric_limits<float>::is_iec559) {
v1 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = v1.normalized();
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "v.normalized INFINITY INFINITY INFINITY";
v1 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1.normalized();
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "v.normalized -INFINITY -INFINITY -INFINITY";
}
}
TEST(Vector3, Negate) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v = Vector3::zero;
v = -v1;
EXPECT_TRUE(v == Vector3(-4, -5, -6)) << "- 4 5 6";
v1 = Vector3(-4, -5, -6);
v = -v1;
EXPECT_TRUE(v == Vector3(4, 5, 6)) << "- -4 -5 -6";
v1 = Vector3(0, 0, 0);
v = -v1;
EXPECT_TRUE(v == Vector3(0, 0, 0)) << "- 0 0 0";
if (std::numeric_limits<float>::is_iec559) {
v1 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = -v1;
EXPECT_TRUE(v == Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY))
<< "- INFINITY INFINITY INFINITY";
v1 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = -v1;
EXPECT_TRUE(v == Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY))
<< "- -INFINITY -INFINITY -INFINITY";
}
}
TEST(Vector3, Subtract) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 v = Vector3::zero;
v = v1 - v2;
EXPECT_TRUE(v == Vector3(3, 3, 3)) << "4 5 6 - 1 2 3";
v2 = Vector3(-1, -2, -3);
v = v1 - v2;
EXPECT_TRUE(v == Vector3(5, 7, 9)) << "4 5 6 - -1 -2 -3";
v2 = Vector3(4, 5, 6);
v = v1 - v2;
EXPECT_TRUE(v == Vector3(0, 0, 0)) << "4 5 6 - 4 5 6";
v2 = Vector3(0, 0, 0);
v = v1 - v2;
EXPECT_TRUE(v == Vector3(4, 5, 6)) << "4 5 6 - 0 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = v1 - v2;
EXPECT_TRUE(v == Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 6 - INFINITY INFINITY INFINITY";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1 - v2;
EXPECT_TRUE(v == Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 6 - -INFINITY -INFINITY -INFINITY";
}
}
TEST(Vector3, Addition) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 v = Vector3::zero;
v = v1 + v2;
EXPECT_TRUE(v == Vector3(5, 7, 9)) << "4 5 6 + 1 2 3";
v2 = Vector3(-1, -2, -3);
v = v1 + v2;
EXPECT_TRUE(v == Vector3(3, 3, 3)) << "4 5 6 + -1 -2 -3";
v2 = Vector3(0, 0, 0);
v = v1 + v2;
EXPECT_TRUE(v == Vector3(4, 5, 6)) << "4 5 6 + 0 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = v1 + v2;
EXPECT_TRUE(v == Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 6 + INFINITY INFINITY INFINITY";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = v1 + v2;
EXPECT_TRUE(v == Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 6 + -INFINITY -INFINITY -INFINITY";
}
}
TEST(Vector3, Scale) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 v = Vector3::zero;
v = Vector3::Scale(v1, v2);
EXPECT_TRUE(v == Vector3(4, 10, 18)) << "Scale 4 5 6 , 1 2 3";
v2 = Vector3(-1, -2, -3);
v = Vector3::Scale(v1, v2);
EXPECT_TRUE(v == Vector3(-4, -10, -18)) << "Scale 4 5 6 , -1 -2 -3";
v2 = Vector3(0, 0, 0);
v = Vector3::Scale(v1, v2);
EXPECT_TRUE(v == Vector3(0, 0, 0)) << "Scale 4 5 6 , 0 0 0";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = Vector3::Scale(v1, v2);
EXPECT_TRUE(v == Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 6 + INFINITY INFINITY INFINITY";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = Vector3::Scale(v1, v2);
EXPECT_TRUE(v == Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 6 + -INFINITY -INFINITY -INFINITY";
}
}
TEST(Vector3, Multiply) {
Vector3 v1 = Vector3(4, 5, 6);
float f = 3;
Vector3 v = Vector3::zero;
v = v1 * f;
EXPECT_TRUE(v == Vector3(12, 15, 18)) << "4 5 6 * 3";
f = -3;
v = v1 * f;
EXPECT_TRUE(v == Vector3(-12, -15, -18)) << "4 5 6 * -3";
f = 0;
v = v1 * f;
EXPECT_TRUE(v == Vector3(0, 0, 0)) << "4 5 6 * 0";
if (std::numeric_limits<float>::is_iec559) {
f = FLOAT_INFINITY;
v = v1 * f;
EXPECT_TRUE(v == Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 6 * INFINITY";
f = -FLOAT_INFINITY;
v = v1 * f;
EXPECT_TRUE(v == Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY))
<< "4 5 6 * -INFINITY";
}
}
TEST(Vector3, Divide) {
Vector3 v1 = Vector3(4, 5, 6);
float f = 2;
Vector3 v = Vector3::zero;
v = v1 / f;
EXPECT_TRUE(v == Vector3(2, 2.5F, 3)) << "4 5 6 / 3";
f = -2;
v = v1 / f;
EXPECT_TRUE(v == Vector3(-2, -2.5F, -3)) << "4 5 6 / -3";
if (std::numeric_limits<float>::is_iec559) {
f = 0;
v = v1 / f;
EXPECT_TRUE(v == Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY))
<< "4 5 6 / 0";
f = FLOAT_INFINITY;
v = v1 / f;
EXPECT_TRUE(v == Vector3(0, 0, 0)) << "4 5 6 / INFINITY";
f = -FLOAT_INFINITY;
v = v1 / f;
EXPECT_TRUE(v == Vector3(0, 0, 0)) << "4 5 6 / -INFINITY";
}
}
TEST(Vector3, Dot) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
float f = 0;
f = Vector3::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 32) << "Dot(4 5 6, 1 2 3)";
v2 = Vector3(-1, -2, -3);
f = Vector3::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -32) << "Dot(4 5 6, -1 -2 -3)";
v2 = Vector3(0, 0, 0);
f = Vector3::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, 0) << "Dot(4 5 6, 0 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector3::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY)
<< "Dot(4 5 6, INFINITY INFINITY INFINITY)";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector3::Dot(v1, v2);
EXPECT_FLOAT_EQ(f, -FLOAT_INFINITY)
<< "Dot(4 5 6, -INFINITY -INFINITY -INFINITY)";
}
}
TEST(Vector3, Equality) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
bool r = false;
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 6 == 1 2 3";
v2 = Vector3(4, 5, 6);
r = v1 == v2;
EXPECT_TRUE(r) << "4 5 6 == 1 2 3";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r) << "4 5 6 == INFINITY INFINITY INFINITY";
v1 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
r = v1 == v2;
EXPECT_FALSE(r)
<< "-INFINITY -INFINITY -INFINITY == INFINITY INFINITY INFINITY";
}
}
TEST(Vector3, Distance) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
float f = 0;
f = Vector3::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 5.19615221F) << "Distance(4 5 6, 1 2 3)";
v2 = Vector3(-1, -2, -3);
f = Vector3::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 12.4498997F) << "Distance(4 5 6, -1 -2 -3)";
v2 = Vector3(0, 0, 0);
f = Vector3::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, 8.77496433F) << "Distance(4 5 6, 0 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector3::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY)
<< "Distance(4 5 6, INFINITY INFINITY INFINITY)";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector3::Distance(v1, v2);
EXPECT_FLOAT_EQ(f, FLOAT_INFINITY)
<< "Distance(4 5 6, -INFINITY -INFINITY -INFINITY)";
}
}
TEST(Vector3, Cross) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 v = Vector3::zero;
bool r = false;
v = Vector3::Cross(v1, v2);
r = v == Vector3(3, -6, 3);
EXPECT_TRUE(r) << "Cross(4 5 6, 1 2 3)";
v2 = Vector3(-1, -2, -3);
v = Vector3::Cross(v1, v2);
r = v == Vector3(-3, 6, -3);
EXPECT_TRUE(r) << "Cross(4 5 6, -1 -2 -3)";
v2 = Vector3(0, 0, 0);
v = Vector3::Cross(v1, v2);
r = v == Vector3(0, 0, 0);
EXPECT_TRUE(r) << "Cross(4 5 6, 0 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = Vector3::Cross(v1, v2);
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "Cross(4 5 6, INFINITY INFINITY INFINITY)";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = Vector3::Cross(v1, v2);
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "Cross(4 5 6, -INFINITY -INFINITY -INFINITY)";
}
}
TEST(Vector3, Project) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 v = Vector3::zero;
bool r = false;
v = Vector3::Project(v1, v2);
r = v == Vector3(2.28571439F, 4.57142878F, 6.85714293F);
EXPECT_TRUE(r) << "Project(4 5 6, 1 2 3)";
v2 = Vector3(-1, -2, -3);
v = Vector3::Project(v1, v2);
r = v == Vector3(2.28571439F, 4.57142878F, 6.85714293F);
EXPECT_TRUE(r) << "Project(4 5 6, -1 -2 -3)";
v2 = Vector3(0, 0, 0);
v = Vector3::Project(v1, v2);
r = v == Vector3(0, 0, 0);
EXPECT_TRUE(r) << "Project(4 5 6, 0 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = Vector3::Project(v1, v2);
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "Project(4 5 6, INFINITY INFINITY INFINITY)";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = Vector3::Project(v1, v2);
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "Project(4 5 6, -INFINITY -INFINITY -INFINITY)";
}
}
TEST(Vector3, ProjectOnPlane) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 v = Vector3::zero;
bool r = false;
v = Vector3::ProjectOnPlane(v1, v2);
r = v == Vector3(1.71428561F, 0.428571224F, -0.857142925F);
EXPECT_TRUE(r) << "ProjectOnPlane(4 5 6, 1 2 3)";
v2 = Vector3(-1, -2, -3);
v = Vector3::ProjectOnPlane(v1, v2);
r = v == Vector3(1.71428561F, 0.428571224F, -0.857142925F);
EXPECT_TRUE(r) << "ProjectOnPlane(4 5 6, -1 -2 -3)";
v2 = Vector3(0, 0, 0);
v = Vector3::ProjectOnPlane(v1, v2);
r = v == Vector3(4, 5, 6);
EXPECT_TRUE(r) << "ProjectOnPlane(4 5 6, 0 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
v = Vector3::ProjectOnPlane(v1, v2);
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "ProjectOnPlane(4 5 6, INFINITY INFINITY INFINITY)";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
v = Vector3::ProjectOnPlane(v1, v2);
r = isnan(v.Right()) && isnan(v.Up()) && isnan(v.Forward());
EXPECT_TRUE(r) << "ProjectOnPlane(4 5 6, -INFINITY -INFINITY -INFINITY)";
}
}
TEST(Vector3, Angle) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
AngleOf<float> f = AngleOf<float>::Degrees(0);
bool r = false;
f = Vector3::Angle(v1, v2);
EXPECT_FLOAT_EQ(f.InDegrees(), 12.9331388F) << "Angle(4 5 6, 1 2 3)";
v2 = Vector3(-1, -2, -3);
f = Vector3::Angle(v1, v2);
EXPECT_FLOAT_EQ(f.InDegrees(), 167.066864F) << "Angle(4 5 6, -1 -2 -3)";
v2 = Vector3(0, 0, 0);
f = Vector3::Angle(v1, v2);
EXPECT_FLOAT_EQ(f.InDegrees(), 0) << "Angle(4 5 6, 0 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector3::Angle(v1, v2);
r = isnan(f.InDegrees());
EXPECT_TRUE(r) << "Angle(4 5 6, INFINITY INFINITY INFINITY)";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector3::Angle(v1, v2);
r = isnan(f.InDegrees());
EXPECT_TRUE(r) << "Angle(4 5 6, -INFINITY -INFINITY -INFINITY)";
}
}
TEST(Vector3, SignedAngle) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 v3 = Vector3(7, 8, -9);
AngleOf<float> f = AngleOf<float>::Degrees(0);
bool r = false;
f = Vector3::SignedAngle(v1, v2, v3);
EXPECT_FLOAT_EQ(f.InDegrees(), -12.9331388F)
<< "SignedAngle(4 5 6, 1 2 3, 7 8 -9)";
v2 = Vector3(-1, -2, -3);
f = Vector3::SignedAngle(v1, v2, v3);
EXPECT_FLOAT_EQ(f.InDegrees(), 167.066864F)
<< "SignedAngle(4 5 6, -1 -2 -3, 7 8 -9)";
v2 = Vector3(0, 0, 0);
f = Vector3::SignedAngle(v1, v2, v3);
EXPECT_FLOAT_EQ(f.InDegrees(), 0) << "SignedAngle(4 5 6, 0 0 0, 7 8 -9 )";
v2 = Vector3(1, 2, 3);
v3 = Vector3(-7, -8, 9);
f = Vector3::SignedAngle(v1, v2, v3);
EXPECT_FLOAT_EQ(f.InDegrees(), 12.9331388F)
<< "SignedAngle(4 5 6, 1 2 3, -7 -8 9)";
v3 = Vector3(0, 0, 0);
f = Vector3::SignedAngle(v1, v2, v3);
EXPECT_FLOAT_EQ(f.InDegrees(), 0) << "SignedAngle(4 5 6, 1 2 3, 0 0 0)";
if (std::numeric_limits<float>::is_iec559) {
v2 = Vector3(FLOAT_INFINITY, FLOAT_INFINITY, FLOAT_INFINITY);
f = Vector3::SignedAngle(v1, v2, v3);
r = isnan(f.InDegrees());
EXPECT_TRUE(r) << "SignedAngle(4 5 6, INFINITY INFINITY INFINITY)";
v2 = Vector3(-FLOAT_INFINITY, -FLOAT_INFINITY, -FLOAT_INFINITY);
f = Vector3::SignedAngle(v1, v2, v3);
r = isnan(f.InDegrees());
EXPECT_TRUE(r) << "SignedAngle(4 5 6, -INFINITY -INFINITY -INFINITY)";
}
}
TEST(Vector3, Lerp) {
Vector3 v1 = Vector3(4, 5, 6);
Vector3 v2 = Vector3(1, 2, 3);
Vector3 r = Vector3(0, 0, 0);
r = Vector3::Lerp(v1, v2, 0);
EXPECT_FLOAT_EQ(Vector3::Distance(r, v1), 0);
r = Vector3::Lerp(v1, v2, 1);
EXPECT_FLOAT_EQ(Vector3::Distance(r, v2), 0);
r = Vector3::Lerp(v1, v2, 0.5f);
EXPECT_FLOAT_EQ(Vector3::Distance(r, Vector3(2.5f, 3.5f, 4.5f)), 0);
r = Vector3::Lerp(v1, v2, -1);
EXPECT_FLOAT_EQ(Vector3::Distance(r, Vector3(7.0f, 8.0f, 9.0f)), 0);
r = Vector3::Lerp(v1, v2, 2);
EXPECT_FLOAT_EQ(Vector3::Distance(r, Vector3(-2.0, -1.0f, 0.0f)), 0);
}
#endif

View File

@ -1,366 +0,0 @@
#include "LocalParticipant.h"
#include "Thing.h"
#include "Arduino/ArduinoParticipant.h"
#if defined(_WIN32) || defined(_WIN64)
#include <winsock2.h>
#include <ws2tcpip.h>
#include "Windows/WindowsParticipant.h"
#pragma comment(lib, "ws2_32.lib")
#elif defined(__unix__) || defined(__APPLE__)
#include <arpa/inet.h>
#include <fcntl.h> // For fcntl
#include <netinet/in.h>
#include <sys/socket.h>
#include <unistd.h>
#include <chrono>
#include "Posix/PosixParticipant.h"
#endif
#include <string.h>
namespace RoboidControl {
// LocalParticipant::LocalParticipant() {}
LocalParticipant::LocalParticipant(int port) {
this->ipAddress = "0.0.0.0";
this->port = port;
if (this->port == 0)
this->isIsolated = true;
}
LocalParticipant::LocalParticipant(const char* ipAddress, int port) {
this->ipAddress = "0.0.0.0"; // ipAddress; // maybe this is not needed
// anymore, keeping it to "0.0.0.0"
this->port = port;
if (this->port == 0)
this->isIsolated = true;
else
this->remoteSite = new Participant(ipAddress, port);
}
static LocalParticipant* isolatedParticipant = nullptr;
LocalParticipant* LocalParticipant::Isolated() {
if (isolatedParticipant == nullptr)
isolatedParticipant = new LocalParticipant(0);
return isolatedParticipant;
}
void LocalParticipant::begin() {
if (this->isIsolated)
return;
SetupUDP(this->port, this->ipAddress, this->port);
}
void LocalParticipant::SetupUDP(int localPort,
const char* remoteIpAddress,
int remotePort) {
#if defined(_WIN32) || defined(_WIN64)
Windows::LocalParticipant* thisWindows =
static_cast<Windows::LocalParticipant*>(this);
thisWindows->Setup(localPort, remoteIpAddress, remotePort);
#elif defined(__unix__) || defined(__APPLE__)
Posix::LocalParticipant* thisPosix =
static_cast<Posix::LocalParticipant*>(this);
thisPosix->Setup(localPort, remoteIpAddress, remotePort);
#elif defined(ARDUINO)
Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this);
thisArduino->Setup(localPort, remoteIpAddress, remotePort);
#endif
this->connected = true;
}
void LocalParticipant::Update(unsigned long currentTimeMs) {
if (currentTimeMs == 0) {
currentTimeMs = Thing::GetTimeMs();
// #if defined(ARDUINO)
// currentTimeMs = millis();
// #elif defined(__unix__) || defined(__APPLE__)
// auto now = std::chrono::steady_clock::now();
// auto ms =
// std::chrono::duration_cast<std::chrono::milliseconds>(now.time_since_epoch());
// currentTimeMs = static_cast<unsigned long>(ms.count());
// #endif
}
if (this->isIsolated == false) {
if (this->connected == false)
begin();
if (this->publishInterval > 0 && currentTimeMs > this->nextPublishMe) {
ParticipantMsg* msg = new ParticipantMsg(this->networkId);
if (this->remoteSite == nullptr)
this->Publish(msg);
else
this->Send(this->remoteSite, msg);
delete msg;
this->nextPublishMe = currentTimeMs + this->publishInterval;
}
this->ReceiveUDP();
}
for (Thing* thing : this->things) {
if (thing != nullptr) {
thing->Update(currentTimeMs);
if (this->isIsolated == false) {
PoseMsg* poseMsg = new PoseMsg(this->networkId, thing);
for (Participant* sender : this->senders)
this->Send(sender, poseMsg);
delete poseMsg;
}
}
}
}
void LocalParticipant::ReceiveUDP() {
#if defined(_WIN32) || defined(_WIN64)
Windows::LocalParticipant* thisWindows =
static_cast<Windows::LocalParticipant*>(this);
thisWindows->Receive();
#elif defined(__unix__) || defined(__APPLE__)
Posix::LocalParticipant* thisPosix =
static_cast<Posix::LocalParticipant*>(this);
thisPosix->Receive();
#elif defined(ARDUINO)
Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this);
thisArduino->Receive();
#endif
}
Participant* LocalParticipant::GetParticipant(const char* ipAddress, int port) {
for (Participant* sender : this->senders) {
if (strcmp(sender->ipAddress, ipAddress) == 0 && sender->port == port)
return sender;
}
return nullptr;
}
Participant* LocalParticipant::AddParticipant(const char* ipAddress, int port) {
// std::cout << "New Participant " << ipAddress << ":" << port << "\n";
Participant* participant = new Participant(ipAddress, port);
#if defined(NO_STD)
participant->networkId = this->senderCount;
this->senders[this->senderCount++] = participant;
#else
participant->networkId = (unsigned char)this->senders.size();
this->senders.push_back(participant);
#endif
return participant;
}
#pragma region Send
void LocalParticipant::SendThingInfo(Participant* remoteParticipant,
Thing* thing) {
// std::cout << "Send thing info " << (int)thing->id << " \n";
ThingMsg* thingMsg = new ThingMsg(this->networkId, thing);
this->Send(remoteParticipant, thingMsg);
delete thingMsg;
NameMsg* nameMsg = new NameMsg(this->networkId, thing);
this->Send(remoteParticipant, nameMsg);
delete nameMsg;
ModelUrlMsg* modelMsg = new ModelUrlMsg(this->networkId, thing);
this->Send(remoteParticipant, modelMsg);
delete modelMsg;
PoseMsg* poseMsg = new PoseMsg(this->networkId, thing, true);
this->Send(remoteParticipant, poseMsg);
delete poseMsg;
BinaryMsg* customMsg = new BinaryMsg(this->networkId, thing);
this->Send(remoteParticipant, customMsg);
delete customMsg;
}
bool LocalParticipant::Send(Participant* remoteParticipant, IMessage* msg) {
int bufferSize = msg->Serialize(this->buffer);
if (bufferSize <= 0)
return true;
#if defined(_WIN32) || defined(_WIN64)
Windows::LocalParticipant* thisWindows =
static_cast<Windows::LocalParticipant*>(this);
return thisWindows->Send(remoteParticipant, bufferSize);
#elif defined(__unix__) || defined(__APPLE__)
Posix::LocalParticipant* thisPosix =
static_cast<Posix::LocalParticipant*>(this);
return thisPosix->Send(remoteParticipant, bufferSize);
#elif defined(ARDUINO)
Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this);
return thisArduino->Send(remoteParticipant, bufferSize);
#endif
}
void LocalParticipant::PublishThingInfo(Thing* thing) {
// std::cout << "Publish thing info" << thing->networkId << "\n";
// Strange, when publishing, the network id is irrelevant, because it is
// connected to a specific site...
ThingMsg* thingMsg = new ThingMsg(this->networkId, thing);
this->Publish(thingMsg);
delete thingMsg;
NameMsg* nameMsg = new NameMsg(this->networkId, thing);
this->Publish(nameMsg);
delete nameMsg;
ModelUrlMsg* modelMsg = new ModelUrlMsg(this->networkId, thing);
this->Publish(modelMsg);
delete modelMsg;
PoseMsg* poseMsg = new PoseMsg(this->networkId, thing, true);
this->Publish(poseMsg);
delete poseMsg;
BinaryMsg* customMsg = new BinaryMsg(this->networkId, thing);
this->Publish(customMsg);
delete customMsg;
}
bool LocalParticipant::Publish(IMessage* msg) {
#if defined(_WIN32) || defined(_WIN64)
Windows::LocalParticipant* thisWindows =
static_cast<Windows::LocalParticipant*>(this);
return thisWindows->Publish(msg);
#elif defined(__unix__) || defined(__APPLE__)
Posix::LocalParticipant* thisPosix =
static_cast<Posix::LocalParticipant*>(this);
return thisPosix->Publish(msg);
#elif defined(ARDUINO)
Arduino::LocalParticipant* thisArduino =
static_cast<Arduino::LocalParticipant*>(this);
return thisArduino->Publish(msg);
#endif
}
// Send
#pragma endregion
#pragma region Receive
void LocalParticipant::ReceiveData(unsigned char packetSize,
char* senderIpAddress,
unsigned int senderPort) {
Participant* remoteParticipant =
this->GetParticipant(senderIpAddress, senderPort);
if (remoteParticipant == nullptr) {
remoteParticipant = this->AddParticipant(senderIpAddress, senderPort);
// std::cout << "New sender " << sender_ipAddress << ":" << sender_port
// << "\n";
// std::cout << "New remote participant " << remoteParticipant->ipAddress
// << ":" << remoteParticipant->port << " "
// << (int)remoteParticipant->networkId << "\n";
}
ReceiveData(packetSize, remoteParticipant);
}
void LocalParticipant::ReceiveData(unsigned char bufferSize,
Participant* remoteParticipant) {
unsigned char msgId = this->buffer[0];
// std::cout << "receive msg " << (int)msgId << "\n";
switch (msgId) {
case ParticipantMsg::id: {
ParticipantMsg* msg = new ParticipantMsg(this->buffer);
Process(remoteParticipant, msg);
delete msg;
} break;
case SiteMsg::id: {
SiteMsg* msg = new SiteMsg(this->buffer);
Process(remoteParticipant, msg);
delete msg;
} break;
case InvestigateMsg::id: {
InvestigateMsg* msg = new InvestigateMsg(this->buffer);
Process(remoteParticipant, msg);
delete msg;
} break;
case ThingMsg::id: {
ThingMsg* msg = new ThingMsg(this->buffer);
Process(remoteParticipant, msg);
delete msg;
} break;
case NameMsg::id: {
NameMsg* msg = new NameMsg(this->buffer);
Process(remoteParticipant, msg);
delete msg;
} break;
case PoseMsg::id: {
PoseMsg* msg = new PoseMsg(this->buffer);
Process(remoteParticipant, msg);
delete msg;
} break;
case BinaryMsg::id: {
BinaryMsg* msg = new BinaryMsg(this->buffer);
Process(remoteParticipant, msg);
delete msg;
} break;
};
}
void LocalParticipant::Process(Participant* sender, ParticipantMsg* msg) {}
void LocalParticipant::Process(Participant* sender, SiteMsg* msg) {
// std::cout << this->name << ": process NetworkId [" << (int)this->networkId
// << "/" << (int)msg->networkId << "]\n";
if (this->networkId != msg->networkId) {
this->networkId = msg->networkId;
// std::cout << this->things.size() << " things\n";
for (Thing* thing : this->things)
this->SendThingInfo(sender, thing);
}
}
void LocalParticipant::Process(Participant* sender, InvestigateMsg* msg) {}
void LocalParticipant::Process(Participant* sender, ThingMsg* msg) {}
void LocalParticipant::Process(Participant* sender, NameMsg* msg) {
Thing* thing = sender->Get(msg->networkId, msg->thingId);
if (thing != nullptr) {
int nameLength = msg->nameLength;
int stringLen = nameLength + 1;
char* thingName = new char[stringLen];
#if defined(_WIN32) || defined(_WIN64)
strncpy_s(thingName, stringLen, msg->name,
stringLen - 1); // Leave space for null terminator
#else
// Use strncpy with bounds checking for other platforms (Arduino, POSIX,
// ESP-IDF)
strncpy(thingName, msg->name,
stringLen - 1); // Leave space for null terminator
thingName[stringLen - 1] = '\0'; // Ensure null termination
#endif
thingName[nameLength] = '\0';
thing->name = thingName;
// std::cout << "thing name = " << thing->name << " length = " << nameLength
// << "\n";
}
}
void LocalParticipant::Process(Participant* sender, PoseMsg* msg) {}
void LocalParticipant::Process(Participant* sender, BinaryMsg* msg) {
// std::cout << this->name << ": process Binary [" << (int)this->networkId <<
// "/"
// << (int)msg->networkId << "]\n";
Thing* thing = sender->Get(msg->networkId, msg->thingId);
if (thing != nullptr)
thing->ProcessBinary(msg->bytes);
else {
thing = this->Get(msg->networkId, msg->thingId);
if (thing != nullptr)
thing->ProcessBinary(msg->bytes);
// else
// std::cout << "custom msg for unknown thing [" << (int)msg->networkId
// << "/" << (int)msg->thingId << "]\n";
}
}
// Receive
#pragma endregion
} // namespace RoboidControl

View File

@ -1,140 +0,0 @@
#pragma once
#include "Messages/BinaryMsg.h"
#include "Messages/InvestigateMsg.h"
#include "Messages/ModelUrlMsg.h"
#include "Messages/NameMsg.h"
#include "Messages/ParticipantMsg.h"
#include "Messages/PoseMsg.h"
#include "Messages/SiteMsg.h"
#include "Messages/ThingMsg.h"
#include "Participant.h"
#if !defined(NO_STD)
#include <list>
#endif
#if defined(_WIN32) || defined(_WIN64)
#include <winsock2.h>
#elif defined(__unix__) || defined(__APPLE__)
#include <arpa/inet.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <unistd.h>
#elif defined(ARDUINO)
// #include <WiFiUdp.h>
#endif
namespace RoboidControl {
constexpr int MAX_SENDER_COUNT = 256;
/// @brief A local participant is the local device which can communicate with
/// other participants It manages all local things and communcation with other
/// participants. Each application has a local participant which is usually
/// explicit in the code. An participant can be isolated. In that case it is
/// standalong and does not communicate with other participants.
///
/// It is possible to work with an hidden participant by creating things without
/// specifying a participant in the constructor. In that case an hidden isolated
/// participant is created which can be obtained using
/// RoboidControl::LocalParticipant::Isolated().
/// @sa RoboidControl::Thing::Thing()
class LocalParticipant : public Participant {
public:
/// @brief Create a participant without connecting to a site
/// @param port The port on which the participant communicates
/// These participant typically broadcast Participant messages to let site
/// servers on the local network know their presence. Alternatively they can
/// broadcast information which can be used directly by other participants.
LocalParticipant(int port = 7681);
/// @brief Create a participant which will try to connect to a site.
/// @param ipAddress The IP address of the site
/// @param port The port used by the site
LocalParticipant(const char* ipAddress, int port = 7681);
// Note to self: one cannot specify the port used by the local participant
// now!!
/// @brief Isolated participant is used when the application is run without
/// networking
/// @return A participant without networking support
static LocalParticipant* Isolated();
/// @brief True if the participant is running isolated.
/// Isolated participants do not communicate with other participants
bool isIsolated = false;
/// The interval in milliseconds for publishing (broadcasting) data on the
/// local network
long publishInterval = 3000; // 3 seconds
/// @brief The name of the participant
const char* name = "LocalParticipant";
// int localPort = 0;
/// @brief The remote site when this participant is connected to a site
Participant* remoteSite = nullptr;
#if defined(ARDUINO)
// const char* remoteIpAddress = nullptr;
// unsigned short remotePort = 0;
// char* broadcastIpAddress = nullptr;
// WiFiUDP udp;
#else
#if defined(__unix__) || defined(__APPLE__)
int sock;
#endif
sockaddr_in remote_addr;
sockaddr_in server_addr;
sockaddr_in broadcast_addr;
#endif
void begin();
bool connected = false;
virtual void Update(unsigned long currentTimeMs = 0);
void SendThingInfo(Participant* remoteParticipant, Thing* thing);
void PublishThingInfo(Thing* thing);
bool Send(Participant* remoteParticipant, IMessage* msg);
bool Publish(IMessage* msg);
void ReceiveData(unsigned char bufferSize,
char* senderIpAddress,
unsigned int senderPort);
void ReceiveData(unsigned char bufferSize, Participant* remoteParticipant);
#if defined(NO_STD)
unsigned char senderCount = 0;
Participant* senders[MAX_SENDER_COUNT];
#else
std::list<Participant*> senders;
#endif
protected:
unsigned long nextPublishMe = 0;
char buffer[1024];
void SetupUDP(int localPort, const char* remoteIpAddress, int remotePort);
Participant* GetParticipant(const char* ipAddress, int port);
Participant* AddParticipant(const char* ipAddress, int port);
void ReceiveUDP();
virtual void Process(Participant* sender, ParticipantMsg* msg);
virtual void Process(Participant* sender, SiteMsg* msg);
virtual void Process(Participant* sender, InvestigateMsg* msg);
virtual void Process(Participant* sender, ThingMsg* msg);
virtual void Process(Participant* sender, NameMsg* msg);
virtual void Process(Participant* sender, PoseMsg* msg);
virtual void Process(Participant* sender, BinaryMsg* msg);
};
} // namespace RoboidControl

View File

@ -1,34 +0,0 @@
#include "BinaryMsg.h"
namespace RoboidControl {
BinaryMsg::BinaryMsg(char* buffer) {
unsigned char ix = 1;
this->networkId = buffer[ix++];
this->thingId = buffer[ix++];
this->bytes = buffer + ix; // This is only valid because the code ensures the the msg
// lifetime is shorter than the buffer lifetime...
}
BinaryMsg::BinaryMsg(unsigned char networkId, Thing* thing) {
this->networkId = networkId;
this->thingId = thing->id;
this->thing = thing;
}
BinaryMsg::~BinaryMsg() {}
unsigned char BinaryMsg::Serialize(char* buffer) {
unsigned char ix = this->length;
this->thing->GenerateBinary(buffer, &ix);
if (ix <= this->length) // in this case, no data is actually sent
return 0;
buffer[0] = this->id;
buffer[1] = this->networkId;
buffer[2] = this->thingId;
return ix;
}
} // namespace RoboidControl

View File

@ -1,38 +0,0 @@
#pragma once
#include "Messages.h"
namespace RoboidControl {
/// @brief Message to send thing-specific data
class BinaryMsg : public IMessage {
public:
/// @brief The message ID
static const unsigned char id = 0xB1;
/// @brief The length of the message without the binary data itslef
static const unsigned length = 3;
/// @brief The network ID of the thing
unsigned char networkId;
/// @brief The ID of the thing
unsigned char thingId;
/// @brief The thing for which the binary data is communicated
Thing* thing;
/// @brief The binary data which is communicated
char* bytes = nullptr;
/// @brief Create a new message for sending
/// @param networkId The network ID of the thing
/// @param thing The thing for which binary data is sent
BinaryMsg(unsigned char networkId, Thing* thing);
/// @copydoc RoboidControl::IMessage::IMessage(char*)
BinaryMsg(char* buffer);
/// @brief Destructor for the message
virtual ~BinaryMsg();
/// @copydoc RoboidControl::IMessage::Serialize
virtual unsigned char Serialize(char* buffer) override;
};
} // namespace RoboidControl

View File

@ -1,22 +0,0 @@
#include "DestroyMsg.h"
namespace RoboidControl {
DestroyMsg::DestroyMsg(unsigned char networkId, Thing *thing) {
this->networkId = networkId;
this->thingId = thing->id;
}
DestroyMsg::DestroyMsg(char* buffer) {}
DestroyMsg::~DestroyMsg() {}
unsigned char DestroyMsg::Serialize(char *buffer) {
unsigned char ix = 0;
buffer[ix++] = this->id;
buffer[ix++] = this->networkId;
buffer[ix++] = this->thingId;
return ix;
}
} // namespace RoboidControl

View File

@ -1,30 +0,0 @@
#include "Messages.h"
namespace RoboidControl {
/// @brief Message notifiying that a Thing no longer exists
class DestroyMsg : public IMessage {
public:
/// @brief The message ID
static const unsigned char id = 0x20;
/// @brief The length of the message
static const unsigned length = 3;
/// @brief The network ID of the thing
unsigned char networkId;
/// @brief The ID of the thing
unsigned char thingId;
/// @brief Create a message for sending
/// @param networkId The network ID of the thing
/// @param thing The ID of the thing
DestroyMsg(unsigned char networkId, Thing* thing);
/// @copydoc RoboidControl::IMessage::IMessage(char*)
DestroyMsg(char* buffer);
/// @brief Destructor for the message
virtual ~DestroyMsg();
/// @copydoc RoboidControl::IMessage::Serialize
virtual unsigned char Serialize(char* buffer) override;
};
} // namespace RoboidControl

View File

@ -1,24 +0,0 @@
#include "InvestigateMsg.h"
namespace RoboidControl {
InvestigateMsg::InvestigateMsg(char* buffer) {
unsigned ix = 1; // first byte is msgId
this->networkId = buffer[ix++];
this->thingId = buffer[ix++];
}
InvestigateMsg::InvestigateMsg(unsigned char networkId, unsigned char thingId) {
this->networkId = networkId;
this->thingId = thingId;
}
InvestigateMsg::~InvestigateMsg() {}
unsigned char InvestigateMsg::Serialize(char* buffer) {
unsigned char ix = 0;
buffer[ix++] = this->id;
buffer[ix++] = this->networkId;
buffer[ix++] = this->thingId;
return ix;
}
} // namespace RoboidControl

View File

@ -1,30 +0,0 @@
#include "Messages.h"
namespace RoboidControl {
/// @brief Message to request details for a Thing
class InvestigateMsg : public IMessage {
public:
/// @brief The message ID
static const unsigned char id = 0x81;
/// @brief The length of the message
static const unsigned char length = 3;
/// @brief The network ID of the thing
unsigned char networkId;
/// @brief the ID of the thing
unsigned char thingId;
/// @brief Create a new message for sending
/// @param networkId The network ID for the thing
/// @param thingId The ID of the thing
InvestigateMsg(unsigned char networkId, unsigned char thingId);
/// @copydoc RoboidControl::IMessage::IMessage(char*)
InvestigateMsg(char* buffer);
/// @brief Destructor for the message
virtual ~InvestigateMsg();
/// @copydoc RoboidControl::IMessage::Serialize
virtual unsigned char Serialize(char* buffer) override;
};
} // namespace RoboidControl

View File

@ -1,99 +0,0 @@
#include "LowLevelMessages.h"
// #include <iostream>
#include "LinearAlgebra/float16.h"
namespace RoboidControl {
void LowLevelMessages::SendAngle8(char* buffer,
unsigned char* ix,
const float angle) {
Angle8 packedAngle2 = Angle8::Degrees(angle);
buffer[(*ix)++] = packedAngle2.GetBinary();
}
Angle8 LowLevelMessages::ReceiveAngle8(const char* buffer,
unsigned char* startIndex) {
unsigned char binary = buffer[(*startIndex)++];
Angle8 angle = Angle8::Binary(binary);
return angle;
}
void LowLevelMessages::SendFloat16(char* buffer,
unsigned char* ix,
float value) {
float16 value16 = float16(value);
short binary = value16.getBinary();
buffer[(*ix)++] = (binary >> 8) & 0xFF;
buffer[(*ix)++] = binary & 0xFF;
}
float LowLevelMessages::ReceiveFloat16(const char* buffer,
unsigned char* startIndex) {
unsigned char ix = *startIndex;
unsigned char msb = buffer[ix++];
unsigned char lsb = buffer[ix++];
unsigned short value = msb << 8 | lsb;
float16 f = float16();
f.setBinary(value);
*startIndex = ix;
return (float)f.toFloat();
}
void LowLevelMessages::SendSpherical(char* buffer,
unsigned char* ix,
Spherical s) {
SendFloat16(buffer, ix, s.distance);
SendAngle8(buffer, ix, s.direction.horizontal.InDegrees());
SendAngle8(buffer, ix, s.direction.vertical.InDegrees());
}
Spherical LowLevelMessages::ReceiveSpherical(const char* buffer,
unsigned char* startIndex) {
float distance = ReceiveFloat16(buffer, startIndex);
Angle8 horizontal8 = ReceiveAngle8(buffer, startIndex);
Angle horizontal = Angle::Radians(horizontal8.InRadians());
Angle8 vertical8 = ReceiveAngle8(buffer, startIndex);
Angle vertical = Angle::Radians(vertical8.InRadians());
Spherical s = Spherical(distance, horizontal, vertical);
return s;
}
void LowLevelMessages::SendQuat32(char* buffer,
unsigned char* ix,
SwingTwist rotation) {
Quaternion q = rotation.ToQuaternion();
unsigned char qx = (char)(q.x * 127 + 128);
unsigned char qy = (char)(q.y * 127 + 128);
unsigned char qz = (char)(q.z * 127 + 128);
unsigned char qw = (char)(q.w * 255);
if (q.w < 0) {
qx = -qx;
qy = -qy;
qz = -qz;
qw = -qw;
}
// std::cout << (int)qx << "," << (int)qy << "," << (int)qz << "," << (int)qw
// << "\n";
buffer[(*ix)++] = qx;
buffer[(*ix)++] = qy;
buffer[(*ix)++] = qz;
buffer[(*ix)++] = qw;
}
SwingTwist LowLevelMessages::ReceiveQuat32(const char* buffer,
unsigned char* ix) {
float qx = (buffer[(*ix)++] - 128.0F) / 127.0F;
float qy = (buffer[(*ix)++] - 128.0F) / 127.0F;
float qz = (buffer[(*ix)++] - 128.0F) / 127.0F;
float qw = buffer[(*ix)++] / 255.0F;
Quaternion q = Quaternion(qx, qy, qz, qw);
SwingTwist s = SwingTwist::FromQuaternion(q);
return s;
}
} // namespace RoboidControl

View File

@ -1,22 +0,0 @@
#include "LinearAlgebra/Spherical.h"
#include "LinearAlgebra/SwingTwist.h"
namespace RoboidControl {
class LowLevelMessages {
public:
static void SendAngle8(char* buffer, unsigned char* ix, const float angle);
static Angle8 ReceiveAngle8(const char* buffer, unsigned char* startIndex);
static void SendFloat16(char* buffer, unsigned char* ix, float value);
static float ReceiveFloat16(const char* buffer, unsigned char* startIndex);
static void SendSpherical(char* buffer, unsigned char* ix, Spherical s);
static Spherical ReceiveSpherical(const char* buffer,
unsigned char* startIndex);
static void SendQuat32(char* buffer, unsigned char* ix, SwingTwist q);
static SwingTwist ReceiveQuat32(const char* buffer, unsigned char* ix);
};
} // namespace RoboidControl

View File

@ -1,36 +0,0 @@
#include "Messages.h"
#include "LowLevelMessages.h"
//#include "Participant.h"
#include "string.h"
namespace RoboidControl {
#pragma region IMessage
IMessage::IMessage() {}
// IMessage::IMessage(unsigned char *buffer) { Deserialize(buffer); }
// IMessage::IMessage(char* buffer) {}
unsigned char IMessage::Serialize(char* buffer) {
return 0;
}
// bool IMessage::SendMsg(LocalParticipant *client, IMessage msg) {
// // return SendMsg(client, client.buffer, );nameLength
// return client->SendBuffer(msg.Serialize(client->buffer));
// }
// bool IMessage::Publish(LocalParticipant *participant) {
// return participant->PublishBuffer(Serialize(participant->buffer));
// }
// bool IMessage::SendTo(LocalParticipant *participant) {
// return participant->SendBuffer(Serialize(participant->buffer));
// }
// IMessage
#pragma endregion
} // namespace RoboidControl

View File

@ -1,22 +0,0 @@
#pragma once
#include "LinearAlgebra/Spherical.h"
#include "LinearAlgebra/SwingTwist.h"
#include "Thing.h"
namespace RoboidControl {
class LocalParticipant;
class IMessage {
public:
IMessage();
virtual unsigned char Serialize(char* buffer);
static unsigned char* ReceiveMsg(unsigned char packetSize);
// bool Publish(LocalParticipant *participant);
// bool SendTo(LocalParticipant *participant);
};
} // namespace RoboidControl

View File

@ -1,68 +0,0 @@
#include "ModelUrlMsg.h"
#include <string.h>
namespace RoboidControl {
// ModelUrlMsg::ModelUrlMsg(unsigned char networkId, unsigned char thingId,
// unsigned char urlLength, const char *url,
// float scale) {
// this->networkId = networkId;
// this->thingId = thingId;
// this->urlLength = urlLength;
// this->url = url;
// this->scale = scale;
// }
ModelUrlMsg::ModelUrlMsg(unsigned char networkId, Thing* thing) {
this->networkId = networkId;
this->thingId = thing->id;
if (thing->modelUrl == nullptr)
this->urlLength = 0;
else
this->urlLength = (unsigned char)strlen(thing->modelUrl);
//this->url = thing->modelUrl; // dangerous!
// the url string in the buffer is not \0 terminated!
char* url = new char[this->urlLength + 1];
for (int i = 0; i < this->urlLength; i++)
url[i] = thing->modelUrl[i];
url[this->urlLength] = '\0';
this->url = url;}
ModelUrlMsg::ModelUrlMsg(const char* buffer) {
unsigned char ix = 1; // first byte is msg id
this->networkId = buffer[ix++];
this->thingId = buffer[ix++];
this->urlLength = buffer[ix++];
// this->url = &buffer[ix]; // dangerous! name should not be used anymore after
// // buffer has been re-used...
// the url string in the buffer is not \0 terminated!
char* url = new char[this->urlLength + 1];
for (int i = 0; i < this->urlLength; i++)
url[i] = buffer[ix++];
url[this->urlLength] = '\0';
this->url = url;
}
ModelUrlMsg::~ModelUrlMsg() {
delete[] this->url;
}
unsigned char ModelUrlMsg::Serialize(char* buffer) {
if (this->urlLength == 0 || this->url == nullptr)
return 0;
unsigned char ix = 0;
buffer[ix++] = this->id;
buffer[ix++] = this->networkId;
buffer[ix++] = this->thingId;
// LowLevelMessages::SendFloat16(buffer, &ix, this->scale);
buffer[ix++] = this->urlLength;
for (int urlIx = 0; urlIx < this->urlLength; urlIx++)
buffer[ix++] = url[urlIx];
return ix;
}
} // namespace RoboidControl

View File

@ -1,39 +0,0 @@
#include "Messages.h"
namespace RoboidControl {
/// @brief Message for communicating the URL for a model of the thing
class ModelUrlMsg : public IMessage {
public:
/// @brief The message ID
static const unsigned char id = 0x90;
/// @brief The length of the message without the URL string itself
static const unsigned char length = 3;
/// @brief The network ID of the thing
unsigned char networkId;
/// @brief The ID of the thing
unsigned char thingId;
/// @brief The length of the url st5ring, excluding the null terminator
unsigned char urlLength;
/// @brief The url of the model, not terminated by a null character
const char* url;
/// @brief Create a new message for sending
/// @param networkId The network ID of the thing
/// @param thing The thing for which to send the mode URL
ModelUrlMsg(unsigned char networkId, Thing* thing);
/// @copydoc RoboidControl::IMessage::IMessage(char*)
ModelUrlMsg(const char* buffer);
// ModelUrlMsg(unsigned char networkId, unsigned char thingId,
// unsigned char urlLegth, const char *url, float scale = 1);
/// @brief Destructor for the message
virtual ~ModelUrlMsg();
/// @copydoc RoboidControl::IMessage::Serialize
virtual unsigned char Serialize(char* buffer) override;
};
} // namespace RoboidControl

View File

@ -1,55 +0,0 @@
#include "NameMsg.h"
#include <string.h>
namespace RoboidControl {
NameMsg::NameMsg(unsigned char networkId, Thing* thing) {
this->networkId = networkId;
this->thingId = thing->id;
if (thing->name == nullptr)
this->nameLength = 0;
else
this->nameLength = (unsigned char)strlen(thing->name);
// the name string in the buffer is not \0 terminated!
char* name = new char[this->nameLength + 1];
for (int i = 0; i < this->nameLength; i++)
name[i] = thing->name[i];
name[this->nameLength] = '\0';
this->name = name;
}
NameMsg::NameMsg(const char* buffer) {
unsigned char ix = 1; // first byte is msg id
this->networkId = buffer[ix++];
this->thingId = buffer[ix++];
this->nameLength = buffer[ix++];
// the name string in the buffer is not \0 terminated!
char* name = new char[this->nameLength + 1];
for (int i = 0; i < this->nameLength; i++)
name[i] = buffer[ix++];
name[this->nameLength] = '\0';
this->name = name;
}
NameMsg::~NameMsg() {
delete[] this->name;
}
unsigned char NameMsg::Serialize(char* buffer) {
if (this->nameLength == 0 || this->name == nullptr)
return 0;
unsigned char ix = 0;
buffer[ix++] = this->id;
buffer[ix++] = this->networkId;
buffer[ix++] = this->thingId;
buffer[ix++] = this->nameLength;
for (int nameIx = 0; nameIx < this->nameLength; nameIx++)
buffer[ix++] = this->name[nameIx];
return ix;
}
} // namespace RoboidControl

View File

@ -1,37 +0,0 @@
#include "Messages.h"
namespace RoboidControl {
/// @brief Message for communicating the name of a thing
class NameMsg : public IMessage {
public:
/// @brief The message ID
static const unsigned char id = 0x91;
/// @brief The length of the message
static const unsigned char length = 4;
/// @brief The network ID of the thing
unsigned char networkId;
/// @brief The ID of the thing
unsigned char thingId;
/// @brief The length of the name, excluding the null terminator
unsigned char nameLength;
/// @brief The name of the thing, not terminated with a null character
const char* name;
/// @brief Create a new message for sending
/// @param networkId The network ID of the thing
/// @param thing The ID of the thing
NameMsg(unsigned char networkId, Thing* thing);
// NameMsg(unsigned char networkId, unsigned char thingId, const char *name,
// unsigned char nameLength);
/// @copydoc RoboidControl::IMessage::IMessage(char*)
NameMsg(const char* buffer);
/// @brief Destructor for the message
virtual ~NameMsg();
/// @copydoc RoboidControl::IMessage::Serialize
virtual unsigned char Serialize(char* buffer) override;
};
} // namespace RoboidControl

View File

@ -1,27 +0,0 @@
#include "ParticipantMsg.h"
namespace RoboidControl {
ParticipantMsg::ParticipantMsg(char networkId) {
this->networkId = networkId;
}
ParticipantMsg::ParticipantMsg(const char* buffer) {
this->networkId = buffer[1];
}
ParticipantMsg::~ParticipantMsg() {}
unsigned char ParticipantMsg::Serialize(char* buffer) {
unsigned char ix = 0;
buffer[ix++] = this->id;
buffer[ix++] = this->networkId;
return ParticipantMsg::length;
}
// bool ParticipantMsg::Send(LocalParticipant *participant, unsigned char networkId) {
// ParticipantMsg msg = ParticipantMsg()
// }
// Client Msg
} // namespace RoboidControl

View File

@ -1,34 +0,0 @@
#pragma once
#include "Messages.h"
namespace RoboidControl {
/// @brief A participant messages notifies other participants of its presence
/// When received by another participant, it can be followed by a NetworkIdMsg
/// to announce that participant to this client such that it can join privately
class ParticipantMsg : public IMessage {
public:
/// @brief The message ID
static const unsigned char id = 0xA0;
/// @brief The length of the message
static const unsigned char length = 2;
/// @brief The network ID known by the participant
unsigned char networkId;
/// @brief Create a new message for sending
/// @param networkId The network ID known by the participant
ParticipantMsg(char networkId);
/// @copydoc RoboidControl::IMessage::IMessage(char*)
ParticipantMsg(const char* buffer);
/// @brief Destructor for the message
virtual ~ParticipantMsg();
/// @brief Serialize the message into a byte array
/// @param buffer The buffer to serialize into
/// @return The length of the message in the buffer
virtual unsigned char Serialize(char* buffer) override;
};
} // namespace RoboidControl

View File

@ -1,66 +0,0 @@
#include "PoseMsg.h"
#include "LowLevelMessages.h"
namespace RoboidControl {
PoseMsg::PoseMsg(unsigned char networkId, Thing* thing, bool force) {
this->networkId = networkId;
this->thingId = thing->id;
this->poseType = 0;
if (thing->positionUpdated || force) {
this->position = thing->GetPosition();
this->poseType |= Pose_Position;
thing->positionUpdated = false;
}
if (thing->orientationUpdated || force) {
this->orientation = thing->GetOrientation();
this->poseType |= Pose_Orientation;
thing->orientationUpdated = false;
}
if (thing->linearVelocityUpdated) {
this->linearVelocity = thing->GetLinearVelocity();
this->poseType |= Pose_LinearVelocity;
thing->linearVelocityUpdated = false;
}
if (thing->angularVelocityUpdated) {
this->angularVelocity = thing->GetAngularVelocity();
this->poseType |= Pose_AngularVelocity;
thing->angularVelocityUpdated = false;
}
}
PoseMsg::PoseMsg(const char* buffer) {
unsigned char ix = 1; // First byte is msg id
this->networkId = buffer[ix++];
this->thingId = buffer[ix++];
this->poseType = buffer[ix++];
this->position = LowLevelMessages::ReceiveSpherical(buffer, &ix);
this->orientation = LowLevelMessages::ReceiveQuat32(buffer, &ix);
// linearVelocity
// angularVelocity
}
PoseMsg::~PoseMsg() {}
unsigned char PoseMsg::Serialize(char* buffer) {
if (this->poseType == 0)
return 0;
unsigned char ix = 0;
buffer[ix++] = PoseMsg::id;
buffer[ix++] = this->networkId;
buffer[ix++] = this->thingId;
buffer[ix++] = this->poseType;
if ((this->poseType & Pose_Position) != 0)
LowLevelMessages::SendSpherical(buffer, &ix, this->position);
if ((this->poseType & Pose_Orientation) != 0)
LowLevelMessages::SendQuat32(buffer, &ix, this->orientation);
if ((this->poseType & Pose_LinearVelocity) != 0)
LowLevelMessages::SendSpherical(buffer, &ix, this->linearVelocity);
if ((this->poseType & Pose_AngularVelocity) != 0)
LowLevelMessages::SendSpherical(buffer, &ix, this->angularVelocity);
return ix;
}
} // namespace RoboidControl

View File

@ -1,55 +0,0 @@
#include "Messages.h"
namespace RoboidControl {
/// @brief Message to communicate the pose of the thing
/// The pose is in local space relative to the parent. If there is not parent
/// (the thing is a root thing), the pose will be in world space.
class PoseMsg : public IMessage {
public:
/// @brief The message ID
static const unsigned char id = 0x10;
/// @brief The length of the message
unsigned char length = 4 + 4 + 4;
/// @brief The network ID of the thing
unsigned char networkId;
/// @brief The ID of the thing
unsigned char thingId;
/// @brief Bit pattern stating which pose components are available
unsigned char poseType;
/// @brief Bit pattern for a pose with position
static const unsigned char Pose_Position = 0x01;
/// @brief Bit pattern for a pose with orientation
static const unsigned char Pose_Orientation = 0x02;
/// @brief Bit pattern for a pose with linear velocity
static const unsigned char Pose_LinearVelocity = 0x04;
/// @brief Bit pattern for a pose with angular velocity
static const unsigned char Pose_AngularVelocity = 0x08;
/// @brief The position of the thing in local space in meters
Spherical position;
/// @brief The orientation of the thing in local space
SwingTwist orientation;
/// @brief The linear velocity of the thing in local space in meters per
/// second
Spherical linearVelocity;
/// @brief The angular velocity of the thing in local space
Spherical angularVelocity;
/// @brief Create a new message for sending
/// @param networkId he network ID of the thing
/// @param thing The thing for which the pose shouldbe sent
PoseMsg(unsigned char networkId, Thing* thing, bool force = false);
/// @copydoc RoboidControl::IMessage::IMessage(char*)
PoseMsg(const char* buffer);
/// @brief Destructor for the message
virtual ~PoseMsg();
/// @copydoc RoboidControl::IMessage::Serialize
virtual unsigned char Serialize(char* buffer) override;
};
} // namespace RoboidControl

View File

@ -1,22 +0,0 @@
#include "SiteMsg.h"
namespace RoboidControl {
SiteMsg::SiteMsg(const char* buffer) {
this->networkId = buffer[1];
}
SiteMsg::SiteMsg(unsigned char networkId) {
this->networkId = networkId;
}
SiteMsg::~SiteMsg() {}
unsigned char SiteMsg::Serialize(char* buffer) {
unsigned char ix = 0;
buffer[ix++] = this->id;
buffer[ix++] = this->networkId;
return SiteMsg::length;
}
} // namespace RoboidControl

Some files were not shown because too many files have changed in this diff Show More