RoboidControl-cpp/Perception.cpp
2024-01-02 11:52:02 +01:00

223 lines
6.6 KiB
C++

#include "Perception.h"
#include "Angle.h"
#include "DistanceSensor.h"
#include "NetworkSync.h"
#include "Switch.h"
#include <math.h>
Perception::Perception() {
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++)
this->trackedObjects[objIx] = nullptr;
}
Perception::Perception(Placement *sensors, unsigned int sensorCount)
: Perception() {
this->sensorCount = sensorCount;
this->sensorPlacements = (Placement *)sensors;
}
unsigned int Perception::GetSensorCount() { return this->sensorCount; }
Sensor *Perception::GetSensor(unsigned int sensorId) {
if (sensorId >= this->sensorCount)
return nullptr;
Thing *thing = this->sensorPlacements[sensorId].thing;
if (thing->IsSensor())
return (Sensor *)thing;
return nullptr;
}
Sensor *Perception::FindSensorOfType(unsigned int sensorType) {
for (unsigned int sensorIx = 0; sensorIx < this->sensorCount; sensorIx++) {
Sensor *sensor = (Sensor *)this->sensorPlacements[sensorIx].thing;
if (sensor->type == sensorType)
return sensor;
}
return nullptr;
}
float Perception::GetDistance(float direction, float range) {
float minDistance = INFINITY;
if (range < 0)
range = -range;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
TrackedObject *obj = trackedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->position.angle > direction - range &&
obj->position.angle < direction + range) {
minDistance = fminf(minDistance, obj->position.distance);
}
}
return minDistance;
}
float Perception::GetDistance(float horizontalDirection,
float verticalDirection, float range) {
float minDistance = INFINITY;
if (range < 0)
range = -range;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
TrackedObject *obj = trackedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->position.angle > horizontalDirection - range &&
obj->position.angle < horizontalDirection + range) {
minDistance = fminf(minDistance, obj->position.distance);
}
}
return minDistance;
}
bool Perception::ObjectNearby(float direction, float range) {
if (range < 0)
range = -range;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
TrackedObject *obj = trackedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->position.angle > direction - range &&
obj->position.angle < direction + range) {
if (obj->position.distance <= nearbyDistance)
return true;
}
}
return false;
}
void Perception::AddTrackedObject(Sensor *sensor, Polar position) {
TrackedObject *obj = new TrackedObject(sensor, position);
unsigned char farthestObjIx = 0;
unsigned char availableSlotIx = 0;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
if (this->trackedObjects[objIx] == nullptr) {
availableSlotIx = objIx;
}
// Do we see the same object?
else {
if (obj->IsTheSameAs(this->trackedObjects[objIx])) {
this->trackedObjects[objIx]->Refresh(obj->position);
return;
}
// Is this the fartest object we see?
else if (this->trackedObjects[farthestObjIx] == nullptr ||
(this->trackedObjects[objIx]->position.distance >
this->trackedObjects[farthestObjIx]->position.distance)) {
farthestObjIx = objIx;
}
}
}
// Check if an perception slot is available (we currently see less than the
// max number of objects)
if (availableSlotIx < maxObjectCount) {
// a slot is available
this->trackedObjects[availableSlotIx] = obj;
}
// If this object is closer than the farthest object, then replace it
else if (obj->position.distance <
this->trackedObjects[farthestObjIx]->position.distance) {
this->trackedObjects[farthestObjIx] = obj;
// we may want to destroy the fartest object, but if it is created
// externally, other links may still exist...
}
}
unsigned char Perception::TrackedObjectCount() {
unsigned char objectCount = 0;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
if (this->trackedObjects[objIx] != nullptr)
objectCount++;
}
return objectCount;
}
TrackedObject **Perception::GetTrackedObjects() { return this->trackedObjects; }
void Perception::Update(float currentTimeMs) {
float deltaTime = currentTimeMs - lastUpdateTimeMs;
if (deltaTime <= 0)
return;
lastUpdateTimeMs = currentTimeMs;
// Update sensing
for (unsigned int sensorIx = 0; sensorIx < this->sensorCount; sensorIx++) {
Placement thingPlacement = sensorPlacements[sensorIx];
Thing *thing = thingPlacement.thing;
if (thing == nullptr)
continue;
if (thing->type == Thing::DistanceSensorType) {
DistanceSensor *distanceSensor = (DistanceSensor *)thing;
float distance = distanceSensor->GetDistance();
float angle = thingPlacement.horizontalDirection;
Polar position = Polar(angle, distance);
AddTrackedObject(distanceSensor, position);
} else if (thing->type == Thing::SwitchType) {
Switch *switchSensor = (Switch *)thing;
if (switchSensor != nullptr && switchSensor->IsOn()) {
Polar position =
Polar(thingPlacement.horizontalDirection, nearbyDistance);
AddTrackedObject(switchSensor, position);
}
}
}
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
TrackedObject *obj = trackedObjects[objIx];
if (obj == nullptr)
continue;
if (obj->DegradeConfidence(deltaTime) == false) {
// delete obj
if (roboid != nullptr && roboid->networkSync != nullptr)
roboid->networkSync->DestroyObject(obj);
this->trackedObjects[objIx] = nullptr;
}
}
if (this->trackedObjects[0] != nullptr) {
}
}
void Perception::UpdatePose(Polar translation) {
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
TrackedObject *obj = trackedObjects[objIx];
if (obj == nullptr)
continue;
Polar newPosition = obj->position - translation;
obj->position = newPosition;
}
}
void Perception::UpdatePose(Quaternion rotation) {
// only rotation around vertical axis is supported for now
float rotationAngle;
Vector3 rotationAxis;
rotation.ToAngleAxis(&rotationAngle, &rotationAxis);
// Make sure rotation axis is positive
if (rotationAxis.y < 0)
rotationAngle = -rotationAngle;
for (unsigned char objIx = 0; objIx < maxObjectCount; objIx++) {
TrackedObject *obj = trackedObjects[objIx];
if (obj == nullptr)
continue;
float updatedAngle = Angle::Normalize(obj->position.angle - rotationAngle);
obj->position.angle = updatedAngle;
}
}