using isclose
This commit is contained in:
		
							parent
							
								
									de57d5fe97
								
							
						
					
					
						commit
						8949a87956
					
				| @ -1,17 +1,9 @@ | ||||
| # This Source Code Form is subject to the terms of the Mozilla Public | ||||
| # License, v. 2.0.If a copy of the MPL was not distributed with this | ||||
| # file, You can obtain one at https ://mozilla.org/MPL/2.0/. | ||||
| import sys | ||||
| import os | ||||
| 
 | ||||
| # Make the parent directory (root of the package) discoverable | ||||
| package_directory = os.path.dirname(os.path.abspath(__file__)) | ||||
| sys.path.insert(0, package_directory) | ||||
| 
 | ||||
| import math | ||||
| import importlib | ||||
| #from Float import * | ||||
| importlib.import_module("Float") | ||||
| 
 | ||||
| from .Float import * | ||||
| 
 | ||||
| # This is in fact AngleSingle | ||||
| class Angle: | ||||
| @ -44,10 +36,13 @@ class Angle: | ||||
|         """! Tests whether this angle is equal to the given angle | ||||
|         @param angle The angle to compare to | ||||
|         @return True when the angles are equal, False otherwise | ||||
|         @note The equality is determine within the limits of precision of the raw | ||||
|         type T | ||||
|         @note This uses float comparison to check equality which may have strange | ||||
|         effects. Equality on floats should be avoided, use isclose instead | ||||
|         """ | ||||
|         return self.value == angle.value | ||||
|     def isclose(self, other, rel_tol=1e-9, abs_tol=1e-9): | ||||
|         return math.isclose(self.value, other.value, rel_tol=rel_tol, abs_tol=abs_tol) | ||||
| 
 | ||||
|     def __gt__(self, angle): | ||||
|         """! Tests if this angle is greater than the given angle | ||||
|         @param angle The given angle | ||||
|  | ||||
| @ -74,6 +74,11 @@ class Direction: | ||||
|         """ | ||||
|         return (self.horizontal == direction.horizontal and | ||||
|                 self.vertical == direction.vertical) | ||||
|     def isclose(self, other, rel_tol=1e-9, abs_tol=1e-8): | ||||
|         return ( | ||||
|             Angle.isclose(self.horizontal, other.horizontal, rel_tol=rel_tol, abs_tol=abs_tol) and | ||||
|             Angle.isclose(self.vertical, other.vertical, rel_tol=rel_tol, abs_tol=abs_tol)  | ||||
|         ) | ||||
| 
 | ||||
|     def __neg__(self): | ||||
|         """! Negate/reverse the direction | ||||
|  | ||||
| @ -118,6 +118,13 @@ class Quaternion: | ||||
|             self.z == other.z and | ||||
|             self.w == other.w | ||||
|         ) | ||||
|     def isclose(self, other, rel_tol=1e-9, abs_tol=1e-8): | ||||
|         return ( | ||||
|             math.isclose(self.x, other.x, rel_tol=rel_tol, abs_tol=abs_tol) and | ||||
|             math.isclose(self.y, other.y, rel_tol=rel_tol, abs_tol=abs_tol) and | ||||
|             math.isclose(self.z, other.z, rel_tol=rel_tol, abs_tol=abs_tol) and | ||||
|             math.isclose(self.w, other.w, rel_tol=rel_tol, abs_tol=abs_tol) | ||||
|         ) | ||||
| 
 | ||||
|     def SqrMagnitude(self) -> float: | ||||
|         return self.x * self.x + self.y * self.y + self.z * self.z + self.w * self.w | ||||
|  | ||||
| @ -1,4 +1,5 @@ | ||||
| import math | ||||
| 
 | ||||
| from .Direction import * | ||||
| from .Vector import * | ||||
| 
 | ||||
| @ -83,6 +84,12 @@ class Polar: | ||||
|             self.distance == other.distance and | ||||
|             self.direction == other.direction | ||||
|         )     | ||||
|     def isclose(self, other, rel_tol=1e-9, abs_tol=1e-8): | ||||
|         return ( | ||||
|             math.isclose(self.distance, other.distance, rel_tol=rel_tol, abs_tol=abs_tol) and | ||||
|             self.direction.isclose(other.direction, rel_tol, abs_tol) | ||||
|         ) | ||||
| 
 | ||||
|          | ||||
|     def Magnitude(self) -> float: | ||||
|         return math.fabs(self.distance) | ||||
| @ -312,6 +319,11 @@ class Spherical(Polar): | ||||
|             self.distance == other.distance and | ||||
|             self.direction == other.direction | ||||
|         ) | ||||
|     def isclose(self, other, rel_tol=1e-9, abs_tol=1e-8): | ||||
|         return ( | ||||
|             math.isclose(self.distance, other.distance, rel_tol=rel_tol, abs_tol=abs_tol) and | ||||
|             self.direction.isclose(other.direction, rel_tol, abs_tol) | ||||
|         ) | ||||
| 
 | ||||
|     def Normalized(self) -> float: | ||||
|         if self.distance == 0: | ||||
|  | ||||
| @ -79,6 +79,12 @@ class SwingTwist: | ||||
|             self.swing == other.swing and | ||||
|             self.twist == other.twist | ||||
|         ) | ||||
|     def isclose(self, other, rel_tol=1e-9, abs_tol=1e-8): | ||||
|         return ( | ||||
|             self.swing.isclose(other.swing, rel_tol, abs_tol) and | ||||
|             Angle.isclose(self.twist, other.twist, rel_tol=rel_tol, abs_tol=abs_tol) | ||||
|         ) | ||||
| 
 | ||||
|      | ||||
|     @staticmethod | ||||
|     def Angle(r1, r2) -> Angle: | ||||
|  | ||||
							
								
								
									
										416
									
								
								Vector.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										416
									
								
								Vector.py
									
									
									
									
									
										Normal file
									
								
							| @ -0,0 +1,416 @@ | ||||
| import math | ||||
| 
 | ||||
| from LinearAlgebra.Angle import * | ||||
| 
 | ||||
| epsilon = 1E-05 | ||||
| 
 | ||||
| class Vector2: | ||||
|     def __init__(self, right: float = 0, up: float = 0): | ||||
|         """! A new 2-dimensional vector | ||||
|         @param right The distance in the right direction in meters | ||||
|         @param up The distance in the upward direction in meters | ||||
|         """ | ||||
|         ## The right axis of the vector | ||||
|         self.right: float = right | ||||
|         ## The upward axis of the vector | ||||
|         self.up: float = up | ||||
| 
 | ||||
|     def __eq__(self, other) -> bool: | ||||
|         """! Check if this vector is equal to the given vector | ||||
|         @param v The vector to check against | ||||
|         @return true if it is identical to the given vector | ||||
|         @note This uses float comparison to check equality which may have strange | ||||
|         effects. Equality on floats should be avoided. | ||||
|         """ | ||||
|         return ( | ||||
|             self.right == other.right and | ||||
|             self.up == other.up | ||||
|         )     | ||||
| 
 | ||||
|     def SqrMagnitude(self) -> float: | ||||
|         """! The squared vector length | ||||
|         @return The squared vector length | ||||
|         @remark The squared length is computationally simpler than the real | ||||
|         length. Think of Pythagoras A^2 + B^2 = C^2. This leaves out the | ||||
|         calculation of the squared root of C. | ||||
|         """ | ||||
|         return self.right ** 2 + self.up ** 2 | ||||
| 
 | ||||
|     def Magnitude(self) -> float: | ||||
|         """! The vector length | ||||
|         @return The vector length | ||||
|         """ | ||||
|         return math.sqrt(self.SqrMagnitude()) | ||||
| 
 | ||||
|     def Normalized(self): | ||||
|         """! Convert the vector to a length of 1 | ||||
|         @return The vector normalized to a length of 1 | ||||
|         """ | ||||
|         length: float = self.Magnitude(); | ||||
|         result = Vector2.zero | ||||
|         if length > epsilon: | ||||
|             result = self / length; | ||||
|         return result | ||||
| 
 | ||||
|     def __neg__(self): | ||||
|         """! Negate te vector such that it points in the opposite direction | ||||
|         @return The negated vector | ||||
|         """ | ||||
|         return Vector2(-self.right, -self.up) | ||||
|      | ||||
|     def __sub__(self, other): | ||||
|         """! Subtract a vector from this vector | ||||
|         @param other The vector to subtract from this vector | ||||
|         @return The result of this subtraction | ||||
|         """ | ||||
|         return Vector2( | ||||
|             self.right - other.right, | ||||
|             self.up - other.up | ||||
|         ) | ||||
| 
 | ||||
|     def __add__(self, other): | ||||
|         """! Add a vector to this vector | ||||
|         @param other The vector to add to this vector | ||||
|         @return The result of the addition | ||||
|         """ | ||||
|         return Vector2( | ||||
|             self.right + other.right, | ||||
|             self.up + other.up | ||||
|         ) | ||||
|      | ||||
|     def Scale(self, scaling): | ||||
|         """! Scale the vector using another vector | ||||
|         @param scaling A vector with the scaling factors | ||||
|         @return The scaled vector | ||||
|         @remark Each component of the vector will be multiplied with the | ||||
|         matching component from the scaling vector. | ||||
|         """ | ||||
|         return Vector2( | ||||
|             self.right * scaling.right, | ||||
|             self.up * scaling.up | ||||
|         ) | ||||
|      | ||||
|     def __mul__(self, factor): | ||||
|         """! Scale the vector uniformly up | ||||
|         @param factor The scaling factor | ||||
|         @return The scaled vector | ||||
|         @remark Each component of the vector will be multiplied by the same factor. | ||||
|         """ | ||||
|         return Vector2( | ||||
|             self.right * factor, | ||||
|             self.up * factor | ||||
|         ) | ||||
|      | ||||
|     def __truediv__(self, factor): | ||||
|         """! Scale the vector uniformly down | ||||
|         @param f The scaling factor | ||||
|         @return The scaled vector | ||||
|         @remark Each component of the vector will be divided by the same factor. | ||||
|         """ | ||||
|         return Vector2( | ||||
|             self.right / factor, | ||||
|             self.up / factor | ||||
|         ) | ||||
| 
 | ||||
|     @staticmethod | ||||
|     def Distance(v1, v2) -> float: | ||||
|         """! The distance between two vectors | ||||
|         @param v1 The first vector | ||||
|         @param v2 The second vector | ||||
|         @return The distance between the two vectors | ||||
|         """ | ||||
|         return (v1 - v2).Magnitude() | ||||
|      | ||||
|     @staticmethod | ||||
|     def Dot(v1, v2) -> float: | ||||
|         """! The dot product of two vectors | ||||
|         @param v1 The first vector | ||||
|         @param v2 The second vector | ||||
|         @return The dot product of the two vectors | ||||
|         """ | ||||
|         return v1.right * v2.right + v1.up * v2.up | ||||
|      | ||||
|     @staticmethod | ||||
|     def Angle(v1, v2) -> Angle: | ||||
|         """! The angle between two vectors | ||||
|         @param v1 The first vector | ||||
|         @param v2 The second vector | ||||
|         @return The angle between the two vectors | ||||
|         @remark This reterns an unsigned angle which is the shortest distance | ||||
|         between the two vectors. Use Vector3::SignedAngle if a signed angle is | ||||
|         needed. | ||||
|         """ | ||||
|         denominator: float = math.sqrt(v1.SqrMagnitude() * v2.SqrMagnitude()) | ||||
|         if denominator < epsilon: | ||||
|             return Angle.zero | ||||
| 
 | ||||
|         dot: float = Vector2.Dot(v1, v2) | ||||
|         fraction: float = dot / denominator | ||||
|         # if math.nan(fraction): | ||||
|         #     return Angle.Degrees(fraction) # short cut to returning NaN universally | ||||
| 
 | ||||
|         cdot: float = Float.Clamp(fraction, -1.0, 1.0) | ||||
|         r: float = math.acos(cdot) | ||||
|         return Angle.Radians(r); | ||||
| 
 | ||||
|     @staticmethod | ||||
|     def SignedAngle(v1, v2) -> Angle: | ||||
|         """! The signed angle between two vectors | ||||
|         @param v1 The starting vector | ||||
|         @param v2 The ending vector | ||||
|         @param axis The axis to rotate around | ||||
|         @return The signed angle between the two vectors | ||||
|         """ | ||||
|         sqr_mag_from: float = v1.SqrMagnitude() | ||||
|         sqr_mag_to: float = v2.SqrMagnitude() | ||||
| 
 | ||||
|         if sqr_mag_from == 0 or sqr_mag_to == 0: | ||||
|             return Angle.zero | ||||
|         # if (!isfinite(sqrMagFrom) || !isfinite(sqrMagTo)) | ||||
|         #     return nanf(""); | ||||
| 
 | ||||
|         angle_from = math.atan2(v1.up, v1.right) | ||||
|         angle_to = math.atan2(v2.up, v2.right) | ||||
|         return Angle.Radians(-(angle_to - angle_from)) | ||||
|      | ||||
|     @staticmethod | ||||
|     def Lerp(v1, v2, f: float): | ||||
|         """! Lerp (linear interpolation) between two vectors | ||||
|         @param v1 The starting vector | ||||
|         @param v2 The ending vector | ||||
|         @param f The interpolation distance | ||||
|         @return The lerped vector | ||||
|         @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value | ||||
|         1 matches vector *v2*. Value -1 is vector *v1* minus the difference | ||||
|         between *v1* and *v2* etc. | ||||
|         """ | ||||
|         return v1 + (v2 - v1) * f | ||||
| 
 | ||||
| 
 | ||||
| ## A vector with zero for all axis | ||||
| Vector2.zero = Vector2(0, 0) | ||||
| ## A vector with one for all axis | ||||
| Vector2.one = Vector2(1, 1) | ||||
| ## A normalized right-oriented vector | ||||
| Vector2.right = Vector2(1, 0) | ||||
| ## A normalized left-oriented vector | ||||
| Vector2.left = Vector2(-1, 0) | ||||
| ## A normalized up-oriented vector | ||||
| Vector2.up = Vector2(0, 1) | ||||
| ## A normalized down-oriented vector | ||||
| Vector2.down = Vector2(0, -1) | ||||
| 
 | ||||
| class Vector3(Vector2): | ||||
|     def __init__(self, right: float = 0, up: float = 0, forward: float = 0): | ||||
|         """! A new 3-dimensional vector | ||||
|         @param right The distance in the right direction in meters | ||||
|         @param up The distance in the upward direction in meters | ||||
|         @param forward The distance in the forward direction in meters | ||||
|         """ | ||||
|         ## The right axis of the vector | ||||
|         self.right: float = right | ||||
|         ## The upward axis of the vector | ||||
|         self.up: float = up | ||||
|         ## The forward axis of the vector | ||||
|         self.forward: float = forward | ||||
|      | ||||
|     def __eq__(self, other) -> bool: | ||||
|         """! Check if this vector is equal to the given vector | ||||
|         @param v The vector to check against | ||||
|         @return true if it is identical to the given vector | ||||
|         @note This uses float comparison to check equality which may have strange | ||||
|         effects. Equality on floats should be avoided. | ||||
|         """ | ||||
|         return ( | ||||
|             self.right == other.right and | ||||
|             self.up == other.up and | ||||
|             self.forward == other.forward | ||||
|         )     | ||||
| 
 | ||||
|     def SqrMagnitude(self) -> float: | ||||
|         """! The squared vector length | ||||
|         @return The squared vector length | ||||
|         @remark The squared length is computationally simpler than the real | ||||
|         length. Think of Pythagoras A^2 + B^2 = C^2. This leaves out the | ||||
|         calculation of the squared root of C. | ||||
|         """ | ||||
|         return self.right ** 2 + self.up ** 2 + self.forward ** 2 | ||||
|      | ||||
|     def Normalized(self): | ||||
|         """! Convert the vector to a length of 1 | ||||
|         @return The vector normalized to a length of 1 | ||||
|         """ | ||||
|         length: float = self.Magnitude(); | ||||
|         result = Vector3() | ||||
|         if length > epsilon: | ||||
|             result = self / length; | ||||
|         return result | ||||
| 
 | ||||
|     def __neg__(self): | ||||
|         """! Negate te vector such that it points in the opposite direction | ||||
|         @return The negated vector | ||||
|         """ | ||||
|         return Vector3(-self.right, -self.up, -self.forward) | ||||
|      | ||||
|     def __sub__(self, other): | ||||
|         """! Subtract a vector from this vector | ||||
|         @param other The vector to subtract from this vector | ||||
|         @return The result of this subtraction | ||||
|         """ | ||||
|         return Vector3( | ||||
|             self.right - other.right, | ||||
|             self.up - other.up, | ||||
|             self.forward - other.forward | ||||
|         ) | ||||
| 
 | ||||
|     def __add__(self, other): | ||||
|         """! Add a vector to this vector | ||||
|         @param other The vector to add to this vector | ||||
|         @return The result of the addition | ||||
|         """ | ||||
|         return Vector3( | ||||
|             self.right + other.right, | ||||
|             self.up + other.up, | ||||
|             self.forward + other.forward | ||||
|         ) | ||||
|      | ||||
|     def Scale(self, scaling): | ||||
|         """! Scale the vector using another vector | ||||
|         @param scaling A vector with the scaling factors | ||||
|         @return The scaled vector | ||||
|         @remark Each component of the vector will be multiplied with the | ||||
|         matching component from the scaling vector. | ||||
|         """ | ||||
|         return Vector3( | ||||
|             self.right * scaling.right, | ||||
|             self.up * scaling.up, | ||||
|             self.forward * scaling.forward | ||||
|         ) | ||||
|      | ||||
|     def __mul__(self, factor): | ||||
|         """! Scale the vector uniformly up | ||||
|         @param factor The scaling factor | ||||
|         @return The scaled vector | ||||
|         @remark Each component of the vector will be multiplied by the same factor. | ||||
|         """ | ||||
|         return Vector3( | ||||
|             self.right * factor, | ||||
|             self.up * factor, | ||||
|             self.forward * factor | ||||
|         ) | ||||
|      | ||||
|     def __truediv__(self, factor): | ||||
|         """! Scale the vector uniformly down | ||||
|         @param f The scaling factor | ||||
|         @return The scaled vector | ||||
|         @remark Each component of the vector will be divided by the same factor. | ||||
|         """ | ||||
|         return Vector3( | ||||
|             self.right / factor, | ||||
|             self.up / factor, | ||||
|             self.forward / factor | ||||
|         ) | ||||
|      | ||||
|     @staticmethod | ||||
|     def Dot(v1, v2) -> float: | ||||
|         """! The dot product of two vectors | ||||
|         @param v1 The first vector | ||||
|         @param v2 The second vector | ||||
|         @return The dot product of the two vectors | ||||
|         """ | ||||
|         return v1.right * v2.right + v1.up * v2.up + v1.forward * v2.forward | ||||
|      | ||||
|     @staticmethod | ||||
|     def Cross(v1, v2): | ||||
|         """! The cross product of two vectors | ||||
|         @param v1 The first vector | ||||
|         @param v2 The second vector | ||||
|         @return The cross product of the two vectors | ||||
|         """ | ||||
|         return Vector3( | ||||
|             v1.up * v2.forward - v1.forward * v2.up, | ||||
|             v1.forward * v2.right - v1.right * v2.forward, | ||||
|             v1.right * v2.up - v1.up * v2.right | ||||
|         ) | ||||
| 
 | ||||
|     def Project(self, other): | ||||
|         """! Project the vector on another vector | ||||
|         @param other The normal vecto to project on | ||||
|         @return The projected vector | ||||
|         """ | ||||
|         sqrMagnitude = other.SqrMagnitude() | ||||
|         if sqrMagnitude < epsilon: | ||||
|             return Vector3.zero | ||||
|         else: | ||||
|             dot = Vector3.Dot(self, other) | ||||
|             return other * dot / sqrMagnitude; | ||||
| 
 | ||||
|     def ProjectOnPlane(self, normal): | ||||
|         """! Project the vector on a plane defined by a normal orthogonal to the | ||||
|         plane. | ||||
|         @param normal The normal of the plane to project on | ||||
|         @return Teh projected vector | ||||
|         """ | ||||
|         return self - self.Project(normal) | ||||
|      | ||||
|     @staticmethod | ||||
|     def Angle(v1, v2) -> Angle: | ||||
|         """! The angle between two vectors | ||||
|         @param v1 The first vector | ||||
|         @param v2 The second vector | ||||
|         @return The angle between the two vectors | ||||
|         @remark This reterns an unsigned angle which is the shortest distance | ||||
|         between the two vectors. Use Vector3::SignedAngle if a signed angle is | ||||
|         needed. | ||||
|         """ | ||||
|         denominator: float = math.sqrt(v1.SqrMagnitude() * v2.SqrMagnitude()) | ||||
|         if denominator < epsilon: | ||||
|             return Angle.zero | ||||
| 
 | ||||
|         dot: float = Vector3.Dot(v1, v2) | ||||
|         fraction: float = dot / denominator | ||||
|         if math.isnan(fraction): | ||||
|             return Angle.Degrees(fraction) # short cut to returning NaN universally | ||||
| 
 | ||||
|         cdot: float = Float.Clamp(fraction, -1.0, 1.0) | ||||
|         r: float = math.acos(cdot) | ||||
|         return Angle.Radians(r); | ||||
| 
 | ||||
|     @staticmethod | ||||
|     def SignedAngle(v1, v2, axis) -> Angle: | ||||
|         """! The signed angle between two vectors | ||||
|         @param v1 The starting vector | ||||
|         @param v2 The ending vector | ||||
|         @param axis The axis to rotate around | ||||
|         @return The signed angle between the two vectors | ||||
|         """ | ||||
|         # angle in [0,180] | ||||
|         angle: Angle = Vector3.Angle(v1, v2) | ||||
| 
 | ||||
|         cross: Vector3 = Vector3.Cross(v1, v2) | ||||
|         b: float = Vector3.Dot(axis, cross) | ||||
|         sign:int = 0 | ||||
|         if b < 0: | ||||
|             sign = -1 | ||||
|         elif b > 0: | ||||
|             sign = 1 | ||||
| 
 | ||||
|         # angle in [-179,180] | ||||
|         return angle * sign | ||||
|      | ||||
| ## A vector with zero for all axis | ||||
| Vector3.zero = Vector3(0, 0, 0) | ||||
| ## A vector with one for all axis | ||||
| Vector3.one = Vector3(1, 1, 1) | ||||
| ## A normalized forward-oriented vector | ||||
| Vector3.forward = Vector3(0, 0, 1) | ||||
| ## A normalized back-oriented vector | ||||
| Vector3.back = Vector3(0, 0, -1) | ||||
| ## A normalized right-oriented vector | ||||
| Vector3.right = Vector3(1, 0, 0) | ||||
| ## A normalized left-oriented vector | ||||
| Vector3.left = Vector3(-1, 0, 0) | ||||
| ## A normalized up-oriented vector | ||||
| Vector3.up = Vector3(0, 1, 0) | ||||
| ## A normalized down-oriented vector | ||||
| Vector3.down = Vector3(0, -1, 0) | ||||
| @ -1,10 +1,6 @@ | ||||
| import unittest | ||||
| import sys | ||||
| from pathlib import Path | ||||
| # Add the project root to sys.path | ||||
| sys.path.append(str(Path(__file__).resolve().parent.parent)) | ||||
|                  | ||||
| from Angle import * | ||||
| from LinearAlgebra.Angle import * | ||||
| 
 | ||||
| class AngleTest(unittest.TestCase): | ||||
|     def test_Construct(self): | ||||
|  | ||||
| @ -1,10 +1,6 @@ | ||||
| import unittest | ||||
| import sys | ||||
| from pathlib import Path | ||||
| # Add the project root to sys.path | ||||
| sys.path.append(str(Path(__file__).resolve().parent.parent)) | ||||
|                  | ||||
| from Direction import * | ||||
| from LinearAlgebra.Direction import * | ||||
| 
 | ||||
| class DirectionTest(unittest.TestCase): | ||||
|     def test_Compare(self): | ||||
|  | ||||
| @ -1,10 +1,6 @@ | ||||
| import unittest | ||||
| import sys | ||||
| from pathlib import Path | ||||
| # Add the project root to sys.path | ||||
| sys.path.append(str(Path(__file__).resolve().parent.parent)) | ||||
|                  | ||||
| from Float import * | ||||
| from LinearAlgebra.Float import * | ||||
| 
 | ||||
| class FloatTest(unittest.TestCase): | ||||
|     def test_Clamp(self): | ||||
|  | ||||
| @ -1,10 +1,6 @@ | ||||
| import unittest | ||||
| import sys | ||||
| from pathlib import Path | ||||
| # Add the project root to sys.path | ||||
| sys.path.append(str(Path(__file__).resolve().parent.parent)) | ||||
|                  | ||||
| from Quaternion import * | ||||
| from LinearAlgebra.Quaternion import * | ||||
| 
 | ||||
| class QuaternionTest(unittest.TestCase): | ||||
|     def test_Equality(self): | ||||
| @ -22,7 +18,7 @@ class QuaternionTest(unittest.TestCase): | ||||
| 
 | ||||
|         q = Quaternion.FromAngles(Angle.Degrees(90), Angle.Degrees(90), Angle.Degrees(-90)) | ||||
|         sqrt2_2 = math.sqrt(2) / 2 | ||||
|         assert(q == Quaternion(0, sqrt2_2, -sqrt2_2, 0)) | ||||
|         assert(Quaternion.isclose(q, Quaternion(0, sqrt2_2, -sqrt2_2, 0))) | ||||
|          | ||||
|     def test_ToAngles(self): | ||||
|         q1 = Quaternion.identity | ||||
| @ -39,7 +35,8 @@ class QuaternionTest(unittest.TestCase): | ||||
| 
 | ||||
|         q = Quaternion.Degrees(90, 90, -90) | ||||
|         sqrt2_2 = math.sqrt(2) / 2 | ||||
|         assert(q == Quaternion(0, sqrt2_2, -sqrt2_2, 0)) | ||||
|         assert(Quaternion.isclose(q, Quaternion(0, sqrt2_2, -sqrt2_2, 0))) | ||||
|         # assert(q == Quaternion(0, sqrt2_2, -sqrt2_2, 0)) | ||||
| 
 | ||||
|     def test_Radians(self): | ||||
|         q = Quaternion.Radians(0, 0, 0) | ||||
| @ -47,7 +44,8 @@ class QuaternionTest(unittest.TestCase): | ||||
| 
 | ||||
|         q = Quaternion.Radians(math.pi / 2, math.pi / 2, -math.pi / 2) | ||||
|         sqrt2_2 = math.sqrt(2) / 2 | ||||
|         assert(q == Quaternion(0, sqrt2_2, -sqrt2_2, 0)) | ||||
|         assert(Quaternion.isclose(q, Quaternion(0, sqrt2_2, -sqrt2_2, 0))) | ||||
|         # assert(q == Quaternion(0, sqrt2_2, -sqrt2_2, 0)) | ||||
| 
 | ||||
|     def test_Multiply(self): | ||||
|         q1 = Quaternion.identity | ||||
|  | ||||
| @ -1,10 +1,6 @@ | ||||
| import unittest | ||||
| import sys | ||||
| from pathlib import Path | ||||
| # Add the project root to sys.path | ||||
| sys.path.append(str(Path(__file__).resolve().parent.parent)) | ||||
|                  | ||||
| from Spherical import * | ||||
| from LinearAlgebra.Spherical import * | ||||
| 
 | ||||
| class PolarTest(unittest.TestCase): | ||||
|     def test_FromVector2(self): | ||||
| @ -157,7 +153,7 @@ class PolarTest(unittest.TestCase): | ||||
| 
 | ||||
|         v2 = Polar.Degrees(-1, -135) | ||||
|         r = Polar.Distance(v1, v2) | ||||
|         assert(r == 3) | ||||
|         assert(math.isclose(r, 3)) | ||||
| 
 | ||||
|         v2 = Polar.Degrees(0, 0) | ||||
|         r = Polar.Distance(v1, v2) | ||||
| @ -207,10 +203,10 @@ class PolarTest(unittest.TestCase): | ||||
|         assert(r == v1) | ||||
|    | ||||
|         r = Polar.Lerp(v1, v2, 1) | ||||
|         assert(r == v2) | ||||
|         assert(Polar.isclose(r, v2)) | ||||
| 
 | ||||
|         r = Polar.Lerp(v1, v2, 0.5) | ||||
|         assert(r == Polar.Degrees(3, 0)) | ||||
|         assert(Polar.isclose(r, Polar.Degrees(3, 0))) | ||||
| 
 | ||||
|         r = Polar.Lerp(v1, v2, -1) | ||||
|         assert(r == Polar.Degrees(9, 135)) | ||||
| @ -316,7 +312,7 @@ class SphericalTest(unittest.TestCase): | ||||
| 
 | ||||
|         v2 = Spherical.Degrees(1, 45, 0) | ||||
|         r = v1 - v2 | ||||
|         assert(r == Spherical.Degrees(3, 45, 0)) | ||||
|         assert(Spherical.isclose(r, Spherical.Degrees(3, 45, 0))) | ||||
| 
 | ||||
|         v2 = Spherical.Degrees(1, -135, 0) | ||||
|         r = v1 - v2 | ||||
| @ -336,15 +332,15 @@ class SphericalTest(unittest.TestCase): | ||||
| 
 | ||||
|         v2 = Spherical(1, Direction.Degrees(-45, 0)) | ||||
|         r = v1 + v2 | ||||
|         assert(r.distance == math.sqrt(2)) | ||||
|         assert(r.direction.horizontal.InDegrees() == 0) | ||||
|         assert(r.direction.vertical.InDegrees() == 0) | ||||
|         assert(math.isclose(r.distance, math.sqrt(2))) | ||||
|         assert(Angle.isclose(r.direction.horizontal, Angle.Degrees(0))) | ||||
|         assert(Angle.isclose(r.direction.vertical, Angle.Degrees(0))) | ||||
| 
 | ||||
|         v2 = Spherical(1, Direction.Degrees(0, 90)) | ||||
|         r = v1 + v2 | ||||
|         assert(r.distance == math.sqrt(2)) | ||||
|         assert(r.direction.horizontal.InDegrees() == 45) | ||||
|         assert(r.direction.vertical.InDegrees() == 45) | ||||
|         assert(math.isclose(r.distance, math.sqrt(2))) | ||||
|         assert(Angle.isclose(r.direction.horizontal, Angle.Degrees(45))) | ||||
|         assert(Angle.isclose(r.direction.vertical, Angle.Degrees(45))) | ||||
| 
 | ||||
|     def test_Multiply(self): | ||||
|         r = Spherical.zero | ||||
| @ -379,7 +375,7 @@ class SphericalTest(unittest.TestCase): | ||||
| 
 | ||||
|         v2 = Spherical.Degrees(-1, -135, 0) | ||||
|         r = Spherical.Distance(v1, v2) | ||||
|         assert(r == 3) | ||||
|         assert(math.isclose(r, 3)) | ||||
| 
 | ||||
|         v2 = Spherical.Degrees(0, 0, 0) | ||||
|         r = Spherical.Distance(v1, v2) | ||||
| @ -429,10 +425,10 @@ class SphericalTest(unittest.TestCase): | ||||
|         assert(r == v1) | ||||
|    | ||||
|         r = Spherical.Lerp(v1, v2, 1) | ||||
|         assert(r == v2) | ||||
|         assert(Spherical.isclose(r, v2)) | ||||
| 
 | ||||
|         r = Spherical.Lerp(v1, v2, 0.5) | ||||
|         assert(r == Spherical.Degrees(3, 0, 0)) | ||||
|         assert(Spherical.isclose(r, Spherical.Degrees(3, 0, 0))) | ||||
| 
 | ||||
|         r = Spherical.Lerp(v1, v2, -1) | ||||
|         assert(r == Spherical.Degrees(9, 135, 0)) | ||||
|  | ||||
| @ -1,10 +1,6 @@ | ||||
| import unittest | ||||
| import sys | ||||
| from pathlib import Path | ||||
| # Add the project root to sys.path | ||||
| sys.path.append(str(Path(__file__).resolve().parent.parent)) | ||||
|                  | ||||
| from SwingTwist import * | ||||
| from LinearAlgebra.SwingTwist import * | ||||
| 
 | ||||
| class SwingTwistTest(unittest.TestCase): | ||||
|     def test_Constructor(self): | ||||
| @ -36,7 +32,7 @@ class SwingTwistTest(unittest.TestCase): | ||||
| 
 | ||||
|         q = Quaternion.Degrees(90, 0, 0) | ||||
|         r = SwingTwist.FromQuaternion(q) | ||||
|         assert(r == SwingTwist.Degrees(90, 0, 0)) | ||||
|         assert(SwingTwist.isclose(r, SwingTwist.Degrees(90, 0, 0))) | ||||
| 
 | ||||
|         q = Quaternion.Degrees(0, 90, 0) | ||||
|         r = SwingTwist.FromQuaternion(q) | ||||
|  | ||||
| @ -1,10 +1,6 @@ | ||||
| import unittest | ||||
| import sys | ||||
| from pathlib import Path | ||||
| # Add the project root to sys.path | ||||
| sys.path.append(str(Path(__file__).resolve().parent.parent)) | ||||
|                  | ||||
| from Vector import * | ||||
| from LinearAlgebra.Vector import * | ||||
| 
 | ||||
| class Vector2Test(unittest.TestCase): | ||||
|     def test_Equality(self): | ||||
|  | ||||
							
								
								
									
										0
									
								
								test/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								test/__init__.py
									
									
									
									
									
										Normal file
									
								
							
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user