Removed non-subtree(?) LinearAlgebra
This commit is contained in:
parent
d9d64ebc8f
commit
795e4730d0
@ -1,19 +0,0 @@
|
|||||||
# EditorConfig is awesome: https://EditorConfig.org
|
|
||||||
|
|
||||||
# top-most EditorConfig file
|
|
||||||
root = true
|
|
||||||
|
|
||||||
[*]
|
|
||||||
indent_style = space
|
|
||||||
indent_size = 4
|
|
||||||
end_of_line = crlf
|
|
||||||
charset = utf-8
|
|
||||||
trim_trailing_whitespace = false
|
|
||||||
insert_final_newline = false
|
|
||||||
max_line_length = 80
|
|
||||||
|
|
||||||
[*.cs]
|
|
||||||
csharp_new_line_before_open_brace = none
|
|
||||||
# Suppress warnings everywhere
|
|
||||||
dotnet_diagnostic.IDE1006.severity = none
|
|
||||||
dotnet_diagnostic.IDE0130.severity = none
|
|
6
LinearAlgebra/.gitignore
vendored
6
LinearAlgebra/.gitignore
vendored
@ -1,6 +0,0 @@
|
|||||||
DoxyGen/DoxyWarnLogfile.txt
|
|
||||||
.vscode/settings.json
|
|
||||||
**bin
|
|
||||||
**obj
|
|
||||||
**.meta
|
|
||||||
*.sln
|
|
@ -1,110 +0,0 @@
|
|||||||
using System;
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// %Angle utilities
|
|
||||||
/// </summary>
|
|
||||||
public static class Angle {
|
|
||||||
public const float pi = 3.1415927410125732421875F;
|
|
||||||
// public static float Rad2Deg = 360.0f / ((float)Math.PI * 2);
|
|
||||||
// public static float Deg2Rad = ((float)Math.PI * 2) / 360.0f;
|
|
||||||
|
|
||||||
public const float Rad2Deg = 360.0f / ((float)Math.PI * 2); //0.0174532924F;
|
|
||||||
public const float Deg2Rad = ((float)Math.PI * 2) / 360.0f; //57.29578F;
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Clamp the angle between the given min and max values
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="angle">The angle to clamp</param>
|
|
||||||
/// <param name="min">The minimum angle</param>
|
|
||||||
/// <param name="max">The maximum angle</param>
|
|
||||||
/// <returns>The clamped angle</returns>
|
|
||||||
/// Angles are normalized
|
|
||||||
public static float Clamp(float angle, float min, float max) {
|
|
||||||
float normalizedAngle = Normalize(angle);
|
|
||||||
return Float.Clamp(normalizedAngle, min, max);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Determine the angle difference, result is a normalized angle
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="a">First first angle</param>
|
|
||||||
/// <param name="b">The second angle</param>
|
|
||||||
/// <returns>the angle between the two angles</returns>
|
|
||||||
/// Angle values should be degrees
|
|
||||||
public static float Difference(float a, float b) {
|
|
||||||
float r = Normalize(b - a);
|
|
||||||
return r;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Normalize an angle to the range -180 < angle <= 180
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="angle">The angle to normalize</param>
|
|
||||||
/// <returns>The normalized angle in interval (-180..180] </returns>
|
|
||||||
/// Angle values should be in degrees
|
|
||||||
public static float Normalize(float angle) {
|
|
||||||
if (float.IsInfinity(angle))
|
|
||||||
return angle;
|
|
||||||
|
|
||||||
while (angle <= -180) angle += 360;
|
|
||||||
while (angle > 180) angle -= 360;
|
|
||||||
return angle;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Rotate from one angle to the other with a maximum degrees
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="fromAngle">Starting angle</param>
|
|
||||||
/// <param name="toAngle">Target angle</param>
|
|
||||||
/// <param name="maxAngle">Maximum angle to rotate</param>
|
|
||||||
/// <returns>The resulting angle</returns>
|
|
||||||
/// This function is compatible with radian and degrees angles
|
|
||||||
public static float MoveTowards(float fromAngle, float toAngle, float maxAngle) {
|
|
||||||
float d = toAngle - fromAngle;
|
|
||||||
d = Normalize(d);
|
|
||||||
d = Math.Sign(d) * Float.Clamp(Math.Abs(d), 0, maxAngle);
|
|
||||||
return fromAngle + d;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Map interval of angles between vectors [0..Pi] to interval [0..1]
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns>The resulting factor in interval [0..1]</returns>
|
|
||||||
/// Vectors a and b must be normalized
|
|
||||||
/// \deprecated Please use Vector2.ToFactor instead.
|
|
||||||
[Obsolete("Please use Vector2.ToFactor instead.")]
|
|
||||||
public static float ToFactor(Vector2 v1, Vector2 v2) {
|
|
||||||
return (1 - Vector2.Dot(v1, v2)) / 2;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Normalize all vector angles to the range -180 < angle < 180
|
|
||||||
//public static Vector3 Normalize(Vector3 angles) {
|
|
||||||
// float x = Normalize(angles.x);
|
|
||||||
// float y = Normalize(angles.y);
|
|
||||||
// float z = Normalize(angles.z);
|
|
||||||
// return new Vector3(x, y, z);
|
|
||||||
//}
|
|
||||||
|
|
||||||
// Returns the signed angle in degrees between from and to.
|
|
||||||
//public static float SignedAngle(Vector3 from, Vector3 to) {
|
|
||||||
// float angle = Vector3.Angle(from, to);
|
|
||||||
// Vector3 cross = Vector3.Cross(from, to);
|
|
||||||
// if (cross.y < 0) angle = -angle;
|
|
||||||
// return angle;
|
|
||||||
//}
|
|
||||||
|
|
||||||
// Returns the signed angle in degrees between from and to.
|
|
||||||
//public static float SignedAngle(Vector2 from, Vector2 to) {
|
|
||||||
// float sign = Math.Sign(from.y * to.x - from.x * to.y);
|
|
||||||
// return Vector2.Angle(from, to) * sign;
|
|
||||||
//}
|
|
||||||
|
|
||||||
//public static Quaternion ToQuaternion(Rotation orientation) {
|
|
||||||
// return new Quaternion(orientation.x, orientation.y, orientation.z, orientation.w);
|
|
||||||
//}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,287 +0,0 @@
|
|||||||
using System;
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
class QR {
|
|
||||||
// QR Decomposition of a matrix A
|
|
||||||
public static (Matrix2 Q, Matrix2 R) Decomposition(Matrix2 A) {
|
|
||||||
int nRows = A.nRows;
|
|
||||||
int nCols = A.nCols;
|
|
||||||
|
|
||||||
float[,] Q = new float[nRows, nCols];
|
|
||||||
float[,] R = new float[nCols, nCols];
|
|
||||||
|
|
||||||
// Perform Gram-Schmidt orthogonalization
|
|
||||||
for (uint colIx = 0; colIx < nCols; colIx++) {
|
|
||||||
|
|
||||||
// Step 1: v = column(ix) of A
|
|
||||||
float[] v = new float[nRows];
|
|
||||||
for (int rowIx = 0; rowIx < nRows; rowIx++)
|
|
||||||
v[rowIx] = A.data[rowIx, colIx];
|
|
||||||
|
|
||||||
// Step 2: Subtract projections of v onto previous q's (orthogonalize)
|
|
||||||
for (uint colIx2 = 0; colIx2 < colIx; colIx2++) {
|
|
||||||
float dotProd = 0;
|
|
||||||
for (int i = 0; i < nRows; i++)
|
|
||||||
dotProd += Q[i, colIx2] * v[i];
|
|
||||||
for (int i = 0; i < nRows; i++)
|
|
||||||
v[i] -= dotProd * Q[i, colIx2];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Step 3: Normalize v to get column(ix) of Q
|
|
||||||
float norm = 0;
|
|
||||||
for (int rowIx = 0; rowIx < nRows; rowIx++)
|
|
||||||
norm += v[rowIx] * v[rowIx];
|
|
||||||
norm = (float)Math.Sqrt(norm);
|
|
||||||
|
|
||||||
for (int rowIx = 0; rowIx < nRows; rowIx++)
|
|
||||||
Q[rowIx, colIx] = v[rowIx] / norm;
|
|
||||||
|
|
||||||
// Store the coefficients of R
|
|
||||||
for (int colIx2 = 0; colIx2 <= colIx; colIx2++) {
|
|
||||||
R[colIx2, colIx] = 0;
|
|
||||||
for (int k = 0; k < nRows; k++)
|
|
||||||
R[colIx2, colIx] += Q[k, colIx2] * A.data[k, colIx];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return (new Matrix2(Q), new Matrix2(R));
|
|
||||||
}
|
|
||||||
|
|
||||||
// Reduced QR Decomposition of a matrix A
|
|
||||||
public static (Matrix2 Q, Matrix2 R) ReducedDecomposition(Matrix2 A) {
|
|
||||||
int nRows = A.nRows;
|
|
||||||
int nCols = A.nCols;
|
|
||||||
|
|
||||||
float[,] Q = new float[nRows, nCols];
|
|
||||||
float[,] R = new float[nCols, nCols];
|
|
||||||
|
|
||||||
// Perform Gram-Schmidt orthogonalization
|
|
||||||
for (int colIx = 0; colIx < nCols; colIx++) {
|
|
||||||
|
|
||||||
// Step 1: v = column(colIx) of A
|
|
||||||
float[] columnIx = new float[nRows];
|
|
||||||
bool isZeroColumn = true;
|
|
||||||
for (int rowIx = 0; rowIx < nRows; rowIx++) {
|
|
||||||
columnIx[rowIx] = A.data[rowIx, colIx];
|
|
||||||
if (columnIx[rowIx] != 0)
|
|
||||||
isZeroColumn = false;
|
|
||||||
}
|
|
||||||
if (isZeroColumn) {
|
|
||||||
for (int rowIx = 0; rowIx < nRows; rowIx++)
|
|
||||||
Q[rowIx, colIx] = 0;
|
|
||||||
// Set corresponding R element to 0
|
|
||||||
R[colIx, colIx] = 0;
|
|
||||||
|
|
||||||
Console.WriteLine($"zero column {colIx}");
|
|
||||||
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Step 2: Subtract projections of v onto previous q's (orthogonalize)
|
|
||||||
for (int colIx2 = 0; colIx2 < colIx; colIx2++) {
|
|
||||||
// Compute the dot product of v and column(colIx2) of Q
|
|
||||||
float dotProduct = 0;
|
|
||||||
for (int rowIx2 = 0; rowIx2 < nRows; rowIx2++)
|
|
||||||
dotProduct += columnIx[rowIx2] * Q[rowIx2, colIx2];
|
|
||||||
// Subtract the projection from v
|
|
||||||
for (int rowIx2 = 0; rowIx2 < nRows; rowIx2++)
|
|
||||||
columnIx[rowIx2] -= dotProduct * Q[rowIx2, colIx2];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Step 3: Normalize v to get column(colIx) of Q
|
|
||||||
float norm = 0;
|
|
||||||
for (int rowIx = 0; rowIx < nRows; rowIx++)
|
|
||||||
norm += columnIx[rowIx] * columnIx[rowIx];
|
|
||||||
if (norm == 0)
|
|
||||||
throw new Exception("invalid value");
|
|
||||||
|
|
||||||
norm = (float)Math.Sqrt(norm);
|
|
||||||
|
|
||||||
for (int rowIx = 0; rowIx < nRows; rowIx++)
|
|
||||||
Q[rowIx, colIx] = columnIx[rowIx] / norm;
|
|
||||||
|
|
||||||
// Here is where it deviates from the Full QR Decomposition !
|
|
||||||
|
|
||||||
// Step 4: Compute the row(colIx) of R
|
|
||||||
for (int colIx2 = colIx; colIx2 < nCols; colIx2++) {
|
|
||||||
float dotProduct = 0;
|
|
||||||
for (int rowIx2 = 0; rowIx2 < nRows; rowIx2++)
|
|
||||||
dotProduct += Q[rowIx2, colIx] * A.data[rowIx2, colIx2];
|
|
||||||
R[colIx, colIx2] = dotProduct;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (!float.IsFinite(R[0, 0]))
|
|
||||||
throw new Exception("invalid value");
|
|
||||||
|
|
||||||
return (new Matrix2(Q), new Matrix2(R));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
class SVD {
|
|
||||||
// According to ChatGPT, Mathnet uses Golub-Reinsch SVD algorithm
|
|
||||||
// 1. Bidiagonalization: The input matrix AA is reduced to a bidiagonal form using Golub-Kahan bidiagonalization.
|
|
||||||
// This process involves applying a sequence of Householder reflections to AA to create a bidiagonal matrix.
|
|
||||||
// This step reduces the complexity by making the matrix simpler while retaining the essential structure needed for SVD.
|
|
||||||
//
|
|
||||||
// 2. Diagonalization: Once the matrix is in bidiagonal form,
|
|
||||||
// the singular values are computed using an iterative process
|
|
||||||
// (typically involving QR factorization or Jacobi rotations) until convergence.
|
|
||||||
// This process diagonalizes the bidiagonal matrix and allows extraction of the singular values.
|
|
||||||
//
|
|
||||||
// 3. Computing UU and VTVT: After obtaining the singular values,
|
|
||||||
// the left singular vectors UU and right singular vectors VTVT are computed
|
|
||||||
// using the accumulated transformations (such as Householder reflections) from the bidiagonalization step.
|
|
||||||
|
|
||||||
// Bidiagnolizations through Householder transformations
|
|
||||||
public static (Matrix2 U1, Matrix2 B, Matrix2 V1) Bidiagonalization(Matrix2 A) {
|
|
||||||
int m = A.nRows; // Rows of A
|
|
||||||
int n = A.nCols; // Columns of A
|
|
||||||
float[,] U1 = new float[m, m]; // Left orthogonal matrix
|
|
||||||
float[,] V1 = new float[n, n]; // Right orthogonal matrix
|
|
||||||
float[,] B = A.Clone().data; // Copy A to B for transformation
|
|
||||||
|
|
||||||
// Initialize U1 and V1 as identity matrices
|
|
||||||
for (int i = 0; i < m; i++)
|
|
||||||
U1[i, i] = 1;
|
|
||||||
for (int i = 0; i < n; i++)
|
|
||||||
V1[i, i] = 1;
|
|
||||||
|
|
||||||
// Perform Householder reflections to create a bidiagonal matrix B
|
|
||||||
for (int j = 0; j < n; j++) {
|
|
||||||
// Step 1: Construct the Householder vector y
|
|
||||||
float[] y = new float[m - j];
|
|
||||||
for (int i = j; i < m; i++)
|
|
||||||
y[i - j] = B[i, j];
|
|
||||||
|
|
||||||
// Step 2: Compute the norm and scalar alpha
|
|
||||||
float norm = 0;
|
|
||||||
for (int i = 0; i < y.Length; i++)
|
|
||||||
norm += y[i] * y[i];
|
|
||||||
norm = (float)Math.Sqrt(norm);
|
|
||||||
|
|
||||||
if (B[j, j] > 0)
|
|
||||||
norm = -norm;
|
|
||||||
|
|
||||||
float alpha = (float)Math.Sqrt(0.5 * (norm * (norm - B[j, j])));
|
|
||||||
float r = (float)Math.Sqrt(0.5 * (norm * (norm + B[j, j])));
|
|
||||||
|
|
||||||
// Step 3: Apply the reflection to zero out below diagonal
|
|
||||||
for (int k = j; k < n; k++) {
|
|
||||||
float dot = 0;
|
|
||||||
for (int i = j; i < m; i++)
|
|
||||||
dot += y[i - j] * B[i, k];
|
|
||||||
dot /= r;
|
|
||||||
|
|
||||||
for (int i = j; i < m; i++)
|
|
||||||
B[i, k] -= 2 * dot * y[i - j];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Step 4: Update U1 with the Householder reflection (U1 * Householder)
|
|
||||||
for (int i = j; i < m; i++)
|
|
||||||
U1[i, j] = y[i - j] / alpha;
|
|
||||||
|
|
||||||
// Step 5: Update V1 (storing the Householder vector y)
|
|
||||||
// Correct indexing: we only need to store part of y in V1 from index j to n
|
|
||||||
for (int i = j; i < n; i++)
|
|
||||||
V1[j, i] = B[j, i];
|
|
||||||
|
|
||||||
// Repeat steps for further columns if necessary
|
|
||||||
}
|
|
||||||
return (new Matrix2(U1), new Matrix2(B), new Matrix2(V1));
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 Bidiagonalize(Matrix2 A) {
|
|
||||||
int m = A.nRows; // Rows of A
|
|
||||||
int n = A.nCols; // Columns of A
|
|
||||||
float[,] B = A.Clone().data; // Copy A to B for transformation
|
|
||||||
|
|
||||||
// Perform Householder reflections to create a bidiagonal matrix B
|
|
||||||
for (int j = 0; j < n; j++) {
|
|
||||||
// Step 1: Construct the Householder vector y
|
|
||||||
float[] y = new float[m - j];
|
|
||||||
for (int i = j; i < m; i++)
|
|
||||||
y[i - j] = B[i, j];
|
|
||||||
|
|
||||||
// Step 2: Compute the norm and scalar alpha
|
|
||||||
float norm = 0;
|
|
||||||
for (int i = 0; i < y.Length; i++)
|
|
||||||
norm += y[i] * y[i];
|
|
||||||
norm = (float)Math.Sqrt(norm);
|
|
||||||
|
|
||||||
if (B[j, j] > 0)
|
|
||||||
norm = -norm;
|
|
||||||
|
|
||||||
float r = (float)Math.Sqrt(0.5 * (norm * (norm + B[j, j])));
|
|
||||||
|
|
||||||
// Step 3: Apply the reflection to zero out below diagonal
|
|
||||||
for (int k = j; k < n; k++) {
|
|
||||||
float dot = 0;
|
|
||||||
for (int i = j; i < m; i++)
|
|
||||||
dot += y[i - j] * B[i, k];
|
|
||||||
dot /= r;
|
|
||||||
|
|
||||||
for (int i = j; i < m; i++)
|
|
||||||
B[i, k] -= 2 * dot * y[i - j];
|
|
||||||
}
|
|
||||||
|
|
||||||
// Repeat steps for further columns if necessary
|
|
||||||
}
|
|
||||||
return new Matrix2(B);
|
|
||||||
}
|
|
||||||
|
|
||||||
// QR Iteration for diagonalization of a bidiagonal matrix B
|
|
||||||
public static (Matrix1 singularValues, Matrix2 U, Matrix2 Vt) QRIteration(Matrix2 B) {
|
|
||||||
int m = B.nRows;
|
|
||||||
int n = B.nCols;
|
|
||||||
|
|
||||||
Matrix2 U = new(m, m); // Left singular vectors (U)
|
|
||||||
Matrix2 Vt = new(n, n); // Right singular vectors (V^T)
|
|
||||||
float[] singularValues = new float[Math.Min(m, n)]; // Singular values
|
|
||||||
|
|
||||||
// Initialize U and Vt as identity matrices
|
|
||||||
for (int i = 0; i < m; i++)
|
|
||||||
U.data[i, i] = 1;
|
|
||||||
for (int i = 0; i < n; i++)
|
|
||||||
Vt.data[i, i] = 1;
|
|
||||||
|
|
||||||
// Perform QR iterations
|
|
||||||
float tolerance = 1e-7f; //1e-12f; for double
|
|
||||||
bool converged = false;
|
|
||||||
while (!converged) {
|
|
||||||
// Perform QR decomposition on the matrix B
|
|
||||||
(Matrix2 Q, Matrix2 R) = QR.Decomposition(B);
|
|
||||||
|
|
||||||
// Update B to be the product Q * R //R * Q
|
|
||||||
B = R * Q;
|
|
||||||
|
|
||||||
// Accumulate the transformations in U and Vt
|
|
||||||
U *= Q;
|
|
||||||
Vt *= R;
|
|
||||||
|
|
||||||
// Check convergence by looking at the off-diagonal elements of B
|
|
||||||
converged = true;
|
|
||||||
for (int i = 0; i < m - 1; i++) {
|
|
||||||
for (int j = i + 1; j < n; j++) {
|
|
||||||
if (Math.Abs(B.data[i, j]) > tolerance) {
|
|
||||||
converged = false;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Extract singular values (diagonal elements of B)
|
|
||||||
for (int i = 0; i < Math.Min(m, n); i++)
|
|
||||||
singularValues[i] = B.data[i, i];
|
|
||||||
|
|
||||||
return (new Matrix1(singularValues), U, Vt);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static (Matrix2 U, Matrix1 S, Matrix2 Vt) Decomposition(Matrix2 A) {
|
|
||||||
if (A.nRows != A.nCols)
|
|
||||||
throw new ArgumentException("SVD: matrix A has to be square.");
|
|
||||||
|
|
||||||
Matrix2 B = Bidiagonalize(A);
|
|
||||||
(Matrix1 S, Matrix2 U, Matrix2 Vt) = QRIteration(B);
|
|
||||||
return (U, S, Vt);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,83 +0,0 @@
|
|||||||
using System;
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
using Vector3Float = UnityEngine.Vector3;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
namespace LinearAlgebra
|
|
||||||
{
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// A direction in 3D space
|
|
||||||
/// </summary>
|
|
||||||
/// A direction is represented using two angles:
|
|
||||||
/// * The horizontal angle ranging from -180 (inclusive) to 180 (exclusive)
|
|
||||||
/// degrees which is a rotation in the horizontal plane
|
|
||||||
/// * A vertical angle ranging from -90 (inclusive) to 90 (exclusive) degrees
|
|
||||||
/// which is the rotation in the up/down direction applied after the horizontal
|
|
||||||
/// rotation has been applied.
|
|
||||||
/// The angles are automatically normalized to stay within the abovenmentioned
|
|
||||||
/// ranges.
|
|
||||||
public class Direction {
|
|
||||||
public float horizontal;
|
|
||||||
public float vertical;
|
|
||||||
|
|
||||||
public Direction() {
|
|
||||||
horizontal = 0;
|
|
||||||
vertical = 0;
|
|
||||||
}
|
|
||||||
// public Direction(float horizontal, float vertical) {
|
|
||||||
// this.horizontal = horizontal;
|
|
||||||
// this.vertical = vertical;
|
|
||||||
// //Normalize();
|
|
||||||
// }
|
|
||||||
|
|
||||||
public static Direction Degrees(float horizontal, float vertical) {
|
|
||||||
Direction d = new() {
|
|
||||||
horizontal = horizontal,
|
|
||||||
vertical = vertical
|
|
||||||
};
|
|
||||||
//Normalize();
|
|
||||||
return d;
|
|
||||||
}
|
|
||||||
public static Direction Radians(float horizontal, float vertical) {
|
|
||||||
Direction d = new() {
|
|
||||||
horizontal = horizontal * Angle.Rad2Deg,
|
|
||||||
vertical = vertical * Angle.Rad2Deg
|
|
||||||
};
|
|
||||||
//Normalize();
|
|
||||||
return d;
|
|
||||||
}
|
|
||||||
|
|
||||||
public readonly static Direction forward = Degrees(0, 0);
|
|
||||||
public readonly static Direction backward = Degrees(-180, 0);
|
|
||||||
public readonly static Direction up = Degrees(0, 90);
|
|
||||||
public readonly static Direction down = Degrees(0, -90);
|
|
||||||
public readonly static Direction left = Degrees(-90, 0);
|
|
||||||
public readonly static Direction right = Degrees(90, 0);
|
|
||||||
|
|
||||||
public void Normalize() {
|
|
||||||
if (this.vertical > 90 || this.vertical < -90) {
|
|
||||||
this.horizontal += 180;
|
|
||||||
this.vertical = 180 - this.vertical;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public Vector3Float ToVector3()
|
|
||||||
{
|
|
||||||
float verticalRad = (Angle.pi / 2) - this.vertical * Angle.Deg2Rad;
|
|
||||||
float horizontalRad = this.horizontal * Angle.Deg2Rad;
|
|
||||||
float cosVertical = (float)Math.Cos(verticalRad);
|
|
||||||
float sinVertical = (float)Math.Sin(verticalRad);
|
|
||||||
float cosHorizontal = (float)Math.Cos(horizontalRad);
|
|
||||||
float sinHorizontal = (float)Math.Sin(horizontalRad);
|
|
||||||
|
|
||||||
float x = sinVertical * sinHorizontal;
|
|
||||||
float y = cosVertical;
|
|
||||||
float z = sinVertical * cosHorizontal;
|
|
||||||
|
|
||||||
Vector3Float v = new(x, y, z);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@ -1,41 +0,0 @@
|
|||||||
namespace LinearAlgebra {
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Float number utilities
|
|
||||||
/// </summary>
|
|
||||||
public class Float {
|
|
||||||
/// <summary>
|
|
||||||
/// The precision of float numbers
|
|
||||||
/// </summary>
|
|
||||||
public const float epsilon = 1E-05f;
|
|
||||||
/// <summary>
|
|
||||||
/// The square of the float number precision
|
|
||||||
/// </summary>
|
|
||||||
public const float sqrEpsilon = 1e-10f;
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Clamp the value between the given minimum and maximum values
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="f">The value to clamp</param>
|
|
||||||
/// <param name="min">The minimum value</param>
|
|
||||||
/// <param name="max">The maximum value</param>
|
|
||||||
/// <returns>The clamped value</returns>
|
|
||||||
public static float Clamp(float f, float min, float max) {
|
|
||||||
if (f < min)
|
|
||||||
return min;
|
|
||||||
if (f > max)
|
|
||||||
return max;
|
|
||||||
return f;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Clamp the value between to the interval [0..1]
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="f">The value to clamp</param>
|
|
||||||
/// <returns>The clamped value</returns>
|
|
||||||
public static float Clamp01(float f) {
|
|
||||||
return Clamp(f, 0, 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@ -1,14 +0,0 @@
|
|||||||
<Project Sdk="Microsoft.NET.Sdk">
|
|
||||||
|
|
||||||
<PropertyGroup>
|
|
||||||
<GenerateAssemblyInfo>false</GenerateAssemblyInfo>
|
|
||||||
<GenerateTargetFrameworkAttribute>false</GenerateTargetFrameworkAttribute>
|
|
||||||
<TargetFramework>net5.0</TargetFramework>
|
|
||||||
</PropertyGroup>
|
|
||||||
|
|
||||||
<ItemGroup>
|
|
||||||
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.13.0" />
|
|
||||||
<PackageReference Include="NUnit" Version="3.13.2" />
|
|
||||||
</ItemGroup>
|
|
||||||
|
|
||||||
</Project>
|
|
@ -1,689 +0,0 @@
|
|||||||
using System;
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
using Vector3Float = UnityEngine.Vector3;
|
|
||||||
using Vector2Float = UnityEngine.Vector2;
|
|
||||||
using Quaternion = UnityEngine.Quaternion;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
|
|
||||||
public readonly struct Slice
|
|
||||||
{
|
|
||||||
public int start { get; }
|
|
||||||
public int stop { get; }
|
|
||||||
public Slice(int start, int stop)
|
|
||||||
{
|
|
||||||
this.start = start;
|
|
||||||
this.stop = stop;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public class Matrix2 {
|
|
||||||
public float[,] data { get; }
|
|
||||||
|
|
||||||
public int nRows => data.GetLength(0);
|
|
||||||
public int nCols => data.GetLength(1);
|
|
||||||
|
|
||||||
public Matrix2(int nRows, int nCols)
|
|
||||||
{
|
|
||||||
this.data = new float[nRows, nCols];
|
|
||||||
}
|
|
||||||
public Matrix2(float[,] data) {
|
|
||||||
this.data = data;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix2 Clone() {
|
|
||||||
float[,] data = new float[this.nRows, nCols];
|
|
||||||
for (int rowIx = 0; rowIx < this.nRows; rowIx++) {
|
|
||||||
for (int colIx = 0; colIx < this.nCols; colIx++)
|
|
||||||
data[rowIx, colIx] = this.data[rowIx, colIx];
|
|
||||||
}
|
|
||||||
return new Matrix2(data);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 Zero(int nRows, int nCols)
|
|
||||||
{
|
|
||||||
return new Matrix2(nRows, nCols);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 FromVector3(Vector3Float v) {
|
|
||||||
float[,] result = new float[3, 1];
|
|
||||||
result[0, 0] = v.x;
|
|
||||||
result[1, 0] = v.y;
|
|
||||||
result[2, 0] = v.z;
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 Identity(int size)
|
|
||||||
{
|
|
||||||
return Diagonal(1, size);
|
|
||||||
}
|
|
||||||
public static Matrix2 Identity(int nRows, int nCols)
|
|
||||||
{
|
|
||||||
Matrix2 m = Zero(nRows, nCols);
|
|
||||||
m.FillDiagonal(1);
|
|
||||||
return m;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 Diagonal(Matrix1 v) {
|
|
||||||
float[,] resultData = new float[v.size, v.size];
|
|
||||||
for (int ix = 0; ix < v.size; ix++)
|
|
||||||
resultData[ix, ix] = v.data[ix];
|
|
||||||
return new Matrix2(resultData);
|
|
||||||
}
|
|
||||||
public static Matrix2 Diagonal(float f, int size)
|
|
||||||
{
|
|
||||||
float[,] resultData = new float[size, size];
|
|
||||||
for (int ix = 0; ix < size; ix++)
|
|
||||||
resultData[ix, ix] = f;
|
|
||||||
return new Matrix2(resultData);
|
|
||||||
}
|
|
||||||
public void FillDiagonal(Matrix1 v)
|
|
||||||
{
|
|
||||||
int n = (int)Math.Min(Math.Min(this.nRows, this.nCols), v.size);
|
|
||||||
for (int ix = 0; ix < n; ix++)
|
|
||||||
this.data[ix, ix] = v.data[ix];
|
|
||||||
}
|
|
||||||
public void FillDiagonal(float f)
|
|
||||||
{
|
|
||||||
int n = Math.Min(this.nRows, this.nCols);
|
|
||||||
for (int ix = 0; ix < n; ix++)
|
|
||||||
this.data[ix, ix] = f;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 SkewMatrix(Vector3Float v) {
|
|
||||||
float[,] result = new float[3, 3] {
|
|
||||||
{0, -v.z, v.y},
|
|
||||||
{v.z, 0, -v.x},
|
|
||||||
{-v.y, v.x, 0}
|
|
||||||
};
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix1 GetRow(int rowIx) {
|
|
||||||
float[] row = new float[this.nCols];
|
|
||||||
for (int colIx = 0; colIx < this.nCols; colIx++) {
|
|
||||||
row[colIx] = this.data[rowIx, colIx];
|
|
||||||
}
|
|
||||||
return new Matrix1(row);
|
|
||||||
}
|
|
||||||
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
public Vector3Float GetRow3(int rowIx) {
|
|
||||||
int cols = this.nCols;
|
|
||||||
Vector3Float row = new() {
|
|
||||||
x = this.data[rowIx, 0],
|
|
||||||
y = this.data[rowIx, 1],
|
|
||||||
z = this.data[rowIx, 2]
|
|
||||||
};
|
|
||||||
return row;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
public void SetRow(int rowIx, Matrix1 v) {
|
|
||||||
for (uint ix = 0; ix < v.size; ix++)
|
|
||||||
this.data[rowIx, ix] = v.data[ix];
|
|
||||||
}
|
|
||||||
public void SetRow3(int rowIx, Vector3Float v) {
|
|
||||||
this.data[rowIx, 0] = v.x;
|
|
||||||
this.data[rowIx, 1] = v.y;
|
|
||||||
this.data[rowIx, 2] = v.z;
|
|
||||||
}
|
|
||||||
|
|
||||||
public void SwapRows(int row1, int row2) {
|
|
||||||
for (uint ix = 0; ix < this.nCols; ix++) {
|
|
||||||
float temp = this.data[row1, ix];
|
|
||||||
this.data[row1, ix] = this.data[row2, ix];
|
|
||||||
this.data[row2, ix] = temp;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix1 GetColumn(int colIx)
|
|
||||||
{
|
|
||||||
float[] column = new float[this.nRows];
|
|
||||||
for (int i = 0; i < this.nRows; i++) {
|
|
||||||
column[i] = this.data[i, colIx];
|
|
||||||
}
|
|
||||||
return new Matrix1(column);
|
|
||||||
}
|
|
||||||
public void SetColumn(int colIx, Matrix1 v) {
|
|
||||||
for (uint ix = 0; ix < v.size; ix++)
|
|
||||||
this.data[ix, colIx] = v.data[ix];
|
|
||||||
}
|
|
||||||
public void SetColumn(int colIx, Vector3Float v) {
|
|
||||||
this.data[0, colIx] = v.x;
|
|
||||||
this.data[1, colIx] = v.y;
|
|
||||||
this.data[2, colIx] = v.z;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static bool AllClose(Matrix2 A, Matrix2 B, float atol = 1e-08f) {
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < A.nCols; j++) {
|
|
||||||
float d = MathF.Abs(A.data[i, j] - B.data[i, j]);
|
|
||||||
if (d > atol)
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix2 Transpose() {
|
|
||||||
float[,] resultData = new float[this.nCols, this.nRows];
|
|
||||||
for (uint rowIx = 0; rowIx < this.nRows; rowIx++) {
|
|
||||||
for (uint colIx = 0; colIx < this.nCols; colIx++)
|
|
||||||
resultData[colIx, rowIx] = this.data[rowIx, colIx];
|
|
||||||
}
|
|
||||||
return new Matrix2(resultData);
|
|
||||||
// double checked code
|
|
||||||
}
|
|
||||||
public Matrix2 transposed {
|
|
||||||
get => Transpose();
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 operator -(Matrix2 m) {
|
|
||||||
float[,] result = new float[m.nRows, m.nCols];
|
|
||||||
|
|
||||||
for (int i = 0; i < m.nRows; i++) {
|
|
||||||
for (int j = 0; j < m.nCols; j++)
|
|
||||||
result[i, j] = -m.data[i, j];
|
|
||||||
}
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 operator -(Matrix2 A, Matrix2 B) {
|
|
||||||
if (A.nRows != B.nRows || A.nCols != B.nCols)
|
|
||||||
throw new System.ArgumentException("Size of A must match size of B.");
|
|
||||||
|
|
||||||
float[,] result = new float[A.nRows, B.nCols];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < A.nCols; j++)
|
|
||||||
result[i, j] = A.data[i, j] - B.data[i, j];
|
|
||||||
}
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 operator +(Matrix2 A, Matrix2 B) {
|
|
||||||
if (A.nRows != B.nRows || A.nCols != B.nCols)
|
|
||||||
throw new System.ArgumentException("Size of A must match size of B.");
|
|
||||||
|
|
||||||
float[,] result = new float[A.nRows, B.nCols];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < A.nCols; j++)
|
|
||||||
result[i, j] = A.data[i, j] + B.data[i, j];
|
|
||||||
}
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 operator *(Matrix2 A, Matrix2 B) {
|
|
||||||
if (A.nCols != B.nRows)
|
|
||||||
throw new System.ArgumentException("Number of columns in A must match number of rows in B.");
|
|
||||||
|
|
||||||
float[,] result = new float[A.nRows, B.nCols];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < B.nCols; j++) {
|
|
||||||
float sum = 0.0f;
|
|
||||||
for (int k = 0; k < A.nCols; k++)
|
|
||||||
sum += A.data[i, k] * B.data[k, j];
|
|
||||||
|
|
||||||
result[i, j] = sum;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(result);
|
|
||||||
// double checked code
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix1 operator *(Matrix2 A, Matrix1 v) {
|
|
||||||
float[] result = new float[A.nRows];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < A.nCols; j++) {
|
|
||||||
result[i] += A.data[i, j] * v.data[j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3Float operator *(Matrix2 A, Vector3Float v) {
|
|
||||||
return new Vector3Float(
|
|
||||||
A.data[0, 0] * v.x + A.data[0, 1] * v.y + A.data[0, 2] * v.z,
|
|
||||||
A.data[1, 0] * v.x + A.data[1, 1] * v.y + A.data[1, 2] * v.z,
|
|
||||||
A.data[2, 0] * v.x + A.data[2, 1] * v.y + A.data[2, 2] * v.z
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 operator *(Matrix2 A, float s) {
|
|
||||||
float[,] result = new float[A.nRows, A.nCols];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < A.nCols; j++)
|
|
||||||
result[i, j] = A.data[i, j] * s;
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
public static Matrix2 operator *(float s, Matrix2 A) {
|
|
||||||
return A * s;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 operator /(Matrix2 A, float s) {
|
|
||||||
float[,] result = new float[A.nRows, A.nCols];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < A.nCols; j++)
|
|
||||||
result[i, j] = A.data[i, j] / s;
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
public static Matrix2 operator /(float s, Matrix2 A) {
|
|
||||||
float[,] result = new float[A.nRows, A.nCols];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
for (int j = 0; j < A.nCols; j++)
|
|
||||||
result[i, j] = s / A.data[i, j];
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix2 GetRows(Slice slice) {
|
|
||||||
return GetRows(slice.start, slice.stop);
|
|
||||||
}
|
|
||||||
public Matrix2 GetRows(int from, int to) {
|
|
||||||
if (from < 0 || to >= this.nRows)
|
|
||||||
throw new System.ArgumentException("Slice index out of range.");
|
|
||||||
|
|
||||||
float[,] result = new float[to - from, this.nCols];
|
|
||||||
int resultRowIx = 0;
|
|
||||||
for (int rowIx = from; rowIx < to; rowIx++) {
|
|
||||||
for (int colIx = 0; colIx < this.nCols; colIx++)
|
|
||||||
result[resultRowIx, colIx] = this.data[rowIx, colIx];
|
|
||||||
|
|
||||||
resultRowIx++;
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix2 Slice(Slice slice)
|
|
||||||
{
|
|
||||||
return Slice(slice.start, slice.stop);
|
|
||||||
}
|
|
||||||
public Matrix2 Slice(int from, int to)
|
|
||||||
{
|
|
||||||
if (from < 0 || to >= this.nRows)
|
|
||||||
throw new System.ArgumentException("Slice index out of range.");
|
|
||||||
|
|
||||||
float[,] result = new float[to - from, this.nCols];
|
|
||||||
int resultRowIx = 0;
|
|
||||||
for (int rowIx = from; rowIx < to; rowIx++)
|
|
||||||
{
|
|
||||||
for (int colIx = 0; colIx < this.nCols; colIx++)
|
|
||||||
{
|
|
||||||
result[resultRowIx, colIx] = this.data[rowIx, colIx];
|
|
||||||
}
|
|
||||||
resultRowIx++;
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
public Matrix2 Slice(Slice rowRange, Slice colRange) {
|
|
||||||
return Slice((rowRange.start, rowRange.stop), (colRange.start, colRange.stop));
|
|
||||||
}
|
|
||||||
public Matrix2 Slice((int start, int stop) rowRange, (int start, int stop) colRange)
|
|
||||||
{
|
|
||||||
float[,] result = new float[rowRange.stop - rowRange.start, colRange.stop - colRange.start];
|
|
||||||
|
|
||||||
int resultRowIx = 0;
|
|
||||||
int resultColIx = 0;
|
|
||||||
for (int i = rowRange.start; i < rowRange.stop; i++)
|
|
||||||
{
|
|
||||||
for (int j = colRange.start; j < colRange.stop; j++)
|
|
||||||
result[resultRowIx, resultColIx] = this.data[i, j];
|
|
||||||
}
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public void UpdateSlice(Slice slice, Matrix2 m) {
|
|
||||||
UpdateSlice((slice.start, slice.stop), m);
|
|
||||||
}
|
|
||||||
public void UpdateSlice((int start, int stop) slice, Matrix2 m) {
|
|
||||||
// if (slice.start == slice.stop)
|
|
||||||
// Console.WriteLine("WARNING: no data is updates when start equals stop in a slice!");
|
|
||||||
int mRowIx = 0;
|
|
||||||
for (int rowIx = slice.start; rowIx < slice.stop; rowIx++, mRowIx++) {
|
|
||||||
for (int colIx = 0; colIx < this.nCols; colIx++)
|
|
||||||
this.data[rowIx, colIx] = m.data[mRowIx, colIx];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public void UpdateSlice(Slice rowRange, Slice colRange, Matrix2 m)
|
|
||||||
{
|
|
||||||
UpdateSlice((rowRange.start, rowRange.stop), (colRange.start, colRange.stop), m);
|
|
||||||
}
|
|
||||||
public void UpdateSlice((int start, int stop) rowRange, (int start, int stop) colRange, Matrix2 m)
|
|
||||||
{
|
|
||||||
for (int i = rowRange.start; i < rowRange.stop; i++)
|
|
||||||
{
|
|
||||||
for (int j = colRange.start; j < colRange.stop; j++)
|
|
||||||
this.data[i, j] = m.data[i - rowRange.start, j - colRange.start];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix2 Inverse() {
|
|
||||||
Matrix2 A = this;
|
|
||||||
// unchecked
|
|
||||||
int n = A.nRows;
|
|
||||||
|
|
||||||
// Create an identity matrix of the same size as the original matrix
|
|
||||||
float[,] augmentedMatrix = new float[n, 2 * n];
|
|
||||||
for (int i = 0; i < n; i++) {
|
|
||||||
for (int j = 0; j < n; j++) {
|
|
||||||
augmentedMatrix[i, j] = A.data[i, j];
|
|
||||||
augmentedMatrix[i, j + n] = (i == j) ? 1 : 0; // Identity matrix
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Perform Gaussian elimination
|
|
||||||
for (int i = 0; i < n; i++) {
|
|
||||||
// Find the pivot row
|
|
||||||
float pivot = augmentedMatrix[i, i];
|
|
||||||
if (Math.Abs(pivot) < 1e-10) // Check for singular matrix
|
|
||||||
throw new InvalidOperationException("Matrix is singular and cannot be inverted.");
|
|
||||||
|
|
||||||
// Normalize the pivot row
|
|
||||||
for (int j = 0; j < 2 * n; j++)
|
|
||||||
augmentedMatrix[i, j] /= pivot;
|
|
||||||
|
|
||||||
// Eliminate the column below the pivot
|
|
||||||
for (int j = i + 1; j < n; j++) {
|
|
||||||
float factor = augmentedMatrix[j, i];
|
|
||||||
for (int k = 0; k < 2 * n; k++)
|
|
||||||
augmentedMatrix[j, k] -= factor * augmentedMatrix[i, k];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Back substitution
|
|
||||||
for (int i = n - 1; i >= 0; i--)
|
|
||||||
{
|
|
||||||
// Eliminate the column above the pivot
|
|
||||||
for (int j = i - 1; j >= 0; j--)
|
|
||||||
{
|
|
||||||
float factor = augmentedMatrix[j, i];
|
|
||||||
for (int k = 0; k < 2 * n; k++)
|
|
||||||
augmentedMatrix[j, k] -= factor * augmentedMatrix[i, k];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Extract the inverse matrix from the augmented matrix
|
|
||||||
float[,] inverse = new float[n, n];
|
|
||||||
for (int i = 0; i < n; i++) {
|
|
||||||
for (int j = 0; j < n; j++)
|
|
||||||
inverse[i, j] = augmentedMatrix[i, j + n];
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(inverse);
|
|
||||||
}
|
|
||||||
|
|
||||||
public float Determinant()
|
|
||||||
{
|
|
||||||
int n = this.nRows;
|
|
||||||
if (n != this.nCols)
|
|
||||||
throw new System.ArgumentException("Matrix must be square.");
|
|
||||||
|
|
||||||
if (n == 1)
|
|
||||||
return this.data[0, 0]; // Base case for 1x1 matrix
|
|
||||||
|
|
||||||
if (n == 2) // Base case for 2x2 matrix
|
|
||||||
return this.data[0, 0] * this.data[1, 1] - this.data[0, 1] * this.data[1, 0];
|
|
||||||
|
|
||||||
float det = 0;
|
|
||||||
for (int col = 0; col < n; col++)
|
|
||||||
det += (col % 2 == 0 ? 1 : -1) * this.data[0, col] * this.Minor(0, col).Determinant();
|
|
||||||
|
|
||||||
return det;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Helper function to compute the minor of a matrix
|
|
||||||
private Matrix2 Minor(int rowToRemove, int colToRemove)
|
|
||||||
{
|
|
||||||
int n = this.nRows;
|
|
||||||
float[,] minor = new float[n - 1, n - 1];
|
|
||||||
|
|
||||||
int r = 0, c = 0;
|
|
||||||
for (int i = 0; i < n; i++) {
|
|
||||||
if (i == rowToRemove) continue;
|
|
||||||
|
|
||||||
c = 0;
|
|
||||||
for (int j = 0; j < n; j++) {
|
|
||||||
if (j == colToRemove) continue;
|
|
||||||
|
|
||||||
minor[r, c] = this.data[i, j];
|
|
||||||
c++;
|
|
||||||
}
|
|
||||||
r++;
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Matrix2(minor);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 DeleteRows(Matrix2 A, Slice rowRange) {
|
|
||||||
float[,] result = new float[A.nRows - (rowRange.stop - rowRange.start), A.nCols];
|
|
||||||
|
|
||||||
int resultRowIx = 0;
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
if (i >= rowRange.start && i < rowRange.stop)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
for (int j = 0; j < A.nCols; j++)
|
|
||||||
result[resultRowIx, j] = A.data[i, j];
|
|
||||||
|
|
||||||
resultRowIx++;
|
|
||||||
}
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
internal static Matrix2 DeleteColumns(Matrix2 A, Slice colRange) {
|
|
||||||
float[,] result = new float[A.nRows, A.nCols - (colRange.stop - colRange.start)];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.nRows; i++) {
|
|
||||||
int resultColIx = 0;
|
|
||||||
for (int j = 0; j < A.nCols; j++) {
|
|
||||||
if (j >= colRange.start && j < colRange.stop)
|
|
||||||
continue;
|
|
||||||
|
|
||||||
result[i, resultColIx++] = A.data[i, j];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public class Matrix1
|
|
||||||
{
|
|
||||||
public float[] data { get; }
|
|
||||||
|
|
||||||
public int size => data.GetLength(0);
|
|
||||||
|
|
||||||
public Matrix1(int size)
|
|
||||||
{
|
|
||||||
this.data = new float[size];
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix1(float[] data) {
|
|
||||||
this.data = data;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix1 Zero(int size)
|
|
||||||
{
|
|
||||||
return new Matrix1(size);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix1 FromVector2(Vector2Float v) {
|
|
||||||
float[] result = new float[2];
|
|
||||||
result[0] = v.x;
|
|
||||||
result[1] = v.y;
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix1 FromVector3(Vector3Float v) {
|
|
||||||
float[] result = new float[3];
|
|
||||||
result[0] = v.x;
|
|
||||||
result[1] = v.y;
|
|
||||||
result[2] = v.z;
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
public static Matrix1 FromQuaternion(Quaternion q) {
|
|
||||||
float[] result = new float[4];
|
|
||||||
result[0] = q.x;
|
|
||||||
result[1] = q.y;
|
|
||||||
result[2] = q.z;
|
|
||||||
result[3] = q.w;
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
public Vector2Float vector2 {
|
|
||||||
get {
|
|
||||||
if (this.size != 2)
|
|
||||||
throw new System.ArgumentException("Matrix1 must be of size 2");
|
|
||||||
return new Vector2Float(this.data[0], this.data[1]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
public Vector3Float vector3 {
|
|
||||||
get {
|
|
||||||
if (this.size != 3)
|
|
||||||
throw new System.ArgumentException("Matrix1 must be of size 3");
|
|
||||||
return new Vector3Float(this.data[0], this.data[1], this.data[2]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
public Quaternion quaternion {
|
|
||||||
get {
|
|
||||||
if (this.size != 4)
|
|
||||||
throw new System.ArgumentException("Matrix1 must be of size 4");
|
|
||||||
return new Quaternion(this.data[0], this.data[1], this.data[2], this.data[3]);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
public Matrix1 Clone() {
|
|
||||||
float[] data = new float[this.size];
|
|
||||||
for (int rowIx = 0; rowIx < this.size; rowIx++)
|
|
||||||
data[rowIx] = this.data[rowIx];
|
|
||||||
return new Matrix1(data);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
public float magnitude {
|
|
||||||
get {
|
|
||||||
float sum = 0;
|
|
||||||
foreach (var elm in data)
|
|
||||||
sum += elm;
|
|
||||||
return sum / data.Length;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
public static Matrix1 operator +(Matrix1 A, Matrix1 B) {
|
|
||||||
if (A.size != B.size)
|
|
||||||
throw new System.ArgumentException("Size of A must match size of B.");
|
|
||||||
|
|
||||||
float[] result = new float[A.size];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.size; i++) {
|
|
||||||
result[i] = A.data[i] + B.data[i];
|
|
||||||
}
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix2 Transpose() {
|
|
||||||
float[,] r = new float[1, this.size];
|
|
||||||
for (uint colIx = 0; colIx < this.size; colIx++)
|
|
||||||
r[1, colIx] = this.data[colIx];
|
|
||||||
|
|
||||||
return new Matrix2(r);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static float Dot(Matrix1 a, Matrix1 b) {
|
|
||||||
if (a.size != b.size)
|
|
||||||
throw new System.ArgumentException("Vectors must be of the same length.");
|
|
||||||
|
|
||||||
float result = 0.0f;
|
|
||||||
for (int i = 0; i < a.size; i++) {
|
|
||||||
result += a.data[i] * b.data[i];
|
|
||||||
}
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix1 operator -(Matrix1 A, Matrix1 B) {
|
|
||||||
if (A.size != B.size)
|
|
||||||
throw new System.ArgumentException("Size of A must match size of B.");
|
|
||||||
|
|
||||||
float[] result = new float[A.size];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.size; i++) {
|
|
||||||
result[i] = A.data[i] - B.data[i];
|
|
||||||
}
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix1 operator *(Matrix1 A, float f)
|
|
||||||
{
|
|
||||||
float[] result = new float[A.size];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.size; i++)
|
|
||||||
result[i] += A.data[i] * f;
|
|
||||||
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
public static Matrix1 operator *(float f, Matrix1 A) {
|
|
||||||
return A * f;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix1 operator /(Matrix1 A, float f) {
|
|
||||||
float[] result = new float[A.size];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.size; i++)
|
|
||||||
result[i] = A.data[i] / f;
|
|
||||||
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
public static Matrix1 operator /(float f, Matrix1 A) {
|
|
||||||
float[] result = new float[A.size];
|
|
||||||
|
|
||||||
for (int i = 0; i < A.size; i++)
|
|
||||||
result[i] = f / A.data[i];
|
|
||||||
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public Matrix1 Slice(Slice range)
|
|
||||||
{
|
|
||||||
return Slice(range.start, range.stop);
|
|
||||||
}
|
|
||||||
public Matrix1 Slice(int from, int to)
|
|
||||||
{
|
|
||||||
if (from < 0 || to >= this.size)
|
|
||||||
throw new System.ArgumentException("Slice index out of range.");
|
|
||||||
|
|
||||||
float[] result = new float[to - from];
|
|
||||||
int resultIx = 0;
|
|
||||||
for (int ix = from; ix < to; ix++)
|
|
||||||
result[resultIx++] = this.data[ix];
|
|
||||||
|
|
||||||
return new Matrix1(result);
|
|
||||||
}
|
|
||||||
public void UpdateSlice(Slice slice, Matrix1 v) {
|
|
||||||
int vIx = 0;
|
|
||||||
for (int ix = slice.start; ix < slice.stop; ix++, vIx++)
|
|
||||||
this.data[ix] = v.data[vIx];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@ -1,87 +0,0 @@
|
|||||||
using System;
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
public class Quat32 {
|
|
||||||
public float x;
|
|
||||||
public float y;
|
|
||||||
public float z;
|
|
||||||
public float w;
|
|
||||||
|
|
||||||
public Quat32() {
|
|
||||||
this.x = 0;
|
|
||||||
this.y = 0;
|
|
||||||
this.z = 0;
|
|
||||||
this.w = 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
public Quat32(float x, float y, float z, float w) {
|
|
||||||
this.x = x;
|
|
||||||
this.y = y;
|
|
||||||
this.z = z;
|
|
||||||
this.w = w;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Quat32 FromSwingTwist(SwingTwist s) {
|
|
||||||
Quat32 q32 = Quat32.Euler(-s.swing.vertical, s.swing.horizontal, s.twist);
|
|
||||||
return q32;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Quat32 Euler(float yaw, float pitch, float roll) {
|
|
||||||
float rollOver2 = roll * Angle.Deg2Rad * 0.5f;
|
|
||||||
float sinRollOver2 = (float)Math.Sin((float)rollOver2);
|
|
||||||
float cosRollOver2 = (float)Math.Cos((float)rollOver2);
|
|
||||||
float pitchOver2 = pitch * 0.5f;
|
|
||||||
float sinPitchOver2 = (float)Math.Sin((float)pitchOver2);
|
|
||||||
float cosPitchOver2 = (float)Math.Cos((float)pitchOver2);
|
|
||||||
float yawOver2 = yaw * 0.5f;
|
|
||||||
float sinYawOver2 = (float)Math.Sin((float)yawOver2);
|
|
||||||
float cosYawOver2 = (float)Math.Cos((float)yawOver2);
|
|
||||||
Quat32 result = new Quat32() {
|
|
||||||
w = cosYawOver2 * cosPitchOver2 * cosRollOver2 +
|
|
||||||
sinYawOver2 * sinPitchOver2 * sinRollOver2,
|
|
||||||
x = sinYawOver2 * cosPitchOver2 * cosRollOver2 +
|
|
||||||
cosYawOver2 * sinPitchOver2 * sinRollOver2,
|
|
||||||
y = cosYawOver2 * sinPitchOver2 * cosRollOver2 -
|
|
||||||
sinYawOver2 * cosPitchOver2 * sinRollOver2,
|
|
||||||
z = cosYawOver2 * cosPitchOver2 * sinRollOver2 -
|
|
||||||
sinYawOver2 * sinPitchOver2 * cosRollOver2
|
|
||||||
};
|
|
||||||
return result;
|
|
||||||
}
|
|
||||||
|
|
||||||
public void ToAngles(out float right, out float up, out float forward) {
|
|
||||||
float test = this.x * this.y + this.z * this.w;
|
|
||||||
if (test > 0.499f) { // singularity at north pole
|
|
||||||
right = 0;
|
|
||||||
up = 2 * (float)Math.Atan2(this.x, this.w) * Angle.Rad2Deg;
|
|
||||||
forward = 90;
|
|
||||||
return;
|
|
||||||
//return Vector3(0, 2 * (float)atan2(this.x, this.w) * Angle.Rad2Deg, 90);
|
|
||||||
}
|
|
||||||
else if (test < -0.499f) { // singularity at south pole
|
|
||||||
right = 0;
|
|
||||||
up = -2 * (float)Math.Atan2(this.x, this.w) * Angle.Rad2Deg;
|
|
||||||
forward = -90;
|
|
||||||
return;
|
|
||||||
//return Vector3(0, -2 * (float)atan2(this.x, this.w) * Angle.Rad2Deg, -90);
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
float sqx = this.x * this.x;
|
|
||||||
float sqy = this.y * this.y;
|
|
||||||
float sqz = this.z * this.z;
|
|
||||||
|
|
||||||
right = (float)Math.Atan2(2 * this.x * this.w - 2 * this.y * this.z, 1 - 2 * sqx - 2 * sqz) * Angle.Rad2Deg;
|
|
||||||
up = (float)Math.Atan2(2 * this.y * this.w - 2 * this.x * this.z, 1 - 2 * sqy - 2 * sqz) * Angle.Rad2Deg;
|
|
||||||
forward = (float)Math.Asin(2 * test) * Angle.Rad2Deg;
|
|
||||||
return;
|
|
||||||
// return Vector3(
|
|
||||||
// atan2f(2 * this.x * this.w - 2 * this.y * this.z, 1 - 2 * sqx - 2 * sqz) *
|
|
||||||
// Rad2Deg,
|
|
||||||
// atan2f(2 * this.y * this.w - 2 * this.x * this.z, 1 - 2 * sqy - 2 * sqz) *
|
|
||||||
// Rad2Deg,
|
|
||||||
// asinf(2 * test) * Angle.Rad2Deg);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,81 +0,0 @@
|
|||||||
using System;
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
using Quaternion = UnityEngine.Quaternion;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
|
|
||||||
public class QuaternionOf<T> {
|
|
||||||
public T x;
|
|
||||||
public T y;
|
|
||||||
public T z;
|
|
||||||
public T w;
|
|
||||||
|
|
||||||
public QuaternionOf(T x, T y, T z, T w) {
|
|
||||||
this.x = x;
|
|
||||||
this.y = y;
|
|
||||||
this.z = z;
|
|
||||||
this.w = w;
|
|
||||||
}
|
|
||||||
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
public static Quaternion Reflect(Quaternion q) {
|
|
||||||
return new(-q.x, -q.y, -q.z, q.w);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Matrix2 ToRotationMatrix(Quaternion q) {
|
|
||||||
float w = q.x, x = q.y, y = q.z, z = q.w;
|
|
||||||
|
|
||||||
float[,] result = new float[,]
|
|
||||||
{
|
|
||||||
{ 1 - 2 * (y * y + z * z), 2 * (x * y - w * z), 2 * (x * z + w * y) },
|
|
||||||
{ 2 * (x * y + w * z), 1 - 2 * (x * x + z * z), 2 * (y * z - w * x) },
|
|
||||||
{ 2 * (x * z - w * y), 2 * (y * z + w * x), 1 - 2 * (x * x + y * y) }
|
|
||||||
};
|
|
||||||
return new Matrix2(result);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Quaternion FromRotationMatrix(Matrix2 m) {
|
|
||||||
float trace = m.data[0, 0] + m.data[1, 1] + m.data[2, 2];
|
|
||||||
float w, x, y, z;
|
|
||||||
|
|
||||||
if (trace > 0) {
|
|
||||||
float s = 0.5f / (float)Math.Sqrt(trace + 1.0f);
|
|
||||||
w = 0.25f / s;
|
|
||||||
x = (m.data[2, 1] - m.data[1, 2]) * s;
|
|
||||||
y = (m.data[0, 2] - m.data[2, 0]) * s;
|
|
||||||
z = (m.data[1, 0] - m.data[0, 1]) * s;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
if (m.data[0, 0] > m.data[1, 1] && m.data[0, 0] > m.data[2, 2]) {
|
|
||||||
float s = 2.0f * (float)Math.Sqrt(1.0f + m.data[0, 0] - m.data[1, 1] - m.data[2, 2]);
|
|
||||||
w = (m.data[2, 1] - m.data[1, 2]) / s;
|
|
||||||
x = 0.25f * s;
|
|
||||||
y = (m.data[0, 1] + m.data[1, 0]) / s;
|
|
||||||
z = (m.data[0, 2] + m.data[2, 0]) / s;
|
|
||||||
}
|
|
||||||
else if (m.data[1, 1] > m.data[2, 2]) {
|
|
||||||
float s = 2.0f * (float)Math.Sqrt(1.0f + m.data[1, 1] - m.data[0, 0] - m.data[2, 2]);
|
|
||||||
w = (m.data[0, 2] - m.data[2, 0]) / s;
|
|
||||||
x = (m.data[0, 1] + m.data[1, 0]) / s;
|
|
||||||
y = 0.25f * s;
|
|
||||||
z = (m.data[1, 2] + m.data[2, 1]) / s;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
float s = 2.0f * (float)Math.Sqrt(1.0f + m.data[2, 2] - m.data[0, 0] - m.data[1, 1]);
|
|
||||||
w = (m.data[1, 0] - m.data[0, 1]) / s;
|
|
||||||
x = (m.data[0, 2] + m.data[2, 0]) / s;
|
|
||||||
y = (m.data[1, 2] + m.data[2, 1]) / s;
|
|
||||||
z = 0.25f * s;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
return new Quaternion(x, y, z, w);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
// public class Quaternion : QuaternionOf<float> {
|
|
||||||
// public Quaternion(float x, float y, float z, float w) : base(x, y, z, w) { }
|
|
||||||
// }
|
|
||||||
}
|
|
@ -1,134 +0,0 @@
|
|||||||
using System;
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
//using Vector3Float = UnityEngine.Vector3;
|
|
||||||
using Vector3 = UnityEngine.Vector3;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
/// <summary>
|
|
||||||
/// A spherical vector
|
|
||||||
/// </summary>
|
|
||||||
public class Spherical {
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Create a default vector with zero distance
|
|
||||||
/// </summary>
|
|
||||||
public Spherical() {
|
|
||||||
this.distance = 0;
|
|
||||||
this.direction = new Direction();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Create a spherical vector
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="distance">The distance in meters</param>
|
|
||||||
/// <param name="direction">The direction of the vector</param>
|
|
||||||
public Spherical(float distance, Direction direction) {
|
|
||||||
this.distance = distance;
|
|
||||||
this.direction = direction;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Create spherical vector. All given angles are in degrees
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="distance">The distance in meters</param>
|
|
||||||
/// <param name="horizontal">The horizontal angle in degrees</param>
|
|
||||||
/// <param name="vertical">The vertical angle in degrees</param>
|
|
||||||
/// <returns></returns>
|
|
||||||
public static Spherical Degrees(float distance, float horizontal, float vertical) {
|
|
||||||
Direction direction = Direction.Degrees(horizontal, vertical);
|
|
||||||
Spherical s = new(distance, direction);
|
|
||||||
return s;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Spherical Radians(float distance, float horizontal, float vertical) {
|
|
||||||
Direction direction = Direction.Radians(horizontal, vertical);
|
|
||||||
Spherical s = new(distance, direction);
|
|
||||||
return s;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// The distance in meters
|
|
||||||
/// </summary>
|
|
||||||
/// @remark The distance should never be negative
|
|
||||||
public float distance;
|
|
||||||
/// <summary>
|
|
||||||
/// The direction of the vector
|
|
||||||
/// </summary>
|
|
||||||
public Direction direction;
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// A spherical vector with zero degree angles and distance
|
|
||||||
/// </summary>
|
|
||||||
public readonly static Spherical zero = new(0, Direction.forward);
|
|
||||||
/// <summary>
|
|
||||||
/// A normalized forward-oriented vector
|
|
||||||
/// </summary>
|
|
||||||
public readonly static Spherical forward = new(1, Direction.forward);
|
|
||||||
|
|
||||||
|
|
||||||
// public static Spherical FromVector3Float(Vector3Float v) {
|
|
||||||
// float distance = v.magnitude;
|
|
||||||
// if (distance == 0.0f)
|
|
||||||
// return Spherical.zero;
|
|
||||||
// else {
|
|
||||||
// float verticalAngle = (float)((Angle.pi / 2 - Math.Acos(v.y / distance)) * Angle.Rad2Deg);
|
|
||||||
// float horizontalAngle = (float)Math.Atan2(v.x, v.z) * Angle.Rad2Deg;
|
|
||||||
// return Spherical.Degrees(distance, horizontalAngle, verticalAngle);
|
|
||||||
// }
|
|
||||||
// }
|
|
||||||
|
|
||||||
public static Spherical FromVector3(Vector3 v) {
|
|
||||||
float distance = v.magnitude;
|
|
||||||
if (distance == 0.0f)
|
|
||||||
return Spherical.zero;
|
|
||||||
else {
|
|
||||||
float verticalAngle = (float)((Angle.pi / 2 - Math.Acos(v.y / distance)) * Angle.Rad2Deg);
|
|
||||||
float horizontalAngle = (float)Math.Atan2(v.x, v.z) * Angle.Rad2Deg;
|
|
||||||
return Spherical.Degrees(distance, horizontalAngle, verticalAngle);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// public Vector3Float ToVector3Float() {
|
|
||||||
// float verticalRad = (Angle.pi / 2) - this.direction.vertical * Angle.Deg2Rad;
|
|
||||||
// float horizontalRad = this.direction.horizontal * Angle.Deg2Rad;
|
|
||||||
// float cosVertical = (float)Math.Cos(verticalRad);
|
|
||||||
// float sinVertical = (float)Math.Sin(verticalRad);
|
|
||||||
// float cosHorizontal = (float)Math.Cos(horizontalRad);
|
|
||||||
// float sinHorizontal = (float)Math.Sin(horizontalRad);
|
|
||||||
|
|
||||||
// float x = this.distance * sinVertical * sinHorizontal;
|
|
||||||
// float y = this.distance * cosVertical;
|
|
||||||
// float z = this.distance * sinVertical * cosHorizontal;
|
|
||||||
|
|
||||||
// Vector3Float v = new(x, y, z);
|
|
||||||
// return v;
|
|
||||||
// }
|
|
||||||
|
|
||||||
public Vector3 ToVector3() {
|
|
||||||
float verticalRad = (Angle.pi / 2) - this.direction.vertical * Angle.Deg2Rad;
|
|
||||||
float horizontalRad = this.direction.horizontal * Angle.Deg2Rad;
|
|
||||||
float cosVertical = (float)Math.Cos(verticalRad);
|
|
||||||
float sinVertical = (float)Math.Sin(verticalRad);
|
|
||||||
float cosHorizontal = (float)Math.Cos(horizontalRad);
|
|
||||||
float sinHorizontal = (float)Math.Sin(horizontalRad);
|
|
||||||
|
|
||||||
float x = this.distance * sinVertical * sinHorizontal;
|
|
||||||
float y = this.distance * cosVertical;
|
|
||||||
float z = this.distance * sinVertical * cosHorizontal;
|
|
||||||
|
|
||||||
Vector3 v = new(x, y, z);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Spherical operator +(Spherical s1, Spherical s2) {
|
|
||||||
// let's do it the easy way...
|
|
||||||
Vector3 v1 = s1.ToVector3();
|
|
||||||
Vector3 v2 = s2.ToVector3();
|
|
||||||
Vector3 v = v1 + v2;
|
|
||||||
Spherical r = FromVector3(v);
|
|
||||||
return r;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,41 +0,0 @@
|
|||||||
using System.Numerics;
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
using Quaternion = UnityEngine.Quaternion;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
|
|
||||||
public class SwingTwist {
|
|
||||||
public Direction swing;
|
|
||||||
public float twist;
|
|
||||||
|
|
||||||
public static readonly SwingTwist zero = new SwingTwist(0, 0, 0);
|
|
||||||
|
|
||||||
public SwingTwist(Direction swing, float twist) {
|
|
||||||
this.swing = swing;
|
|
||||||
this.twist = twist;
|
|
||||||
}
|
|
||||||
public SwingTwist(float horizontalSwing, float verticalSwing, float twist) {
|
|
||||||
this.swing = Direction.Degrees(horizontalSwing, verticalSwing);
|
|
||||||
this.swing.Normalize();
|
|
||||||
this.twist = twist;
|
|
||||||
}
|
|
||||||
public static SwingTwist FromQuat32(Quat32 q32) {
|
|
||||||
// UnityEngine.Quaternion q = new(q32.x, q32.y, q32.z, q32.w);
|
|
||||||
// SwingTwist r = new(q.eulerAngles.y, q.eulerAngles.x, q.eulerAngles.z);
|
|
||||||
q32.ToAngles(out float right, out float up, out float forward);
|
|
||||||
SwingTwist r = new SwingTwist(up, right, forward);
|
|
||||||
return r;
|
|
||||||
}
|
|
||||||
|
|
||||||
#if UNITY_5_3_OR_NEWER
|
|
||||||
public Quaternion ToQuaternion() {
|
|
||||||
Quaternion q = Quaternion.Euler(-this.swing.vertical,
|
|
||||||
this.swing.horizontal,
|
|
||||||
this.twist);
|
|
||||||
return q;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@ -1,363 +0,0 @@
|
|||||||
using System;
|
|
||||||
using System.Numerics;
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
|
|
||||||
public class Vector2Of<T> where T : IComparable<T> {
|
|
||||||
public T x;
|
|
||||||
public T y;
|
|
||||||
|
|
||||||
public Vector2Of(T x, T y) {
|
|
||||||
this.x = x;
|
|
||||||
this.y = y;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public class Vector2Int : Vector2Of<int> {
|
|
||||||
public Vector2Int(int x, int y) : base(x, y) { }
|
|
||||||
|
|
||||||
public static Vector2Int operator -(Vector2Int v1, Vector2Int v2) {
|
|
||||||
return new Vector2Int(v1.x - v2.x, v1.y - v2.y);
|
|
||||||
}
|
|
||||||
|
|
||||||
public float magnitude {
|
|
||||||
get {
|
|
||||||
return (float)Math.Sqrt(this.x * this.x + this.y * this.y);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public static float Distance(Vector2Int v1, Vector2Int v2) {
|
|
||||||
return (v1 - v2).magnitude;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public class Vector2Float : Vector2Of<float> {
|
|
||||||
public Vector2Float(float x, float y) : base(x, y) { }
|
|
||||||
|
|
||||||
public static Vector2Float operator -(Vector2Float v1, Vector2Float v2) {
|
|
||||||
return new Vector2Float(v1.x - v2.x, v1.y - v2.y);
|
|
||||||
}
|
|
||||||
|
|
||||||
public float magnitude {
|
|
||||||
get {
|
|
||||||
return (float)Math.Sqrt(this.x * this.x + this.y * this.y);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public static float Distance(Vector2Float v1, Vector2Float v2) {
|
|
||||||
return (v1 - v2).magnitude;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// 2-dimensional vectors
|
|
||||||
/// </summary>
|
|
||||||
public struct Vector2 : IEquatable<Vector2> {
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// The right axis of the vector
|
|
||||||
/// </summary>
|
|
||||||
public float x; // left/right
|
|
||||||
/// <summary>
|
|
||||||
/// The upward/forward axis of the vector
|
|
||||||
/// </summary>
|
|
||||||
public float y; // forward/backward
|
|
||||||
// directions are to be inline with Vector3 as much as possible...
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Create a new 2-dimensional vector
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="x">x axis value</param>
|
|
||||||
/// <param name="y">y axis value</param>
|
|
||||||
public Vector2(float x, float y) {
|
|
||||||
this.x = x;
|
|
||||||
this.y = y;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with zero for all axis
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 zero = new Vector2(0, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (1, 1)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 one = new Vector2(1, 1);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, 1)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 up = new Vector2(0, 1);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, -1)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 down = new Vector2(0, -1);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, 1)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 forward = new Vector2(0, 1);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, -1)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 back = new Vector2(0, -1);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector3 with values (-1, 0)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 left = new Vector2(-1, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (1, 0)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector2 right = new Vector2(1, 0);
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// The squared length of this vector
|
|
||||||
/// </summary>
|
|
||||||
/// <returns>The squared length</returns>
|
|
||||||
/// The squared length is computationally simpler than the real length.
|
|
||||||
/// Think of Pythagoras A^2 + B^2 = C^2.
|
|
||||||
/// This leaves out the calculation of the squared root of C.
|
|
||||||
public float sqrMagnitude {
|
|
||||||
get {
|
|
||||||
float d = x * x + y * y;
|
|
||||||
return d;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// The length of this vector
|
|
||||||
/// </summary>
|
|
||||||
/// <returns>The length of this vector</returns>
|
|
||||||
public float magnitude {
|
|
||||||
get {
|
|
||||||
float d = (float)Math.Sqrt(x * x + y * y);
|
|
||||||
return d;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Convert the vector to a length of a 1
|
|
||||||
/// </summary>
|
|
||||||
/// <returns>The vector with length 1</returns>
|
|
||||||
public Vector2 normalized {
|
|
||||||
get {
|
|
||||||
float l = magnitude;
|
|
||||||
Vector2 v = zero;
|
|
||||||
if (l > Float.epsilon)
|
|
||||||
v = this / l;
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Add two vectors
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns>The result of adding the two vectors</returns>
|
|
||||||
public static Vector2 operator +(Vector2 v1, Vector2 v2) {
|
|
||||||
Vector2 v = new Vector2(v1.x + v2.x, v1.y + v2.y);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Subtract two vectors
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns>The result of adding the two vectors</returns>
|
|
||||||
public static Vector2 operator -(Vector2 v1, Vector2 v2) {
|
|
||||||
Vector2 v = new Vector2(v1.x - v2.x, v1.y - v2.y);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Negate the vector
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The vector to negate</param>
|
|
||||||
/// <returns>The negated vector</returns>
|
|
||||||
/// This will result in a vector pointing in the opposite direction
|
|
||||||
public static Vector2 operator -(Vector2 v1) {
|
|
||||||
Vector2 v = new Vector2(-v1.x, -v1.y);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Scale a vector uniformly up
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The vector to scale</param>
|
|
||||||
/// <param name="f">The scaling factor</param>
|
|
||||||
/// <returns>The scaled vector</returns>
|
|
||||||
/// Each component of the vector will be multipled with the same factor.
|
|
||||||
public static Vector2 operator *(Vector2 v1, float f) {
|
|
||||||
Vector2 v = new Vector2(v1.x * f, v1.y * f);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Scale a vector uniformly up
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="f">The scaling factor</param>
|
|
||||||
/// <param name="v1">The vector to scale</param>
|
|
||||||
/// <returns>The scaled vector</returns>
|
|
||||||
/// Each component of the vector will be multipled with the same factor.
|
|
||||||
public static Vector2 operator *(float f, Vector2 v1) {
|
|
||||||
Vector2 v = new Vector2(f * v1.x, f * v1.y);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Scale a vector uniformly down
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The vector to scale</param>
|
|
||||||
/// <param name="f">The scaling factor</param>
|
|
||||||
/// <returns>The scaled vector</returns>
|
|
||||||
/// Each component of the vector will be devided by the same factor.
|
|
||||||
public static Vector2 operator /(Vector2 v1, float f) {
|
|
||||||
Vector2 v = new Vector2(v1.x / f, v1.y / f);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Tests if the vector has equal values as the given vector
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The vector to compare to</param>
|
|
||||||
/// <returns><em>true</em> if the vector values are equal</returns>
|
|
||||||
public bool Equals(Vector2 v1) => x == v1.x && y == v1.y;
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Tests if the vector is equal to the given object
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="obj">The object to compare to</param>
|
|
||||||
/// <returns><em>false</em> when the object is not a Vector2 or does not have equal values</returns>
|
|
||||||
public override bool Equals(object obj) {
|
|
||||||
if (!(obj is Vector2 v))
|
|
||||||
return false;
|
|
||||||
|
|
||||||
return (x == v.x && y == v.y);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Tests if the two vectors have equal values
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns><em>true</em>when the vectors have equal values</returns>
|
|
||||||
/// Note that this uses a Float equality check which cannot be not exact in all cases.
|
|
||||||
/// In most cases it is better to check if the Vector2.Distance between the vectors is smaller than Float.epsilon
|
|
||||||
/// Or more efficient: (v1 - v2).sqrMagnitude < Float.sqrEpsilon
|
|
||||||
public static bool operator ==(Vector2 v1, Vector2 v2) {
|
|
||||||
return (v1.x == v2.x && v1.y == v2.y);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Tests if two vectors have different values
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns><em>true</em>when the vectors have different values</returns>
|
|
||||||
/// Note that this uses a Float equality check which cannot be not exact in all case.
|
|
||||||
/// In most cases it is better to check if the Vector2.Distance between the vectors is smaller than Float.epsilon.
|
|
||||||
/// Or more efficient: (v1 - v2).sqrMagnitude < Float.sqrEpsilon
|
|
||||||
public static bool operator !=(Vector2 v1, Vector2 v2) {
|
|
||||||
return (v1.x != v2.x || v1.y != v2.y);
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Get an hash code for the vector
|
|
||||||
/// </summary>
|
|
||||||
/// <returns>The hash code</returns>
|
|
||||||
public override int GetHashCode() {
|
|
||||||
return (x, y).GetHashCode();
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Get the distance between two vectors
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns>The distance between the two vectors</returns>
|
|
||||||
public static float Distance(Vector2 v1, Vector2 v2) {
|
|
||||||
float x = v1.x - v2.x;
|
|
||||||
float y = v1.y - v2.y;
|
|
||||||
float d = (float)Math.Sqrt(x * x + y * y);
|
|
||||||
return d;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// The dot product of two vectors
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns>The dot product of the two vectors</returns>
|
|
||||||
public static float Dot(Vector2 v1, Vector2 v2) {
|
|
||||||
return v1.x * v2.x + v1.y * v2.y;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Lerp between two vectors
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The from vector</param>
|
|
||||||
/// <param name="v2">The to vector</param>
|
|
||||||
/// <param name="f">The interpolation distance [0..1]</param>
|
|
||||||
/// <returns>The lerped vector</returns>
|
|
||||||
/// The factor f is unclamped. Value 0 matches the *v1* vector, Value 1
|
|
||||||
/// matches the *v2* vector Value -1 is *v1* vector minus the difference
|
|
||||||
/// between *v1* and *v2* etc.
|
|
||||||
public static Vector2 Lerp(Vector2 v1, Vector2 v2, float f) {
|
|
||||||
Vector2 v = v1 + (v2 - v1) * f;
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Calculate the signed angle between two vectors.
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="from">The starting vector</param>
|
|
||||||
/// <param name="to">The ending vector</param>
|
|
||||||
/// <param name="axis">The axis to rotate around</param>
|
|
||||||
/// <returns>The signed angle in degrees</returns>
|
|
||||||
public static float SignedAngle(Vector2 from, Vector2 to) {
|
|
||||||
//float sign = Math.Sign(v1.y * v2.x - v1.x * v2.y);
|
|
||||||
//return Vector2.Angle(v1, v2) * sign;
|
|
||||||
|
|
||||||
float sqrMagFrom = from.sqrMagnitude;
|
|
||||||
float sqrMagTo = to.sqrMagnitude;
|
|
||||||
|
|
||||||
if (sqrMagFrom == 0 || sqrMagTo == 0)
|
|
||||||
return 0;
|
|
||||||
//if (!isfinite(sqrMagFrom) || !isfinite(sqrMagTo))
|
|
||||||
// return nanf("");
|
|
||||||
|
|
||||||
float angleFrom = (float)Math.Atan2(from.y, from.x);
|
|
||||||
float angleTo = (float)Math.Atan2(to.y, to.x);
|
|
||||||
return (angleTo - angleFrom) * Angle.Rad2Deg;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Rotates the vector with the given angle
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The vector to rotate</param>
|
|
||||||
/// <param name="angle">The angle in degrees</param>
|
|
||||||
/// <returns></returns>
|
|
||||||
public static Vector2 Rotate(Vector2 v1, float angle) {
|
|
||||||
float sin = (float)Math.Sin(angle * Angle.Deg2Rad);
|
|
||||||
float cos = (float)Math.Cos(angle * Angle.Deg2Rad);
|
|
||||||
|
|
||||||
float tx = v1.x;
|
|
||||||
float ty = v1.y;
|
|
||||||
Vector2 v = new Vector2() {
|
|
||||||
x = (cos * tx) - (sin * ty),
|
|
||||||
y = (sin * tx) + (cos * ty)
|
|
||||||
};
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Map interval of angles between vectors [0..Pi] to interval [0..1]
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="v1">The first vector</param>
|
|
||||||
/// <param name="v2">The second vector</param>
|
|
||||||
/// <returns>The resulting factor in interval [0..1]</returns>
|
|
||||||
/// Vectors a and b must be normalized
|
|
||||||
public static float ToFactor(Vector2 v1, Vector2 v2) {
|
|
||||||
return (1 - Vector2.Dot(v1, v2)) / 2;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
@ -1,179 +0,0 @@
|
|||||||
#if !UNITY_5_3_OR_NEWER
|
|
||||||
using System;
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
public class Vector3Of<T> {
|
|
||||||
public T x;
|
|
||||||
public T y;
|
|
||||||
public T z;
|
|
||||||
|
|
||||||
public Vector3Of(T x, T y, T z) {
|
|
||||||
this.x = x;
|
|
||||||
this.y = y;
|
|
||||||
this.z = z;
|
|
||||||
}
|
|
||||||
|
|
||||||
// public uint magnitude {
|
|
||||||
// get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
|
|
||||||
// }
|
|
||||||
}
|
|
||||||
|
|
||||||
public class Vector3Int : Vector3Of<int> {
|
|
||||||
public Vector3Int(int x, int y, int z) : base(x, y, z) { }
|
|
||||||
}
|
|
||||||
public class Vector3Float : Vector3Of<float> {
|
|
||||||
public Vector3Float(float x, float y, float z) : base(x, y, z) { }
|
|
||||||
|
|
||||||
public float magnitude {
|
|
||||||
get => (float)Math.Sqrt(this.x * this.x + this.y * this.y + this.z * this.z);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// 3-dimensional vectors
|
|
||||||
/// </summary>
|
|
||||||
/// This uses the right-handed coordinate system.
|
|
||||||
public struct Vector3 : IEquatable<Vector3> {
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// The right axis of the vector
|
|
||||||
/// </summary>
|
|
||||||
public float x; //> left/right
|
|
||||||
/// <summary>
|
|
||||||
/// The upward axis of the vector
|
|
||||||
/// </summary>
|
|
||||||
public float y; //> up/down
|
|
||||||
/// <summary>
|
|
||||||
/// The forward axis of the vector
|
|
||||||
/// </summary>
|
|
||||||
public float z; //> forward/backward
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// Create a new 3-dimensional vector
|
|
||||||
/// </summary>
|
|
||||||
/// <param name="x">x axis value</param>
|
|
||||||
/// <param name="y">y axis value</param>
|
|
||||||
/// <param name="z">z axis value</param>
|
|
||||||
public Vector3(float x, float y, float z) {
|
|
||||||
this.x = x;
|
|
||||||
this.y = y;
|
|
||||||
this.z = z;
|
|
||||||
}
|
|
||||||
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with zero for all axis
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 zero = new Vector3(0, 0, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with one for all axis
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 one = new Vector3(1, 1, 1);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector3 with values (-1, 0, 0)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 left = new Vector3(-1, 0, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (1, 0, 0)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 right = new Vector3(1, 0, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, -1, 0)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 down = new Vector3(0, -1, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, 1, 0)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 up = new Vector3(0, 1, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, 0, -1)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 back = new Vector3(0, -1, 0);
|
|
||||||
/// <summary>
|
|
||||||
/// A vector with values (0, 0, 1)
|
|
||||||
/// </summary>
|
|
||||||
public static readonly Vector3 forward = new Vector3(0, 1, 0);
|
|
||||||
|
|
||||||
public readonly float magnitude {
|
|
||||||
get {
|
|
||||||
float d = (float)Math.Sqrt(x * x + y * y + z * z);
|
|
||||||
return d;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public Vector3 normalized {
|
|
||||||
get {
|
|
||||||
float l = magnitude;
|
|
||||||
Vector3 v = zero;
|
|
||||||
if (l > Float.epsilon)
|
|
||||||
v = this / l;
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3 operator +(Vector3 v1, Vector3 v2) {
|
|
||||||
Vector3 v = new Vector3(v1.x + v2.x, v1.y + v2.y, v1.z + v2.z);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3 operator -(Vector3 v1, Vector3 v2) {
|
|
||||||
Vector3 v = new Vector3(v1.x - v2.x, v1.y - v2.y, v1.z - v2.z);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3 operator -(Vector3 v1) {
|
|
||||||
Vector3 v = new Vector3(-v1.x, -v1.y, -v1.z);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3 operator *(Vector3 v1, float d) {
|
|
||||||
Vector3 v = new Vector3(v1.x * d, v1.y * d, v1.z * d);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3 operator *(float d, Vector3 v1) {
|
|
||||||
Vector3 v = new Vector3(d * v1.x, d * v1.y, d * v1.z);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3 operator /(Vector3 v1, float d) {
|
|
||||||
Vector3 v = new Vector3(v1.x / d, v1.y / d, v1.z / d);
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
public bool Equals(Vector3 v) => (x == v.x && y == v.y && z == v.z);
|
|
||||||
|
|
||||||
public override bool Equals(object obj) {
|
|
||||||
if (!(obj is Vector3 v))
|
|
||||||
return false;
|
|
||||||
|
|
||||||
return (x == v.x && y == v.y && z == v.z);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static bool operator ==(Vector3 v1, Vector3 v2) {
|
|
||||||
return (v1.x == v2.x && v1.y == v2.y && v1.z == v2.z);
|
|
||||||
}
|
|
||||||
|
|
||||||
public static bool operator !=(Vector3 v1, Vector3 v2) {
|
|
||||||
return (v1.x != v2.x || v1.y != v2.y || v1.z != v2.z);
|
|
||||||
}
|
|
||||||
|
|
||||||
public override int GetHashCode() {
|
|
||||||
return (x, y, z).GetHashCode();
|
|
||||||
}
|
|
||||||
|
|
||||||
public static float Distance(Vector3 v1, Vector3 v2) {
|
|
||||||
return (v2 - v1).magnitude;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static float Dot(Vector3 v1, Vector3 v2) {
|
|
||||||
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static Vector3 Lerp(Vector3 v1, Vector3 v2, float f) {
|
|
||||||
Vector3 v = v1 + (v2 - v1) * f;
|
|
||||||
return v;
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
@ -1,322 +0,0 @@
|
|||||||
using System;
|
|
||||||
|
|
||||||
namespace LinearAlgebra {
|
|
||||||
|
|
||||||
public class float16 {
|
|
||||||
//
|
|
||||||
// FILE: float16.cpp
|
|
||||||
// AUTHOR: Rob Tillaart
|
|
||||||
// VERSION: 0.1.8
|
|
||||||
// PURPOSE: library for Float16s for Arduino
|
|
||||||
// URL: http://en.wikipedia.org/wiki/Half-precision_floating-point_format
|
|
||||||
|
|
||||||
ushort _value;
|
|
||||||
|
|
||||||
public float16() { _value = 0; }
|
|
||||||
|
|
||||||
public float16(float f) {
|
|
||||||
//_value = f32tof16(f);
|
|
||||||
_value = F32ToF16__(f);
|
|
||||||
}
|
|
||||||
|
|
||||||
public float toFloat() {
|
|
||||||
return f16tof32(_value);
|
|
||||||
}
|
|
||||||
|
|
||||||
public ushort GetBinary() { return _value; }
|
|
||||||
public void SetBinary(ushort value) { _value = value; }
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// EQUALITIES
|
|
||||||
//
|
|
||||||
/*
|
|
||||||
bool float16::operator ==(const float16 &f) { return (_value == f._value); }
|
|
||||||
|
|
||||||
bool float16::operator !=(const float16 &f) { return (_value != f._value); }
|
|
||||||
|
|
||||||
bool float16::operator >(const float16 &f) {
|
|
||||||
if ((_value & 0x8000) && (f._value & 0x8000))
|
|
||||||
return _value < f._value;
|
|
||||||
if (_value & 0x8000)
|
|
||||||
return false;
|
|
||||||
if (f._value & 0x8000)
|
|
||||||
return true;
|
|
||||||
return _value > f._value;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool float16::operator >=(const float16 &f) {
|
|
||||||
if ((_value & 0x8000) && (f._value & 0x8000))
|
|
||||||
return _value <= f._value;
|
|
||||||
if (_value & 0x8000)
|
|
||||||
return false;
|
|
||||||
if (f._value & 0x8000)
|
|
||||||
return true;
|
|
||||||
return _value >= f._value;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool float16::operator <(const float16 &f) {
|
|
||||||
if ((_value & 0x8000) && (f._value & 0x8000))
|
|
||||||
return _value > f._value;
|
|
||||||
if (_value & 0x8000)
|
|
||||||
return true;
|
|
||||||
if (f._value & 0x8000)
|
|
||||||
return false;
|
|
||||||
return _value < f._value;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool float16::operator <=(const float16 &f) {
|
|
||||||
if ((_value & 0x8000) && (f._value & 0x8000))
|
|
||||||
return _value >= f._value;
|
|
||||||
if (_value & 0x8000)
|
|
||||||
return true;
|
|
||||||
if (f._value & 0x8000)
|
|
||||||
return false;
|
|
||||||
return _value <= f._value;
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// NEGATION
|
|
||||||
//
|
|
||||||
float16 float16::operator -() {
|
|
||||||
float16 f16;
|
|
||||||
f16.setBinary(_value ^ 0x8000);
|
|
||||||
return f16;
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// MATH
|
|
||||||
//
|
|
||||||
float16 float16::operator +(const float16 &f) {
|
|
||||||
return float16(this->toDouble() + f.toDouble());
|
|
||||||
}
|
|
||||||
|
|
||||||
float16 float16::operator -(const float16 &f) {
|
|
||||||
return float16(this->toDouble() - f.toDouble());
|
|
||||||
}
|
|
||||||
|
|
||||||
float16 float16::operator *(const float16 &f) {
|
|
||||||
return float16(this->toDouble() * f.toDouble());
|
|
||||||
}
|
|
||||||
|
|
||||||
float16 float16::operator /(const float16 &f) {
|
|
||||||
return float16(this->toDouble() / f.toDouble());
|
|
||||||
}
|
|
||||||
|
|
||||||
float16 & float16::operator+=(const float16 &f) {
|
|
||||||
*this = this->toDouble() + f.toDouble();
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
float16 & float16::operator-=(const float16 &f) {
|
|
||||||
*this = this->toDouble() - f.toDouble();
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
float16 & float16::operator*=(const float16 &f) {
|
|
||||||
*this = this->toDouble() * f.toDouble();
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
float16 & float16::operator/=(const float16 &f) {
|
|
||||||
*this = this->toDouble() / f.toDouble();
|
|
||||||
return *this;
|
|
||||||
}
|
|
||||||
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// MATH HELPER FUNCTIONS
|
|
||||||
//
|
|
||||||
int float16::sign() {
|
|
||||||
if (_value & 0x8000)
|
|
||||||
return -1;
|
|
||||||
if (_value & 0xFFFF)
|
|
||||||
return 1;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool float16::isZero() { return ((_value & 0x7FFF) == 0x0000); }
|
|
||||||
|
|
||||||
bool float16::isNaN() {
|
|
||||||
if ((_value & 0x7C00) != 0x7C00)
|
|
||||||
return false;
|
|
||||||
if ((_value & 0x03FF) == 0x0000)
|
|
||||||
return false;
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool float16::isInf() { return ((_value == 0x7C00) || (_value == 0xFC00)); }
|
|
||||||
*/
|
|
||||||
//////////////////////////////////////////////////////////
|
|
||||||
//
|
|
||||||
// CORE CONVERSION
|
|
||||||
//
|
|
||||||
float f16tof32(ushort _value) {
|
|
||||||
//ushort sgn;
|
|
||||||
ushort man;
|
|
||||||
int exp;
|
|
||||||
float f;
|
|
||||||
|
|
||||||
//Debug.Log($"{_value}");
|
|
||||||
|
|
||||||
bool sgn = (_value & 0x8000) > 0;
|
|
||||||
exp = (_value & 0x7C00) >> 10;
|
|
||||||
man = (ushort)(_value & 0x03FF);
|
|
||||||
|
|
||||||
//Debug.Log($"{sgn} {exp} {man}");
|
|
||||||
|
|
||||||
// ZERO
|
|
||||||
if ((_value & 0x7FFF) == 0) {
|
|
||||||
return sgn ? -0 : 0;
|
|
||||||
}
|
|
||||||
// NAN & INF
|
|
||||||
if (exp == 0x001F) {
|
|
||||||
if (man == 0)
|
|
||||||
return sgn ? float.NegativeInfinity : float.PositiveInfinity; //-INFINITY : INFINITY;
|
|
||||||
else
|
|
||||||
return float.NaN; // NAN;
|
|
||||||
}
|
|
||||||
|
|
||||||
// SUBNORMAL/NORMAL
|
|
||||||
if (exp == 0)
|
|
||||||
f = 0;
|
|
||||||
else
|
|
||||||
f = 1;
|
|
||||||
|
|
||||||
// PROCESS MANTISSE
|
|
||||||
for (int i = 9; i >= 0; i--) {
|
|
||||||
f *= 2;
|
|
||||||
if ((man & (1 << i)) != 0)
|
|
||||||
f = f + 1;
|
|
||||||
}
|
|
||||||
//Debug.Log($"{f}");
|
|
||||||
f = f * (float)Math.Pow(2.0f, exp - 25);
|
|
||||||
if (exp == 0) {
|
|
||||||
f = f * (float)Math.Pow(2.0f, -13); // 5.96046447754e-8;
|
|
||||||
}
|
|
||||||
//Debug.Log($"{f}");
|
|
||||||
return sgn ? -f : f;
|
|
||||||
}
|
|
||||||
|
|
||||||
public static uint SingleToInt32Bits(float value) {
|
|
||||||
byte[] bytes = BitConverter.GetBytes(value);
|
|
||||||
if (BitConverter.IsLittleEndian)
|
|
||||||
Array.Reverse(bytes); // If the system is little-endian, reverse the byte order
|
|
||||||
return BitConverter.ToUInt32(bytes, 0);
|
|
||||||
}
|
|
||||||
|
|
||||||
public ushort F32ToF16__(float f) {
|
|
||||||
uint t = BitConverter.ToUInt32(BitConverter.GetBytes(f), 0);
|
|
||||||
ushort man = (ushort)((t & 0x007FFFFF) >> 12);
|
|
||||||
int exp = (int)((t & 0x7F800000) >> 23);
|
|
||||||
bool sgn = (t & 0x80000000) != 0;
|
|
||||||
|
|
||||||
// handle 0
|
|
||||||
if ((t & 0x7FFFFFFF) == 0) {
|
|
||||||
return sgn ? (ushort)0x8000 : (ushort)0x0000;
|
|
||||||
}
|
|
||||||
// denormalized float32 does not fit in float16
|
|
||||||
if (exp == 0x00) {
|
|
||||||
return sgn ? (ushort)0x8000 : (ushort)0x0000;
|
|
||||||
}
|
|
||||||
// handle infinity & NAN
|
|
||||||
if (exp == 0x00FF) {
|
|
||||||
if (man != 0)
|
|
||||||
return 0xFE00; // NAN
|
|
||||||
return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF
|
|
||||||
}
|
|
||||||
|
|
||||||
// normal numbers
|
|
||||||
exp = exp - 127 + 15;
|
|
||||||
// overflow does not fit => INF
|
|
||||||
if (exp > 30) {
|
|
||||||
return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF
|
|
||||||
}
|
|
||||||
// subnormal numbers
|
|
||||||
if (exp < -38) {
|
|
||||||
return sgn ? (ushort)0x8000 : (ushort)0x0000; // -0 or 0 ? just 0 ?
|
|
||||||
}
|
|
||||||
if (exp <= 0) // subnormal
|
|
||||||
{
|
|
||||||
man >>= (exp + 14);
|
|
||||||
// rounding
|
|
||||||
man++;
|
|
||||||
man >>= 1;
|
|
||||||
if (sgn)
|
|
||||||
return (ushort)(0x8000 | man);
|
|
||||||
return man;
|
|
||||||
}
|
|
||||||
|
|
||||||
// normal
|
|
||||||
// TODO rounding
|
|
||||||
exp <<= 10;
|
|
||||||
man++;
|
|
||||||
man >>= 1;
|
|
||||||
if (sgn)
|
|
||||||
return (ushort)(0x8000 | exp | man);
|
|
||||||
return (ushort)(exp | man);
|
|
||||||
}
|
|
||||||
|
|
||||||
//This function is faulty!!!!
|
|
||||||
ushort f32tof16(float f) {
|
|
||||||
//uint t = *(uint*)&f;
|
|
||||||
//uint t = (uint)BitConverter.SingleToInt32Bits(f);
|
|
||||||
uint t = SingleToInt32Bits(f);
|
|
||||||
// man bits = 10; but we keep 11 for rounding
|
|
||||||
ushort man = (ushort)((t & 0x007FFFFF) >> 12);
|
|
||||||
short exp = (short)((t & 0x7F800000) >> 23);
|
|
||||||
bool sgn = (t & 0x80000000) != 0;
|
|
||||||
|
|
||||||
// handle 0
|
|
||||||
if ((t & 0x7FFFFFFF) == 0) {
|
|
||||||
return sgn ? (ushort)0x8000 : (ushort)0x0000;
|
|
||||||
}
|
|
||||||
// denormalized float32 does not fit in float16
|
|
||||||
if (exp == 0x00) {
|
|
||||||
return sgn ? (ushort)0x8000 : (ushort)0x0000;
|
|
||||||
}
|
|
||||||
// handle infinity & NAN
|
|
||||||
if (exp == 0x00FF) {
|
|
||||||
if (man != 0)
|
|
||||||
return 0xFE00; // NAN
|
|
||||||
return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF
|
|
||||||
}
|
|
||||||
|
|
||||||
// normal numbers
|
|
||||||
exp = (short)(exp - 127 + 15);
|
|
||||||
// overflow does not fit => INF
|
|
||||||
if (exp > 30) {
|
|
||||||
return sgn ? (ushort)0xFC00 : (ushort)0x7C00; // -INF : INF
|
|
||||||
}
|
|
||||||
// subnormal numbers
|
|
||||||
if (exp < -38) {
|
|
||||||
return sgn ? (ushort)0x8000 : (ushort)0x0000; // -0 or 0 ? just 0 ?
|
|
||||||
}
|
|
||||||
if (exp <= 0) // subnormal
|
|
||||||
{
|
|
||||||
man >>= (exp + 14);
|
|
||||||
// rounding
|
|
||||||
man++;
|
|
||||||
man >>= 1;
|
|
||||||
if (sgn)
|
|
||||||
return (ushort)(0x8000 | man);
|
|
||||||
return man;
|
|
||||||
}
|
|
||||||
|
|
||||||
// normal
|
|
||||||
// TODO rounding
|
|
||||||
exp <<= 10;
|
|
||||||
man++;
|
|
||||||
man >>= 1;
|
|
||||||
ushort uexp = (ushort)exp;
|
|
||||||
if (sgn)
|
|
||||||
return (ushort)(0x8000 | uexp | man);
|
|
||||||
return (ushort)(uexp | man);
|
|
||||||
}
|
|
||||||
|
|
||||||
// -- END OF FILE --
|
|
||||||
}
|
|
||||||
|
|
||||||
}
|
|
@ -1,171 +0,0 @@
|
|||||||
#if !UNITY_5_6_OR_NEWER
|
|
||||||
using NUnit.Framework;
|
|
||||||
|
|
||||||
namespace LinearAlgebra.Test
|
|
||||||
{
|
|
||||||
public class Tests
|
|
||||||
{
|
|
||||||
[SetUp]
|
|
||||||
public void Setup()
|
|
||||||
{
|
|
||||||
}
|
|
||||||
|
|
||||||
[Test]
|
|
||||||
public void Normalize()
|
|
||||||
{
|
|
||||||
float r = 0;
|
|
||||||
|
|
||||||
r = Angle.Normalize(90);
|
|
||||||
Assert.AreEqual(r, 90, "Normalize 90");
|
|
||||||
|
|
||||||
r = Angle.Normalize(-90);
|
|
||||||
Assert.AreEqual(r, -90, "Normalize -90");
|
|
||||||
|
|
||||||
r = Angle.Normalize(270);
|
|
||||||
Assert.AreEqual(r, -90, "Normalize 270");
|
|
||||||
|
|
||||||
r = Angle.Normalize(270 + 360);
|
|
||||||
Assert.AreEqual(r, -90, "Normalize 270+360");
|
|
||||||
|
|
||||||
r = Angle.Normalize(-270);
|
|
||||||
Assert.AreEqual(r, 90, "Normalize -270");
|
|
||||||
|
|
||||||
r = Angle.Normalize(-270 - 360);
|
|
||||||
Assert.AreEqual(r, 90, "Normalize -270-360");
|
|
||||||
|
|
||||||
r = Angle.Normalize(0);
|
|
||||||
Assert.AreEqual(r, 0, "Normalize 0");
|
|
||||||
|
|
||||||
r = Angle.Normalize(float.PositiveInfinity);
|
|
||||||
Assert.AreEqual(r, float.PositiveInfinity, "Normalize INFINITY");
|
|
||||||
|
|
||||||
r = Angle.Normalize(float.NegativeInfinity);
|
|
||||||
Assert.AreEqual(r, float.NegativeInfinity, "Normalize INFINITY");
|
|
||||||
}
|
|
||||||
|
|
||||||
[Test]
|
|
||||||
public void Clamp()
|
|
||||||
{
|
|
||||||
float r = 0;
|
|
||||||
|
|
||||||
r = Angle.Clamp(1, 0, 2);
|
|
||||||
Assert.AreEqual(r, 1, "Clamp 1 0 2");
|
|
||||||
|
|
||||||
r = Angle.Clamp(-1, 0, 2);
|
|
||||||
Assert.AreEqual(r, 0, "Clamp -1 0 2");
|
|
||||||
|
|
||||||
r = Angle.Clamp(3, 0, 2);
|
|
||||||
Assert.AreEqual(r, 2, "Clamp 3 0 2");
|
|
||||||
|
|
||||||
r = Angle.Clamp(1, 0, 0);
|
|
||||||
Assert.AreEqual(r, 0, "Clamp 1 0 0");
|
|
||||||
|
|
||||||
r = Angle.Clamp(0, 0, 0);
|
|
||||||
Assert.AreEqual(r, 0, "Clamp 0 0 0");
|
|
||||||
|
|
||||||
r = Angle.Clamp(0, 1, -1);
|
|
||||||
Assert.AreEqual(r, 1, "Clamp 0 1 -1");
|
|
||||||
|
|
||||||
r = Angle.Clamp(1, 0, float.PositiveInfinity);
|
|
||||||
Assert.AreEqual(r, 1, "Clamp 1 0 INFINITY");
|
|
||||||
|
|
||||||
r = Angle.Clamp(1, float.NegativeInfinity, 1);
|
|
||||||
Assert.AreEqual(r, 1, "Clamp 1 -INFINITY 1");
|
|
||||||
}
|
|
||||||
|
|
||||||
[Test]
|
|
||||||
public void Difference()
|
|
||||||
{
|
|
||||||
float r = 0;
|
|
||||||
|
|
||||||
r = Angle.Difference(0, 90);
|
|
||||||
Assert.AreEqual(r, 90, "Difference 0 90");
|
|
||||||
|
|
||||||
r = Angle.Difference(0, -90);
|
|
||||||
Assert.AreEqual(r, -90, "Difference 0 -90");
|
|
||||||
|
|
||||||
r = Angle.Difference(0, 270);
|
|
||||||
Assert.AreEqual(r, -90, "Difference 0 270");
|
|
||||||
|
|
||||||
r = Angle.Difference(0, -270);
|
|
||||||
Assert.AreEqual(r, 90, "Difference 0 -270");
|
|
||||||
|
|
||||||
r = Angle.Difference(90, 0);
|
|
||||||
Assert.AreEqual(r, -90, "Difference 90 0");
|
|
||||||
|
|
||||||
r = Angle.Difference(-90, 0);
|
|
||||||
Assert.AreEqual(r, 90, "Difference -90 0");
|
|
||||||
|
|
||||||
r = Angle.Difference(0, 0);
|
|
||||||
Assert.AreEqual(r, 0, "Difference 0 0");
|
|
||||||
|
|
||||||
r = Angle.Difference(90, 90);
|
|
||||||
Assert.AreEqual(r, 0, "Difference 90 90");
|
|
||||||
|
|
||||||
r = Angle.Difference(0, float.PositiveInfinity);
|
|
||||||
Assert.AreEqual(r, float.PositiveInfinity, "Difference 0 INFINITY");
|
|
||||||
|
|
||||||
r = Angle.Difference(0, float.NegativeInfinity);
|
|
||||||
Assert.AreEqual(r, float.NegativeInfinity, "Difference 0 -INFINITY");
|
|
||||||
|
|
||||||
r = Angle.Difference(float.NegativeInfinity, float.PositiveInfinity);
|
|
||||||
Assert.AreEqual(r, float.PositiveInfinity, "Difference -INFINITY INFINITY");
|
|
||||||
}
|
|
||||||
|
|
||||||
[Test]
|
|
||||||
public void MoveTowards()
|
|
||||||
{
|
|
||||||
float r = 0;
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 90, 30);
|
|
||||||
Assert.AreEqual(r, 30, "MoveTowards 0 90 30");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 90, 90);
|
|
||||||
Assert.AreEqual(r, 90, "MoveTowards 0 90 90");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 90, 180);
|
|
||||||
Assert.AreEqual(r, 90, "MoveTowards 0 90 180");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 90, 270);
|
|
||||||
Assert.AreEqual(r, 90, "MoveTowrads 0 90 270");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 90, -30);
|
|
||||||
Assert.AreEqual(r, -30, "MoveTowards 0 90 -30");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, -90, -30);
|
|
||||||
Assert.AreEqual(r, 30, "MoveTowards 0 -90 -30");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, -90, -90);
|
|
||||||
Assert.AreEqual(r, 90, "MoveTowards 0 -90 -90");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, -90, -180);
|
|
||||||
Assert.AreEqual(r, 180, "MoveTowards 0 -90 -180");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, -90, -270);
|
|
||||||
Assert.AreEqual(r, 270, "MoveTowrads 0 -90 -270");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 90, 0);
|
|
||||||
Assert.AreEqual(r, 0, "MoveTowards 0 90 0");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 0, 0);
|
|
||||||
Assert.AreEqual(r, 0, "MoveTowards 0 0 0");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 0, 30);
|
|
||||||
Assert.AreEqual(r, 0, "MoveTowrads 0 0 30");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, 90, float.PositiveInfinity);
|
|
||||||
Assert.AreEqual(r, 90, "MoveTowards 0 90 INFINITY");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, float.PositiveInfinity, 30);
|
|
||||||
Assert.AreEqual(r, 30, "MoveTowrads 0 INFINITY 30");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, -90, float.NegativeInfinity);
|
|
||||||
Assert.AreEqual(r, float.PositiveInfinity, "MoveTowards 0 -90 -INFINITY");
|
|
||||||
|
|
||||||
r = Angle.MoveTowards(0, float.NegativeInfinity, -30);
|
|
||||||
Assert.AreEqual(r, 30, "MoveTowrads 0 -INFINITY -30");
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
@ -1,19 +0,0 @@
|
|||||||
<Project Sdk="Microsoft.NET.Sdk">
|
|
||||||
|
|
||||||
<PropertyGroup>
|
|
||||||
<TargetFramework>net5.0</TargetFramework>
|
|
||||||
<IsPackable>false</IsPackable>
|
|
||||||
<IsTestProject>true</IsTestProject>
|
|
||||||
</PropertyGroup>
|
|
||||||
|
|
||||||
<ItemGroup>
|
|
||||||
<PackageReference Include="Microsoft.NET.Test.Sdk" Version="17.13.0" />
|
|
||||||
<PackageReference Include="NUnit" Version="3.13.2" />
|
|
||||||
<PackageReference Include="NUnit3TestAdapter" Version="3.17.0" />
|
|
||||||
</ItemGroup>
|
|
||||||
|
|
||||||
<ItemGroup>
|
|
||||||
<ProjectReference Include="..\src\LinearAlgebra.csproj" />
|
|
||||||
</ItemGroup>
|
|
||||||
|
|
||||||
</Project>
|
|
@ -1,30 +0,0 @@
|
|||||||
#if !UNITY_5_6_OR_NEWER
|
|
||||||
using NUnit.Framework;
|
|
||||||
|
|
||||||
namespace LinearAlgebra.Test {
|
|
||||||
public class SphericalTest {
|
|
||||||
[SetUp]
|
|
||||||
public void Setup() {
|
|
||||||
}
|
|
||||||
|
|
||||||
[Test]
|
|
||||||
public void FromVector3() {
|
|
||||||
Vector3 v = new(0, 0, 1);
|
|
||||||
Spherical s = Spherical.FromVector3(v);
|
|
||||||
Assert.AreEqual(1.0f, s.distance, "s.distance 0 0 1");
|
|
||||||
Assert.AreEqual(0.0f, s.direction.horizontal, "s.hor 0 0 1");
|
|
||||||
Assert.AreEqual(0.0f, s.direction.vertical, "s.vert 0 0 1");
|
|
||||||
}
|
|
||||||
|
|
||||||
[Test]
|
|
||||||
public void Addition() {
|
|
||||||
Spherical v1 = Spherical.Degrees(1, 45, 0);
|
|
||||||
Spherical v2 = Spherical.zero;
|
|
||||||
Spherical r = Spherical.zero;
|
|
||||||
|
|
||||||
r = v1 + v2;
|
|
||||||
Assert.AreEqual(v1.distance, r.distance, "Addition(0,0,0)");
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
Loading…
x
Reference in New Issue
Block a user