RoboidControl-cpp/Perception.cpp
2023-12-31 10:03:59 +01:00

296 lines
8.8 KiB
C++

#include "Perception.h"
#include "Angle.h"
#include "DistanceSensor.h"
#include "NetworkSync.h"
#include "Switch.h"
#include <math.h>
Perception::Perception() {
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++)
this->perceivedObjects[objIx] = nullptr;
}
Perception::Perception(Placement *sensors, unsigned int sensorCount)
: Perception() {
this->sensorCount = sensorCount;
this->sensorPlacements = (Placement *)sensors;
}
unsigned int Perception::GetSensorCount() { return this->sensorCount; }
Sensor *Perception::GetSensor(unsigned int sensorId) {
if (sensorId >= this->sensorCount)
return nullptr;
Thing *thing = this->sensorPlacements[sensorId].thing;
if (thing->IsSensor())
return (Sensor *)thing;
return nullptr;
}
Sensor *Perception::FindSensorOfType(unsigned int sensorType) {
for (unsigned int sensorIx = 0; sensorIx < this->sensorCount; sensorIx++) {
Sensor *sensor = (Sensor *)this->sensorPlacements[sensorIx].thing;
if (sensor->type == sensorType)
return sensor;
}
return nullptr;
}
float Perception::GetDistance(float direction, float range) {
float minDistance = INFINITY;
if (range < 0)
range = -range;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
PerceivedObject *obj = perceivedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->position.angle > direction - range &&
obj->position.angle < direction + range) {
minDistance = fmin(minDistance, obj->position.distance);
}
}
return minDistance;
}
float Perception::GetDistance(float horizontalDirection,
float verticalDirection, float range) {
float minDistance = INFINITY;
if (range < 0)
range = -range;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
PerceivedObject *obj = perceivedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->position.angle > horizontalDirection - range &&
obj->position.angle < horizontalDirection + range) {
minDistance = fmin(minDistance, obj->position.distance);
}
}
return minDistance;
}
bool Perception::ObjectNearby(float direction, float range) {
if (range < 0)
range = -range;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
PerceivedObject *obj = perceivedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->position.angle > direction - range &&
obj->position.angle < direction + range) {
if (obj->position.distance <= nearbyDistance)
return true;
}
}
return false;
}
/***
* Oject perception
***/
PerceivedObject::PerceivedObject() {
this->id = 0;
this->confidence = maxConfidence;
this->position = Polar(0, INFINITY);
this->radius = INFINITY;
}
PerceivedObject::PerceivedObject(Sensor *sensor, Polar position, float radius)
: PerceivedObject() {
this->sensor = sensor;
this->position = position;
this->radius = radius;
}
bool PerceivedObject::IsTheSameAs(PerceivedObject *otherObj) {
if (id != 0 && id == otherObj->id)
return true;
if (abs(position.distance - otherObj->position.distance) > equalityDistance)
return false;
if (abs(position.angle - otherObj->position.angle) > equalityAngle)
return false;
return true;
}
bool PerceivedObject::DegradeConfidence(float deltaTime) {
unsigned char confidenceDrop =
(unsigned char)((float)confidenceDropSpeed * deltaTime);
// Make sure the confidence always drops
if (confidenceDrop == 0)
confidenceDrop = 1;
if (confidence <= confidenceDrop) {
// object is dead
confidence = 0;
return false;
} else {
confidence -= confidenceDrop;
return true;
}
}
void PerceivedObject::Refresh(Polar position, float radius) {
this->position = position;
this->radius = radius;
this->confidence = maxConfidence;
}
void Perception::AddPerceivedObject(Sensor *sensor, Polar position) {
// int objCount = PerceivedObjectCount();
// printf("perc obj count %d\n");
PerceivedObject *obj = new PerceivedObject(sensor, position);
// objCount = PerceivedObjectCount();
// printf("perc obj count %d\n");
// AddPerceivedObject(obj);
// }
// void Perception::AddPerceivedObject(PerceivedObject *obj) {
unsigned char farthestObjIx = 0;
unsigned char availableSlotIx = 0;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
// printf("[%d] %d\n", objIx, this->perceivedObjects[objIx]);
// Is this slot available?
if (this->perceivedObjects[objIx] == nullptr) {
availableSlotIx = objIx;
}
// Do we see the same object?
else {
// printf("(%d) my %f %f =^= received %f %f\n", objIx,
// this->perceivedObjects[objIx]->position.distance,
// this->perceivedObjects[objIx]->position.angle,
// obj->position.distance, obj->position.angle);
if (obj->IsTheSameAs(this->perceivedObjects[objIx])) {
// printf("[%d] Updating...\n", objIx);
this->perceivedObjects[objIx]->Refresh(obj->position, obj->radius);
return;
}
// Is this the fartest object we see?
else if (this->perceivedObjects[farthestObjIx] == nullptr ||
(this->perceivedObjects[objIx]->position.distance >
this->perceivedObjects[farthestObjIx]->position.distance)) {
farthestObjIx = objIx;
}
}
}
// Check if an perception slot is available (we currently see less than the
// max number of objects)
if (availableSlotIx < maxObjectCount) {
// a slot is available
// printf("[%d] new object \n", availableSlotIx);
this->perceivedObjects[availableSlotIx] = obj;
}
// If this object is closer than the farthest object, then replace it
else if (obj->position.distance <
this->perceivedObjects[farthestObjIx]->position.distance) {
this->perceivedObjects[farthestObjIx] = obj;
// we may want to destroy the fartest object, but if it is created
// externally, other links may still exist...
}
}
unsigned char Perception::PerceivedObjectCount() {
unsigned char objectCount = 0;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
if (this->perceivedObjects[objIx] != nullptr)
objectCount++;
}
return objectCount;
}
PerceivedObject **Perception::GetPerceivedObjects() {
return this->perceivedObjects;
}
void Perception::Update(float currentTimeMs) {
float deltaTime = currentTimeMs - lastUpdateTimeMs;
if (deltaTime <= 0)
return;
lastUpdateTimeMs = currentTimeMs;
// Update sensing
for (unsigned int sensorIx = 0; sensorIx < this->sensorCount; sensorIx++) {
Placement thingPlacement = sensorPlacements[sensorIx];
Thing *thing = thingPlacement.thing;
if (thing == nullptr)
continue;
if (thing->type == Thing::DistanceSensorType) {
DistanceSensor *distanceSensor = (DistanceSensor *)thing;
float distance = distanceSensor->GetDistance();
float angle = thingPlacement.horizontalDirection;
Polar position = Polar(angle, distance);
AddPerceivedObject(distanceSensor, position);
} else if (thing->type == Thing::SwitchType) {
Switch *switchSensor = (Switch *)thing;
if (switchSensor != nullptr && switchSensor->IsOn()) {
Polar position =
Polar(thingPlacement.horizontalDirection, nearbyDistance);
AddPerceivedObject(switchSensor, position);
}
}
}
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
PerceivedObject *obj = perceivedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->DegradeConfidence(deltaTime) == false) {
// delete obj
// printf("[%d] delete object\n", objIx);
if (roboid != nullptr && roboid->networkSync != nullptr)
roboid->networkSync->DestroyObject(obj);
this->perceivedObjects[objIx] = nullptr;
// } else {
// Serial.printf("[%d] confidence: %d\n", objIx,
// this->perceivedObjects[objIx]->confidence);
}
}
if (this->perceivedObjects[0] != nullptr) {
}
}
void Perception::UpdatePose(Polar translation) {
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
PerceivedObject *obj = perceivedObjects[objIx];
if (obj == nullptr)
continue;
Polar newPosition = obj->position - translation;
obj->position = newPosition;
}
}
void Perception::UpdatePose(Quaternion rotation) {
// only rotation around vertical axis is supported for now
float rotationAngle;
Vector3 rotationAxis;
rotation.ToAngleAxis(&rotationAngle, &rotationAxis);
// Make sure rotation axis is positive
if (rotationAxis.y < 0)
rotationAngle = -rotationAngle;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
PerceivedObject *obj = perceivedObjects[objIx];
if (obj == nullptr)
continue;
float updatedAngle = Angle::Normalize(obj->position.angle - rotationAngle);
obj->position.angle = updatedAngle;
}
}