Merge commit 'a6a91798b24552522373414d43981b082025cfdd' into ControlCore

This commit is contained in:
Pascal Serrarens 2025-03-07 11:59:48 +01:00
commit 8ce608ae2a
38 changed files with 677 additions and 496 deletions

View File

@ -5,16 +5,18 @@
namespace RoboidControl { namespace RoboidControl {
namespace Arduino { namespace Arduino {
DigitalInput::DigitalInput(Participant* participant, unsigned char pin) : TouchSensor(participant) { DigitalInput::DigitalInput(Participant* participant, unsigned char pin)
this->pin = pin; : TouchSensor(participant) {
this->pin = pin;
pinMode(pin, INPUT); pinMode(pin, INPUT);
} }
void DigitalInput::Update(unsigned long currentTimeMs) { void DigitalInput::Update(unsigned long currentTimeMs, bool recursive) {
this->touchedSomething = digitalRead(pin) == LOW; this->touchedSomething = digitalRead(pin) == LOW;
// std::cout << "DigitalINput pin " << (int)this->pin << ": " <<
// std::cout << "DigitalINput pin " << (int)this->pin << ": " << this->touchedSomething << "\n"; // this->touchedSomething << "\n";
Thing::Update(currentTimeMs, recursive);
} }
} // namespace Arduino } // namespace Arduino

View File

@ -13,8 +13,9 @@ class DigitalInput : public TouchSensor {
/// @param pin The digital pin /// @param pin The digital pin
DigitalInput(Participant* participant, unsigned char pin); DigitalInput(Participant* participant, unsigned char pin);
/// @copydoc RoboidControl::Thing::Update(unsigned long currentTimeMs) /// @copydoc RoboidControl::Thing::Update(unsigned long currentTimeMs)
virtual void Update(unsigned long currentTimeMs) override; virtual void Update(unsigned long currentTimeMs,
bool recursive = false) override;
protected: protected:
/// @brief The pin used for digital input /// @brief The pin used for digital input

View File

@ -5,7 +5,9 @@
namespace RoboidControl { namespace RoboidControl {
namespace Arduino { namespace Arduino {
UltrasonicSensor::UltrasonicSensor(Participant* participant, unsigned char pinTrigger, unsigned char pinEcho) UltrasonicSensor::UltrasonicSensor(Participant* participant,
unsigned char pinTrigger,
unsigned char pinEcho)
: TouchSensor(participant) { : TouchSensor(participant) {
this->pinTrigger = pinTrigger; this->pinTrigger = pinTrigger;
this->pinEcho = pinEcho; this->pinEcho = pinEcho;
@ -23,7 +25,8 @@ float UltrasonicSensor::GetDistance() {
digitalWrite(pinTrigger, LOW); digitalWrite(pinTrigger, LOW);
// Measure the duration of the pulse on the echo pin // Measure the duration of the pulse on the echo pin
float duration_us = pulseIn(pinEcho, HIGH, 100000); // the result is in microseconds float duration_us =
pulseIn(pinEcho, HIGH, 100000); // the result is in microseconds
// Calculate the distance: // Calculate the distance:
// * Duration should be divided by 2, because the ping goes to the object // * Duration should be divided by 2, because the ping goes to the object
@ -43,14 +46,16 @@ float UltrasonicSensor::GetDistance() {
this->touchedSomething |= (this->distance <= this->touchDistance); this->touchedSomething |= (this->distance <= this->touchDistance);
// std::cout << "Ultrasonic " << this->distance << " " << this->touchedSomething << "\n"; // std::cout << "Ultrasonic " << this->distance << " " <<
// this->touchedSomething << "\n";
return distance; return distance;
} }
void UltrasonicSensor::Update(unsigned long currentTimeMs) { void UltrasonicSensor::Update(unsigned long currentTimeMs, bool recursive) {
this->touchedSomething = false; this->touchedSomething = false;
GetDistance(); GetDistance();
Thing::Update(currentTimeMs, recursive);
} }
// void UltrasonicSensor::ProcessBinary(char* bytes) { // void UltrasonicSensor::ProcessBinary(char* bytes) {

View File

@ -12,7 +12,9 @@ class UltrasonicSensor : public TouchSensor {
/// @param participant The participant to use /// @param participant The participant to use
/// @param pinTrigger The pin number of the trigger signal /// @param pinTrigger The pin number of the trigger signal
/// @param pinEcho The pin number of the echo signal /// @param pinEcho The pin number of the echo signal
UltrasonicSensor(Participant* participant, unsigned char pinTrigger, unsigned char pinEcho); UltrasonicSensor(Participant* participant,
unsigned char pinTrigger,
unsigned char pinEcho);
// parameters // parameters
@ -23,12 +25,14 @@ class UltrasonicSensor : public TouchSensor {
/// @brief The last read distance /// @brief The last read distance
float distance = 0; float distance = 0;
/// @brief erform an ultrasonic 'ping' to determine the distance to the nearest object /// @brief erform an ultrasonic 'ping' to determine the distance to the
/// nearest object
/// @return the measured distance in meters to the nearest object /// @return the measured distance in meters to the nearest object
float GetDistance(); float GetDistance();
/// @copydoc RoboidControl::Thing::Update(unsigned long currentTimeMs) /// @copydoc RoboidControl::Thing::Update(unsigned long currentTimeMs)
virtual void Update(unsigned long currentTimeMs) override; virtual void Update(unsigned long currentTimeMs,
bool recursive = false) override;
protected: protected:
/// @brief The pin number of the trigger signal /// @brief The pin number of the trigger signal

View File

@ -5,8 +5,9 @@ if(ESP_PLATFORM)
INCLUDE_DIRS "." INCLUDE_DIRS "."
) )
else() else()
project(RoboidCOntrol) project(RoboidControl)
add_subdirectory(LinearAlgebra) add_subdirectory(LinearAlgebra)
add_subdirectory(Examples)
set(CMAKE_CXX_STANDARD 17) # Enable c++11 standard set(CMAKE_CXX_STANDARD 17) # Enable c++11 standard
set(CMAKE_POSITION_INDEPENDENT_CODE ON) set(CMAKE_POSITION_INDEPENDENT_CODE ON)
@ -51,13 +52,6 @@ else()
LinearAlgebra LinearAlgebra
) )
# if(MSVC)
# target_compile_options(RoboidControlTest PRIVATE /W4 /WX)
# # else()
# # target_compile_options(RoboidControlTest PRIVATE -Wall -Wextra -Wpedantic -Werror)
# endif()
include(GoogleTest) include(GoogleTest)
gtest_discover_tests(RoboidControlTest) gtest_discover_tests(RoboidControlTest)
endif() endif()

50
Examples/BB2B.cpp Normal file
View File

@ -0,0 +1,50 @@
#include "Thing.h"
#include "Things/DifferentialDrive.h"
#include "Things/TouchSensor.h"
#if defined(ARDUINO)
#include "Arduino.h"
#else
#include <chrono>
#include <thread>
using namespace std::this_thread;
using namespace std::chrono;
#endif
using namespace RoboidControl;
int main() {
// The robot's propulsion is a differential drive
DifferentialDrive* bb2b = new DifferentialDrive();
// Is has a touch sensor at the front left of the roboid
TouchSensor* touchLeft = new TouchSensor(bb2b);
// and other one on the right
TouchSensor* touchRight = new TouchSensor(bb2b);
// Do forever:
while (true) {
// The left wheel turns forward when nothing is touched on the right side
// and turn backward when the roboid hits something on the right
float leftWheelSpeed = (touchRight->touchedSomething) ? -600.0f : 600.0f;
// The right wheel does the same, but instead is controlled by
// touches on the left side
float rightWheelSpeed = (touchLeft->touchedSomething) ? -600.0f : 600.0f;
// When both sides are touching something, both wheels will turn backward
// and the roboid will move backwards
bb2b->SetWheelVelocity(leftWheelSpeed, rightWheelSpeed);
// Update the roboid state
bb2b->Update(true);
// and sleep for 100ms
#if defined(ARDUINO)
delay(100);
#else
sleep_for(milliseconds(100));
#endif
}
return 0;
}

25
Examples/CMakeLists.txt Normal file
View File

@ -0,0 +1,25 @@
# examples/CMakeLists.txt
# Specify the minimum CMake version
cmake_minimum_required(VERSION 3.10)
# Specify the path to the main project directory
set(MAIN_PROJECT_DIR "${CMAKE_SOURCE_DIR}/..")
# Set the project name
project(Examples)
include_directories(..)
# Add the executable for the main project
#add_executable(MainExecutable ${SOURCES})
# Find the main project library (assuming it's defined in the root CMakeLists.txt)
#find_package(RoboidControl REQUIRED) # Replace MyLibrary with your actual library name
# Add example executables
add_executable(BB2B BB2B.cpp)
target_link_libraries(
BB2B
RoboidControl
LinearAlgebra
)

View File

@ -3,15 +3,15 @@
// file, You can obtain one at https ://mozilla.org/MPL/2.0/. // file, You can obtain one at https ://mozilla.org/MPL/2.0/.
#include "Angle.h" #include "Angle.h"
#include "FloatSingle.h"
#include <math.h> #include <math.h>
#include "FloatSingle.h"
const float Rad2Deg = 57.29578F; namespace LinearAlgebra {
const float Deg2Rad = 0.0174532924F;
//===== AngleSingle, AngleOf<float> //===== AngleSingle, AngleOf<float>
template <> AngleOf<float> Passer::LinearAlgebra::AngleOf<float>::Degrees(float degrees) { template <>
AngleOf<float> AngleOf<float>::Degrees(float degrees) {
if (isfinite(degrees)) { if (isfinite(degrees)) {
while (degrees < -180) while (degrees < -180)
degrees += 360; degrees += 360;
@ -22,7 +22,8 @@ template <> AngleOf<float> Passer::LinearAlgebra::AngleOf<float>::Degrees(float
return AngleOf<float>(degrees); return AngleOf<float>(degrees);
} }
template <> AngleOf<float> AngleOf<float>::Radians(float radians) { template <>
AngleOf<float> AngleOf<float>::Radians(float radians) {
if (isfinite(radians)) { if (isfinite(radians)) {
while (radians <= -pi) while (radians <= -pi)
radians += 2 * pi; radians += 2 * pi;
@ -33,9 +34,13 @@ template <> AngleOf<float> AngleOf<float>::Radians(float radians) {
return Binary(radians * Rad2Deg); return Binary(radians * Rad2Deg);
} }
template <> float AngleOf<float>::InDegrees() const { return this->value; } template <>
float AngleOf<float>::InDegrees() const {
return this->value;
}
template <> float AngleOf<float>::InRadians() const { template <>
float AngleOf<float>::InRadians() const {
return this->value * Deg2Rad; return this->value * Deg2Rad;
} }
@ -58,25 +63,29 @@ AngleOf<signed short> AngleOf<signed short>::Radians(float radians) {
return Binary(value); return Binary(value);
} }
template <> float AngleOf<signed short>::InDegrees() const { template <>
float AngleOf<signed short>::InDegrees() const {
float degrees = this->value / 65536.0f * 360.0f; float degrees = this->value / 65536.0f * 360.0f;
return degrees; return degrees;
} }
template <> float AngleOf<signed short>::InRadians() const { template <>
float AngleOf<signed short>::InRadians() const {
float radians = this->value / 65536.0f * (2 * pi); float radians = this->value / 65536.0f * (2 * pi);
return radians; return radians;
} }
//===== Angle8, AngleOf<signed char> //===== Angle8, AngleOf<signed char>
template <> AngleOf<signed char> AngleOf<signed char>::Degrees(float degrees) { template <>
AngleOf<signed char> AngleOf<signed char>::Degrees(float degrees) {
// map float [-180..180) to integer [-128..127) // map float [-180..180) to integer [-128..127)
signed char value = (signed char)roundf(degrees / 360.0F * 256.0F); signed char value = (signed char)roundf(degrees / 360.0F * 256.0F);
return Binary(value); return Binary(value);
} }
template <> AngleOf<signed char> AngleOf<signed char>::Radians(float radians) { template <>
AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
if (!isfinite(radians)) if (!isfinite(radians))
return AngleOf<signed char>::zero; return AngleOf<signed char>::zero;
@ -85,32 +94,42 @@ template <> AngleOf<signed char> AngleOf<signed char>::Radians(float radians) {
return Binary(value); return Binary(value);
} }
template <> float AngleOf<signed char>::InDegrees() const { template <>
float AngleOf<signed char>::InDegrees() const {
float degrees = this->value / 256.0f * 360.0f; float degrees = this->value / 256.0f * 360.0f;
return degrees; return degrees;
} }
template <> float AngleOf<signed char>::InRadians() const { template <>
float AngleOf<signed char>::InRadians() const {
float radians = this->value / 128.0f * pi; float radians = this->value / 128.0f * pi;
return radians; return radians;
} }
//===== Generic //===== Generic
template <typename T> AngleOf<T>::AngleOf() : value(0) {} template <typename T>
AngleOf<T>::AngleOf() : value(0) {}
template <typename T> AngleOf<T>::AngleOf(T rawValue) : value(rawValue) {} template <typename T>
AngleOf<T>::AngleOf(T rawValue) : value(rawValue) {}
template <typename T> const AngleOf<T> AngleOf<T>::zero = AngleOf<T>(); template <typename T>
const AngleOf<T> AngleOf<T>::zero = AngleOf<T>();
template <typename T> AngleOf<T> AngleOf<T>::Binary(T rawValue) { template <typename T>
AngleOf<T> AngleOf<T>::Binary(T rawValue) {
AngleOf<T> angle = AngleOf<T>(); AngleOf<T> angle = AngleOf<T>();
angle.SetBinary(rawValue); angle.SetBinary(rawValue);
return angle; return angle;
} }
template <typename T> T AngleOf<T>::GetBinary() const { return this->value; } template <typename T>
template <typename T> void AngleOf<T>::SetBinary(T rawValue) { T AngleOf<T>::GetBinary() const {
return this->value;
}
template <typename T>
void AngleOf<T>::SetBinary(T rawValue) {
this->value = rawValue; this->value = rawValue;
} }
@ -119,24 +138,28 @@ bool AngleOf<T>::operator==(const AngleOf<T> angle) const {
return this->value == angle.value; return this->value == angle.value;
} }
template <typename T> bool AngleOf<T>::operator>(AngleOf<T> angle) const { template <typename T>
bool AngleOf<T>::operator>(AngleOf<T> angle) const {
return this->value > angle.value; return this->value > angle.value;
} }
template <typename T> bool AngleOf<T>::operator>=(AngleOf<T> angle) const { template <typename T>
bool AngleOf<T>::operator>=(AngleOf<T> angle) const {
return this->value >= angle.value; return this->value >= angle.value;
} }
template <typename T> bool AngleOf<T>::operator<(AngleOf<T> angle) const { template <typename T>
bool AngleOf<T>::operator<(AngleOf<T> angle) const {
return this->value < angle.value; return this->value < angle.value;
} }
template <typename T> bool AngleOf<T>::operator<=(AngleOf<T> angle) const { template <typename T>
bool AngleOf<T>::operator<=(AngleOf<T> angle) const {
return this->value <= angle.value; return this->value <= angle.value;
} }
template <typename T> template <typename T>
signed int Passer::LinearAlgebra::AngleOf<T>::Sign(AngleOf<T> angle) { signed int AngleOf<T>::Sign(AngleOf<T> angle) {
if (angle.value < 0) if (angle.value < 0)
return -1; return -1;
if (angle.value > 0) if (angle.value > 0)
@ -145,51 +168,52 @@ signed int Passer::LinearAlgebra::AngleOf<T>::Sign(AngleOf<T> angle) {
} }
template <typename T> template <typename T>
AngleOf<T> Passer::LinearAlgebra::AngleOf<T>::Abs(AngleOf<T> angle) { AngleOf<T> AngleOf<T>::Abs(AngleOf<T> angle) {
if (Sign(angle) < 0) if (Sign(angle) < 0)
return -angle; return -angle;
else else
return angle; return angle;
} }
template <typename T> AngleOf<T> AngleOf<T>::operator-() const { template <typename T>
AngleOf<T> AngleOf<T>::operator-() const {
AngleOf<T> angle = Binary(-this->value); AngleOf<T> angle = Binary(-this->value);
return angle; return angle;
} }
template <> template <>
AngleOf<float> AngleOf<float>::operator-(const AngleOf<float> &angle) const { AngleOf<float> AngleOf<float>::operator-(const AngleOf<float>& angle) const {
AngleOf<float> r = Binary(this->value - angle.value); AngleOf<float> r = Binary(this->value - angle.value);
r = Normalize(r); r = Normalize(r);
return r; return r;
} }
template <typename T> template <typename T>
AngleOf<T> AngleOf<T>::operator-(const AngleOf<T> &angle) const { AngleOf<T> AngleOf<T>::operator-(const AngleOf<T>& angle) const {
AngleOf<T> r = Binary(this->value - angle.value); AngleOf<T> r = Binary(this->value - angle.value);
return r; return r;
} }
template <> template <>
AngleOf<float> AngleOf<float>::operator+(const AngleOf<float> &angle) const { AngleOf<float> AngleOf<float>::operator+(const AngleOf<float>& angle) const {
AngleOf<float> r = Binary(this->value + angle.value); AngleOf<float> r = Binary(this->value + angle.value);
r = Normalize(r); r = Normalize(r);
return r; return r;
} }
template <typename T> template <typename T>
AngleOf<T> AngleOf<T>::operator+(const AngleOf<T> &angle) const { AngleOf<T> AngleOf<T>::operator+(const AngleOf<T>& angle) const {
AngleOf<T> r = Binary(this->value + angle.value); AngleOf<T> r = Binary(this->value + angle.value);
return r; return r;
} }
template <> template <>
AngleOf<float> AngleOf<float>::operator+=(const AngleOf<float> &angle) { AngleOf<float> AngleOf<float>::operator+=(const AngleOf<float>& angle) {
this->value += angle.value; this->value += angle.value;
this->Normalize(); this->Normalize();
return *this; return *this;
} }
template <typename T> template <typename T>
AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T> &angle) { AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T>& angle) {
this->value += angle.value; this->value += angle.value;
return *this; return *this;
} }
@ -206,7 +230,8 @@ AngleOf<T> AngleOf<T>::operator+=(const AngleOf<T> &angle) {
// return AngleOf::Degrees((float)factor * angle.InDegrees()); // return AngleOf::Degrees((float)factor * angle.InDegrees());
// } // }
template <typename T> void AngleOf<T>::Normalize() { template <typename T>
void AngleOf<T>::Normalize() {
float angleValue = this->InDegrees(); float angleValue = this->InDegrees();
if (!isfinite(angleValue)) if (!isfinite(angleValue))
return; return;
@ -218,7 +243,8 @@ template <typename T> void AngleOf<T>::Normalize() {
*this = AngleOf::Degrees(angleValue); *this = AngleOf::Degrees(angleValue);
} }
template <typename T> AngleOf<T> AngleOf<T>::Normalize(AngleOf<T> angle) { template <typename T>
AngleOf<T> AngleOf<T>::Normalize(AngleOf<T> angle) {
float angleValue = angle.InDegrees(); float angleValue = angle.InDegrees();
if (!isfinite(angleValue)) if (!isfinite(angleValue))
return angle; return angle;
@ -237,9 +263,10 @@ AngleOf<T> AngleOf<T>::Clamp(AngleOf<T> angle, AngleOf<T> min, AngleOf<T> max) {
} }
template <typename T> template <typename T>
AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle, AngleOf<T> toAngle, AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle,
AngleOf<T> toAngle,
float maxDegrees) { float maxDegrees) {
maxDegrees = fmaxf(0, maxDegrees); // filter out negative distances maxDegrees = fmaxf(0, maxDegrees); // filter out negative distances
AngleOf<T> d = toAngle - fromAngle; AngleOf<T> d = toAngle - fromAngle;
float dDegrees = Abs(d).InDegrees(); float dDegrees = Abs(d).InDegrees();
d = AngleOf<T>::Degrees(Float::Clamp(dDegrees, 0, maxDegrees)); d = AngleOf<T>::Degrees(Float::Clamp(dDegrees, 0, maxDegrees));
@ -249,28 +276,34 @@ AngleOf<T> AngleOf<T>::MoveTowards(AngleOf<T> fromAngle, AngleOf<T> toAngle,
return fromAngle + d; return fromAngle + d;
} }
template <typename T> float AngleOf<T>::Cos(AngleOf<T> angle) { template <typename T>
float AngleOf<T>::Cos(AngleOf<T> angle) {
return cosf(angle.InRadians()); return cosf(angle.InRadians());
} }
template <typename T> float AngleOf<T>::Sin(AngleOf<T> angle) { template <typename T>
float AngleOf<T>::Sin(AngleOf<T> angle) {
return sinf(angle.InRadians()); return sinf(angle.InRadians());
} }
template <typename T> float AngleOf<T>::Tan(AngleOf<T> angle) { template <typename T>
float AngleOf<T>::Tan(AngleOf<T> angle) {
return tanf(angle.InRadians()); return tanf(angle.InRadians());
} }
template <typename T> AngleOf<T> AngleOf<T>::Acos(float f) { template <typename T>
AngleOf<T> AngleOf<T>::Acos(float f) {
return AngleOf<T>::Radians(acosf(f)); return AngleOf<T>::Radians(acosf(f));
} }
template <typename T> AngleOf<T> AngleOf<T>::Asin(float f) { template <typename T>
AngleOf<T> AngleOf<T>::Asin(float f) {
return AngleOf<T>::Radians(asinf(f)); return AngleOf<T>::Radians(asinf(f));
} }
template <typename T> AngleOf<T> AngleOf<T>::Atan(float f) { template <typename T>
AngleOf<T> AngleOf<T>::Atan(float f) {
return AngleOf<T>::Radians(atanf(f)); return AngleOf<T>::Radians(atanf(f));
} }
template <typename T> template <typename T>
AngleOf<T> Passer::LinearAlgebra::AngleOf<T>::Atan2(float y, float x) { AngleOf<T> AngleOf<T>::Atan2(float y, float x) {
return AngleOf<T>::Radians(atan2f(y, x)); return AngleOf<T>::Radians(atan2f(y, x));
} }
@ -297,7 +330,7 @@ float AngleOf<T>::CosineRuleSide(float a, float b, AngleOf<T> gamma) {
float b2 = b * b; float b2 = b * b;
float d = float d =
a2 + b2 - a2 + b2 -
2 * a * b * Cos(gamma); // cosf(gamma * Passer::LinearAlgebra::Deg2Rad); 2 * a * b * Cos(gamma); // cosf(gamma * Passer::LinearAlgebra::Deg2Rad);
// Catch edge cases where float inacuracies lead tot nans // Catch edge cases where float inacuracies lead tot nans
if (d < 0) if (d < 0)
return 0; return 0;
@ -354,6 +387,8 @@ AngleOf<T> AngleOf<T>::SineRuleAngle(float a, AngleOf<T> beta, float b) {
return alpha; return alpha;
} }
template class Passer::LinearAlgebra::AngleOf<float>; template class AngleOf<float>;
template class Passer::LinearAlgebra::AngleOf<signed char>; template class AngleOf<signed char>;
template class Passer::LinearAlgebra::AngleOf<signed short>; template class AngleOf<signed short>;
} // namespace LinearAlgebra

View File

@ -5,7 +5,6 @@
#ifndef ANGLE_H #ifndef ANGLE_H
#define ANGLE_H #define ANGLE_H
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
static float pi = 3.1415927410125732421875F; static float pi = 3.1415927410125732421875F;
@ -18,8 +17,9 @@ static float Deg2Rad = (pi * 2) / 360.0f;
/// The angle is internally limited to (-180..180] degrees or (-PI...PI] /// The angle is internally limited to (-180..180] degrees or (-PI...PI]
/// radians. When an angle exceeds this range, it is normalized to a value /// radians. When an angle exceeds this range, it is normalized to a value
/// within the range. /// within the range.
template <typename T> class AngleOf { template <typename T>
public: class AngleOf {
public:
/// @brief Create a new angle with a zero value /// @brief Create a new angle with a zero value
AngleOf<T>(); AngleOf<T>();
@ -100,28 +100,28 @@ public:
/// @brief Substract another angle from this angle /// @brief Substract another angle from this angle
/// @param angle The angle to subtract from this angle /// @param angle The angle to subtract from this angle
/// @return The result of the subtraction /// @return The result of the subtraction
AngleOf<T> operator-(const AngleOf<T> &angle) const; AngleOf<T> operator-(const AngleOf<T>& angle) const;
/// @brief Add another angle from this angle /// @brief Add another angle from this angle
/// @param angle The angle to add to this angle /// @param angle The angle to add to this angle
/// @return The result of the addition /// @return The result of the addition
AngleOf<T> operator+(const AngleOf<T> &angle) const; AngleOf<T> operator+(const AngleOf<T>& angle) const;
/// @brief Add another angle to this angle /// @brief Add another angle to this angle
/// @param angle The angle to add to this angle /// @param angle The angle to add to this angle
/// @return The result of the addition /// @return The result of the addition
AngleOf<T> operator+=(const AngleOf<T> &angle); AngleOf<T> operator+=(const AngleOf<T>& angle);
/// @brief Mutliplies the angle /// @brief Mutliplies the angle
/// @param angle The angle to multiply /// @param angle The angle to multiply
/// @param factor The factor by which the angle is multiplied /// @param factor The factor by which the angle is multiplied
/// @return The multiplied angle /// @return The multiplied angle
friend AngleOf<T> operator*(const AngleOf<T> &angle, float factor) { friend AngleOf<T> operator*(const AngleOf<T>& angle, float factor) {
return AngleOf::Degrees((float)angle.InDegrees() * factor); return AngleOf::Degrees((float)angle.InDegrees() * factor);
} }
/// @brief Multiplies the angle /// @brief Multiplies the angle
/// @param factor The factor by which the angle is multiplies /// @param factor The factor by which the angle is multiplies
/// @param angle The angle to multiply /// @param angle The angle to multiply
/// @return The multiplied angle /// @return The multiplied angle
friend AngleOf<T> operator*(float factor, const AngleOf<T> &angle) { friend AngleOf<T> operator*(float factor, const AngleOf<T>& angle) {
return AngleOf::Degrees((float)factor * angle.InDegrees()); return AngleOf::Degrees((float)factor * angle.InDegrees());
} }
@ -150,7 +150,8 @@ public:
/// @param toAngle The angle to rotate towards /// @param toAngle The angle to rotate towards
/// @param maxAngle The maximum angle to rotate /// @param maxAngle The maximum angle to rotate
/// @return The rotated angle /// @return The rotated angle
static AngleOf<T> MoveTowards(AngleOf<T> fromAngle, AngleOf<T> toAngle, static AngleOf<T> MoveTowards(AngleOf<T> fromAngle,
AngleOf<T> toAngle,
float maxAngle); float maxAngle);
/// @brief Calculates the cosine of an angle /// @brief Calculates the cosine of an angle
@ -205,7 +206,7 @@ public:
/// @return The angle of the corner opposing side A /// @return The angle of the corner opposing side A
static AngleOf<T> SineRuleAngle(float a, AngleOf<T> beta, float c); static AngleOf<T> SineRuleAngle(float a, AngleOf<T> beta, float c);
private: private:
T value; T value;
AngleOf<T>(T rawValue); AngleOf<T>(T rawValue);
@ -215,8 +216,12 @@ using AngleSingle = AngleOf<float>;
using Angle16 = AngleOf<signed short>; using Angle16 = AngleOf<signed short>;
using Angle8 = AngleOf<signed char>; using Angle8 = AngleOf<signed char>;
} // namespace LinearAlgebra #if defined(ARDUINO)
} // namespace Passer using Angle = Angle16;
using namespace Passer::LinearAlgebra; #else
using Angle = AngleSingle;
#endif
} // namespace LinearAlgebra
#endif #endif

View File

@ -9,7 +9,8 @@
#include <math.h> #include <math.h>
template <typename T> DirectionOf<T>::DirectionOf() { template <typename T>
DirectionOf<T>::DirectionOf() {
this->horizontal = AngleOf<T>(); this->horizontal = AngleOf<T>();
this->vertical = AngleOf<T>(); this->vertical = AngleOf<T>();
} }
@ -41,7 +42,7 @@ const DirectionOf<T> DirectionOf<T>::right =
DirectionOf<T>(AngleOf<T>::Degrees(90), AngleOf<T>()); DirectionOf<T>(AngleOf<T>::Degrees(90), AngleOf<T>());
template <typename T> template <typename T>
Vector3 Passer::LinearAlgebra::DirectionOf<T>::ToVector3() const { Vector3 DirectionOf<T>::ToVector3() const {
Quaternion q = Quaternion::Euler(-this->vertical.InDegrees(), Quaternion q = Quaternion::Euler(-this->vertical.InDegrees(),
this->horizontal.InDegrees(), 0); this->horizontal.InDegrees(), 0);
Vector3 v = q * Vector3::forward; Vector3 v = q * Vector3::forward;
@ -49,49 +50,47 @@ Vector3 Passer::LinearAlgebra::DirectionOf<T>::ToVector3() const {
} }
template <typename T> template <typename T>
DirectionOf<T> DirectionOf<T> DirectionOf<T>::FromVector3(Vector3 vector) {
Passer::LinearAlgebra::DirectionOf<T>::FromVector3(Vector3 vector) {
DirectionOf<T> d; DirectionOf<T> d;
d.horizontal = AngleOf<T>::Atan2( d.horizontal = AngleOf<T>::Atan2(
vector.Right(), vector.Right(),
vector.Forward()); // AngleOf<T>::Radians(atan2f(v.Right(), v.Forward())); vector
.Forward()); // AngleOf<T>::Radians(atan2f(v.Right(), v.Forward()));
d.vertical = d.vertical =
AngleOf<T>::Degrees(-90) - AngleOf<T>::Degrees(-90) -
AngleOf<T>::Acos( AngleOf<T>::Acos(
vector.Up()); // AngleOf<T>::Radians(-(0.5f * pi) - acosf(v.Up())); vector.Up()); // AngleOf<T>::Radians(-(0.5f * pi) - acosf(v.Up()));
d.Normalize(); d.Normalize();
return d; return d;
} }
template <typename T> template <typename T>
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::Degrees(float horizontal, DirectionOf<T> DirectionOf<T>::Degrees(float horizontal, float vertical) {
float vertical) {
return DirectionOf<T>(AngleOf<T>::Degrees(horizontal), return DirectionOf<T>(AngleOf<T>::Degrees(horizontal),
AngleOf<T>::Degrees(vertical)); AngleOf<T>::Degrees(vertical));
} }
template <typename T> template <typename T>
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::Radians(float horizontal, DirectionOf<T> DirectionOf<T>::Radians(float horizontal, float vertical) {
float vertical) {
return DirectionOf<T>(AngleOf<T>::Radians(horizontal), return DirectionOf<T>(AngleOf<T>::Radians(horizontal),
AngleOf<T>::Radians(vertical)); AngleOf<T>::Radians(vertical));
} }
template <typename T> template <typename T>
bool Passer::LinearAlgebra::DirectionOf<T>::operator==( bool DirectionOf<T>::operator==(const DirectionOf<T> direction) const {
const DirectionOf<T> direction) const {
return (this->horizontal == direction.horizontal) && return (this->horizontal == direction.horizontal) &&
(this->vertical == direction.vertical); (this->vertical == direction.vertical);
} }
template <typename T> template <typename T>
DirectionOf<T> Passer::LinearAlgebra::DirectionOf<T>::operator-() const { DirectionOf<T> DirectionOf<T>::operator-() const {
DirectionOf<T> r = DirectionOf<T>(this->horizontal + AngleOf<T>::Degrees(180), DirectionOf<T> r = DirectionOf<T>(this->horizontal + AngleOf<T>::Degrees(180),
-this->vertical); -this->vertical);
return r; return r;
} }
template <typename T> void DirectionOf<T>::Normalize() { template <typename T>
void DirectionOf<T>::Normalize() {
if (this->vertical > AngleOf<T>::Degrees(90) || if (this->vertical > AngleOf<T>::Degrees(90) ||
this->vertical < AngleOf<T>::Degrees(-90)) { this->vertical < AngleOf<T>::Degrees(-90)) {
this->horizontal += AngleOf<T>::Degrees(180); this->horizontal += AngleOf<T>::Degrees(180);
@ -99,5 +98,5 @@ template <typename T> void DirectionOf<T>::Normalize() {
} }
} }
template class Passer::LinearAlgebra::DirectionOf<float>; template class DirectionOf<float>;
template class Passer::LinearAlgebra::DirectionOf<signed short>; template class DirectionOf<signed short>;

View File

@ -7,7 +7,6 @@
#include "Angle.h" #include "Angle.h"
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
struct Vector3; struct Vector3;
@ -22,8 +21,9 @@ struct Vector3;
/// rotation has been applied. /// rotation has been applied.
/// The angles are automatically normalized to stay within the abovenmentioned /// The angles are automatically normalized to stay within the abovenmentioned
/// ranges. /// ranges.
template <typename T> class DirectionOf { template <typename T>
public: class DirectionOf {
public:
/// @brief horizontal angle, range= (-180..180] /// @brief horizontal angle, range= (-180..180]
AngleOf<T> horizontal; AngleOf<T> horizontal;
/// @brief vertical angle, range in degrees = (-90..90] /// @brief vertical angle, range in degrees = (-90..90]
@ -83,7 +83,7 @@ public:
/// @return The reversed direction. /// @return The reversed direction.
DirectionOf<T> operator-() const; DirectionOf<T> operator-() const;
protected: protected:
/// @brief Normalize this vector to the specified ranges /// @brief Normalize this vector to the specified ranges
void Normalize(); void Normalize();
}; };
@ -97,8 +97,8 @@ using Direction = Direction16;
using Direction = DirectionSingle; using Direction = DirectionSingle;
#endif #endif
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer
using namespace Passer::LinearAlgebra; using namespace LinearAlgebra;
#endif #endif

View File

@ -5,19 +5,18 @@
#ifndef FLOAT_H #ifndef FLOAT_H
#define FLOAT_H #define FLOAT_H
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
class Float { class Float {
public: public:
static const float epsilon; static const float epsilon;
static const float sqrEpsilon; static const float sqrEpsilon;
static float Clamp(float f, float min, float max); static float Clamp(float f, float min, float max);
}; };
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer
using namespace Passer::LinearAlgebra; using namespace LinearAlgebra;
#endif #endif

View File

@ -3,18 +3,18 @@
#include "Vector3.h" #include "Vector3.h"
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
/// @brief Single precision float matrix /// @brief Single precision float matrix
template <typename T> class MatrixOf { template <typename T>
public: class MatrixOf {
public:
MatrixOf(unsigned int rows, unsigned int cols); MatrixOf(unsigned int rows, unsigned int cols);
MatrixOf(unsigned int rows, unsigned int cols, const T *source) MatrixOf(unsigned int rows, unsigned int cols, const T* source)
: MatrixOf(rows, cols) { : MatrixOf(rows, cols) {
Set(source); Set(source);
} }
MatrixOf(Vector3 v); // creates a 3,1 matrix MatrixOf(Vector3 v); // creates a 3,1 matrix
~MatrixOf() { ~MatrixOf() {
if (this->data == nullptr) if (this->data == nullptr)
@ -25,7 +25,7 @@ public:
/// @brief Transpose with result in matrix m /// @brief Transpose with result in matrix m
/// @param r The matrix in which the transposed matrix is stored /// @param r The matrix in which the transposed matrix is stored
void Transpose(MatrixOf<T> *r) const { void Transpose(MatrixOf<T>* r) const {
// Check dimensions first // Check dimensions first
// We dont care about the rows and cols (we overwrite them) // We dont care about the rows and cols (we overwrite them)
// but the data size should be equal to avoid problems // but the data size should be equal to avoid problems
@ -54,13 +54,14 @@ public:
} }
} }
static void Multiply(const MatrixOf<T> *m1, const MatrixOf<T> *m2, static void Multiply(const MatrixOf<T>* m1,
MatrixOf<T> *r); const MatrixOf<T>* m2,
void Multiply(const MatrixOf<T> *m, MatrixOf<T> *r) const { MatrixOf<T>* r);
void Multiply(const MatrixOf<T>* m, MatrixOf<T>* r) const {
Multiply(this, m, r); Multiply(this, m, r);
} }
static Vector3 Multiply(const MatrixOf<T> *m, Vector3 v); static Vector3 Multiply(const MatrixOf<T>* m, Vector3 v);
Vector3 operator*(const Vector3 v) const; Vector3 operator*(const Vector3 v) const;
T Get(unsigned int rowIx, unsigned int colIx) const { T Get(unsigned int rowIx, unsigned int colIx) const {
@ -74,28 +75,28 @@ public:
} }
// This function does not check on source size! // This function does not check on source size!
void Set(const T *source) { void Set(const T* source) {
unsigned int matrixSize = this->cols * this->rows; unsigned int matrixSize = this->cols * this->rows;
for (unsigned int dataIx = 0; dataIx < matrixSize; dataIx++) for (unsigned int dataIx = 0; dataIx < matrixSize; dataIx++)
this->data[dataIx] = source[dataIx]; this->data[dataIx] = source[dataIx];
} }
// This function does not check on source size! // This function does not check on source size!
void SetRow(unsigned int rowIx, const T *source) { void SetRow(unsigned int rowIx, const T* source) {
unsigned int dataIx = rowIx * this->cols; unsigned int dataIx = rowIx * this->cols;
for (unsigned int sourceIx = 0; sourceIx < this->cols; dataIx++, sourceIx++) for (unsigned int sourceIx = 0; sourceIx < this->cols; dataIx++, sourceIx++)
this->data[dataIx] = source[sourceIx]; this->data[dataIx] = source[sourceIx];
} }
// This function does not check on source size! // This function does not check on source size!
void SetCol(unsigned int colIx, const T *source) { void SetCol(unsigned int colIx, const T* source) {
unsigned int dataIx = colIx; unsigned int dataIx = colIx;
for (unsigned int sourceIx = 0; sourceIx < this->cols; for (unsigned int sourceIx = 0; sourceIx < this->cols;
dataIx += this->cols, sourceIx++) dataIx += this->cols, sourceIx++)
this->data[dataIx] = source[sourceIx]; this->data[dataIx] = source[sourceIx];
} }
void CopyFrom(const MatrixOf<T> *m) { void CopyFrom(const MatrixOf<T>* m) {
unsigned int thisMatrixSize = this->cols * this->rows; unsigned int thisMatrixSize = this->cols * this->rows;
unsigned int mMatrixSize = m->cols * m->rows; unsigned int mMatrixSize = m->cols * m->rows;
if (mMatrixSize != thisMatrixSize) if (mMatrixSize != thisMatrixSize)
@ -108,14 +109,13 @@ public:
unsigned int RowCount() const { return rows; } unsigned int RowCount() const { return rows; }
unsigned int ColCount() const { return cols; } unsigned int ColCount() const { return cols; }
private: private:
unsigned int rows; unsigned int rows;
unsigned int cols; unsigned int cols;
T *data; T* data;
}; };
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer using namespace LinearAlgebra;
using namespace Passer::LinearAlgebra;
#endif #endif

View File

@ -3,11 +3,13 @@
#include "Polar.h" #include "Polar.h"
#include "Vector2.h" #include "Vector2.h"
template <typename T> PolarOf<T>::PolarOf() { template <typename T>
PolarOf<T>::PolarOf() {
this->distance = 0.0f; this->distance = 0.0f;
this->angle = AngleOf<T>(); this->angle = AngleOf<T>();
} }
template <typename T> PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) { template <typename T>
PolarOf<T>::PolarOf(float distance, AngleOf<T> angle) {
// distance should always be 0 or greater // distance should always be 0 or greater
if (distance < 0.0f) { if (distance < 0.0f) {
this->distance = -distance; this->distance = -distance;
@ -34,16 +36,18 @@ PolarOf<T> PolarOf<T>::Radians(float distance, float radians) {
return PolarOf<T>(distance, AngleOf<T>::Radians(radians)); return PolarOf<T>(distance, AngleOf<T>::Radians(radians));
} }
template <typename T> PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) { template <typename T>
PolarOf<T> PolarOf<T>::FromVector2(Vector2 v) {
float distance = v.magnitude(); float distance = v.magnitude();
AngleOf<T> angle = AngleOf<T> angle =
AngleOf<T>::Degrees(Vector2::SignedAngle(Vector2::forward, v)); AngleOf<T>::Degrees(Vector2::SignedAngle(Vector2::forward, v));
PolarOf<T> p = PolarOf(distance, angle); PolarOf<T> p = PolarOf(distance, angle);
return p; return p;
} }
template <typename T> PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) { template <typename T>
float distance = v.distance * cosf(v.direction.vertical.InDegrees() * PolarOf<T> PolarOf<T>::FromSpherical(SphericalOf<T> v) {
Passer::LinearAlgebra::Deg2Rad); float distance =
v.distance * cosf(v.direction.vertical.InDegrees() * Deg2Rad);
AngleOf<T> angle = v.direction.horizontal; AngleOf<T> angle = v.direction.horizontal;
PolarOf<T> p = PolarOf(distance, angle); PolarOf<T> p = PolarOf(distance, angle);
return p; return p;
@ -60,31 +64,37 @@ const PolarOf<T> PolarOf<T>::right = PolarOf(1.0, AngleOf<T>::Degrees(90));
template <typename T> template <typename T>
const PolarOf<T> PolarOf<T>::left = PolarOf(1.0, AngleOf<T>::Degrees(-90)); const PolarOf<T> PolarOf<T>::left = PolarOf(1.0, AngleOf<T>::Degrees(-90));
template <typename T> bool PolarOf<T>::operator==(const PolarOf &v) const { template <typename T>
bool PolarOf<T>::operator==(const PolarOf& v) const {
return (this->distance == v.distance && return (this->distance == v.distance &&
this->angle.InDegrees() == v.angle.InDegrees()); this->angle.InDegrees() == v.angle.InDegrees());
} }
template <typename T> PolarOf<T> PolarOf<T>::Normalize(const PolarOf &v) { template <typename T>
PolarOf<T> PolarOf<T>::Normalize(const PolarOf& v) {
PolarOf<T> r = PolarOf(1, v.angle); PolarOf<T> r = PolarOf(1, v.angle);
return r; return r;
} }
template <typename T> PolarOf<T> PolarOf<T>::normalized() const { template <typename T>
PolarOf<T> PolarOf<T>::normalized() const {
PolarOf<T> r = PolarOf(1, this->angle); PolarOf<T> r = PolarOf(1, this->angle);
return r; return r;
} }
template <typename T> PolarOf<T> PolarOf<T>::operator-() const { template <typename T>
PolarOf<T> PolarOf<T>::operator-() const {
PolarOf<T> v = PolarOf<T> v =
PolarOf(this->distance, this->angle + AngleOf<T>::Degrees(180)); PolarOf(this->distance, this->angle + AngleOf<T>::Degrees(180));
return v; return v;
} }
template <typename T> PolarOf<T> PolarOf<T>::operator-(const PolarOf &v) const { template <typename T>
PolarOf<T> PolarOf<T>::operator-(const PolarOf& v) const {
PolarOf<T> r = -v; PolarOf<T> r = -v;
return *this + r; return *this + r;
} }
template <typename T> PolarOf<T> PolarOf<T>::operator-=(const PolarOf &v) { template <typename T>
PolarOf<T> PolarOf<T>::operator-=(const PolarOf& v) {
*this = *this - v; *this = *this - v;
return *this; return *this;
// angle = AngleOf<T>::Normalize(newAngle); // angle = AngleOf<T>::Normalize(newAngle);
@ -105,7 +115,8 @@ template <typename T> PolarOf<T> PolarOf<T>::operator-=(const PolarOf &v) {
// return d; // return d;
// } // }
template <typename T> PolarOf<T> PolarOf<T>::operator+(const PolarOf &v) const { template <typename T>
PolarOf<T> PolarOf<T>::operator+(const PolarOf& v) const {
if (v.distance == 0) if (v.distance == 0)
return PolarOf(this->distance, this->angle); return PolarOf(this->distance, this->angle);
if (this->distance == 0.0f) if (this->distance == 0.0f)
@ -133,33 +144,36 @@ template <typename T> PolarOf<T> PolarOf<T>::operator+(const PolarOf &v) const {
PolarOf vector = PolarOf(newDistance, newAngleA); PolarOf vector = PolarOf(newDistance, newAngleA);
return vector; return vector;
} }
template <typename T> PolarOf<T> PolarOf<T>::operator+=(const PolarOf &v) { template <typename T>
PolarOf<T> PolarOf<T>::operator+=(const PolarOf& v) {
*this = *this + v; *this = *this + v;
return *this; return *this;
} }
template <typename T> PolarOf<T> PolarOf<T>::operator*=(float f) { template <typename T>
PolarOf<T> PolarOf<T>::operator*=(float f) {
this->distance *= f; this->distance *= f;
return *this; return *this;
} }
template <typename T> PolarOf<T> PolarOf<T>::operator/=(float f) { template <typename T>
PolarOf<T> PolarOf<T>::operator/=(float f) {
this->distance /= f; this->distance /= f;
return *this; return *this;
} }
template <typename T> template <typename T>
float PolarOf<T>::Distance(const PolarOf &v1, const PolarOf &v2) { float PolarOf<T>::Distance(const PolarOf& v1, const PolarOf& v2) {
float d = float d =
AngleOf<T>::CosineRuleSide(v1.distance, v2.distance, v2.angle - v1.angle); AngleOf<T>::CosineRuleSide(v1.distance, v2.distance, v2.angle - v1.angle);
return d; return d;
} }
template <typename T> template <typename T>
PolarOf<T> PolarOf<T>::Rotate(const PolarOf &v, AngleOf<T> angle) { PolarOf<T> PolarOf<T>::Rotate(const PolarOf& v, AngleOf<T> angle) {
AngleOf<T> a = AngleOf<T>::Normalize(v.angle + angle); AngleOf<T> a = AngleOf<T>::Normalize(v.angle + angle);
PolarOf<T> r = PolarOf(v.distance, a); PolarOf<T> r = PolarOf(v.distance, a);
return r; return r;
} }
template class Passer::LinearAlgebra::PolarOf<float>; template class PolarOf<float>;
template class Passer::LinearAlgebra::PolarOf<signed short>; template class PolarOf<signed short>;

View File

@ -7,16 +7,17 @@
#include "Angle.h" #include "Angle.h"
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
struct Vector2; struct Vector2;
template <typename T> class SphericalOf; template <typename T>
class SphericalOf;
/// @brief A polar vector using an angle in various representations /// @brief A polar vector using an angle in various representations
/// @tparam T The implementation type used for the representation of the angle /// @tparam T The implementation type used for the representation of the angle
template <typename T> class PolarOf { template <typename T>
public: class PolarOf {
public:
/// @brief The distance in meters /// @brief The distance in meters
/// @remark The distance shall never be negative /// @remark The distance shall never be negative
float distance; float distance;
@ -76,12 +77,12 @@ public:
/// @return true: if it is identical to the given vector /// @return true: if it is identical to the given vector
/// @note This uses float comparison to check equality which may have /// @note This uses float comparison to check equality which may have
/// strange effects. Equality on floats should be avoided. /// strange effects. Equality on floats should be avoided.
bool operator==(const PolarOf &v) const; bool operator==(const PolarOf& v) const;
/// @brief The vector length /// @brief The vector length
/// @param v The vector for which you need the length /// @param v The vector for which you need the length
/// @return The vector length; /// @return The vector length;
inline static float Magnitude(const PolarOf &v) { return v.distance; } inline static float Magnitude(const PolarOf& v) { return v.distance; }
/// @brief The vector length /// @brief The vector length
/// @return The vector length /// @return The vector length
inline float magnitude() const { return this->distance; } inline float magnitude() const { return this->distance; }
@ -89,7 +90,7 @@ public:
/// @brief Convert the vector to a length of 1 /// @brief Convert the vector to a length of 1
/// @param v The vector to convert /// @param v The vector to convert
/// @return The vector normalized to a length of 1 /// @return The vector normalized to a length of 1
static PolarOf Normalize(const PolarOf &v); static PolarOf Normalize(const PolarOf& v);
/// @brief Convert the vector to a length of a /// @brief Convert the vector to a length of a
/// @return The vector normalized to a length of 1 /// @return The vector normalized to a length of 1
PolarOf normalized() const; PolarOf normalized() const;
@ -102,23 +103,23 @@ public:
/// @brief Subtract a polar vector from this vector /// @brief Subtract a polar vector from this vector
/// @param v The vector to subtract /// @param v The vector to subtract
/// @return The result of the subtraction /// @return The result of the subtraction
PolarOf operator-(const PolarOf &v) const; PolarOf operator-(const PolarOf& v) const;
PolarOf operator-=(const PolarOf &v); PolarOf operator-=(const PolarOf& v);
/// @brief Add a polar vector to this vector /// @brief Add a polar vector to this vector
/// @param v The vector to add /// @param v The vector to add
/// @return The result of the addition /// @return The result of the addition
PolarOf operator+(const PolarOf &v) const; PolarOf operator+(const PolarOf& v) const;
PolarOf operator+=(const PolarOf &v); PolarOf operator+=(const PolarOf& v);
/// @brief Scale the vector uniformly up /// @brief Scale the vector uniformly up
/// @param f The scaling factor /// @param f The scaling factor
/// @return The scaled vector /// @return The scaled vector
/// @remark This operation will scale the distance of the vector. The angle /// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected. /// will be unaffected.
friend PolarOf operator*(const PolarOf &v, float f) { friend PolarOf operator*(const PolarOf& v, float f) {
return PolarOf(v.distance * f, v.angle); return PolarOf(v.distance * f, v.angle);
} }
friend PolarOf operator*(float f, const PolarOf &v) { friend PolarOf operator*(float f, const PolarOf& v) {
return PolarOf(f * v.distance, v.angle); return PolarOf(f * v.distance, v.angle);
} }
PolarOf operator*=(float f); PolarOf operator*=(float f);
@ -127,10 +128,10 @@ public:
/// @return The scaled factor /// @return The scaled factor
/// @remark This operation will scale the distance of the vector. The angle /// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected. /// will be unaffected.
friend PolarOf operator/(const PolarOf &v, float f) { friend PolarOf operator/(const PolarOf& v, float f) {
return PolarOf(v.distance / f, v.angle); return PolarOf(v.distance / f, v.angle);
} }
friend PolarOf operator/(float f, const PolarOf &v) { friend PolarOf operator/(float f, const PolarOf& v) {
return PolarOf(f / v.distance, v.angle); return PolarOf(f / v.distance, v.angle);
} }
PolarOf operator/=(float f); PolarOf operator/=(float f);
@ -139,22 +140,21 @@ public:
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @return The distance between the two vectors /// @return The distance between the two vectors
static float Distance(const PolarOf &v1, const PolarOf &v2); static float Distance(const PolarOf& v1, const PolarOf& v2);
/// @brief Rotate a vector /// @brief Rotate a vector
/// @param v The vector to rotate /// @param v The vector to rotate
/// @param a The angle in degreesto rotate /// @param a The angle in degreesto rotate
/// @return The rotated vector /// @return The rotated vector
static PolarOf Rotate(const PolarOf &v, AngleOf<T> a); static PolarOf Rotate(const PolarOf& v, AngleOf<T> a);
}; };
using PolarSingle = PolarOf<float>; using PolarSingle = PolarOf<float>;
using Polar16 = PolarOf<signed short>; using Polar16 = PolarOf<signed short>;
// using Polar = PolarSingle; // using Polar = PolarSingle;
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer using namespace LinearAlgebra;
using namespace Passer::LinearAlgebra;
#include "Spherical.h" #include "Spherical.h"
#include "Vector2.h" #include "Vector2.h"

View File

@ -32,14 +32,13 @@ typedef struct Quat {
} Quat; } Quat;
} }
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
/// <summary> /// <summary>
/// A quaternion /// A quaternion
/// </summary> /// </summary>
struct Quaternion : Quat { struct Quaternion : Quat {
public: public:
/// <summary> /// <summary>
/// Create a new identity quaternion /// Create a new identity quaternion
/// </summary> /// </summary>
@ -80,7 +79,7 @@ public:
/// <returns>A unit quaternion</returns> /// <returns>A unit quaternion</returns>
/// This will preserve the orientation, /// This will preserve the orientation,
/// but ensures that it is a unit quaternion. /// but ensures that it is a unit quaternion.
static Quaternion Normalize(const Quaternion &q); static Quaternion Normalize(const Quaternion& q);
/// <summary> /// <summary>
/// Convert to euler angles /// Convert to euler angles
@ -88,14 +87,14 @@ public:
/// <param name="q">The quaternion to convert</param> /// <param name="q">The quaternion to convert</param>
/// <returns>A vector containing euler angles</returns> /// <returns>A vector containing euler angles</returns>
/// The euler angles performed in the order: Z, X, Y /// The euler angles performed in the order: Z, X, Y
static Vector3 ToAngles(const Quaternion &q); static Vector3 ToAngles(const Quaternion& q);
/// <summary> /// <summary>
/// Rotate a vector using this quaterion /// Rotate a vector using this quaterion
/// </summary> /// </summary>
/// <param name="vector">The vector to rotate</param> /// <param name="vector">The vector to rotate</param>
/// <returns>The rotated vector</returns> /// <returns>The rotated vector</returns>
Vector3 operator*(const Vector3 &vector) const; Vector3 operator*(const Vector3& vector) const;
/// <summary> /// <summary>
/// Multiply this quaternion with another quaternion /// Multiply this quaternion with another quaternion
/// </summary> /// </summary>
@ -103,7 +102,7 @@ public:
/// <returns>The resulting rotation</returns> /// <returns>The resulting rotation</returns>
/// The result will be this quaternion rotated according to /// The result will be this quaternion rotated according to
/// the give rotation. /// the give rotation.
Quaternion operator*(const Quaternion &rotation) const; Quaternion operator*(const Quaternion& rotation) const;
/// <summary> /// <summary>
/// Check the equality of two quaternions /// Check the equality of two quaternions
@ -114,7 +113,7 @@ public:
/// themselves. Two quaternions with the same rotational effect may have /// themselves. Two quaternions with the same rotational effect may have
/// different components. Use Quaternion::Angle to check if the rotations are /// different components. Use Quaternion::Angle to check if the rotations are
/// the same. /// the same.
bool operator==(const Quaternion &quaternion) const; bool operator==(const Quaternion& quaternion) const;
/// <summary> /// <summary>
/// The inverse of quaterion /// The inverse of quaterion
@ -129,8 +128,8 @@ public:
/// <param name="forward">The look direction</param> /// <param name="forward">The look direction</param>
/// <param name="upwards">The up direction</param> /// <param name="upwards">The up direction</param>
/// <returns>The look rotation</returns> /// <returns>The look rotation</returns>
static Quaternion LookRotation(const Vector3 &forward, static Quaternion LookRotation(const Vector3& forward,
const Vector3 &upwards); const Vector3& upwards);
/// <summary> /// <summary>
/// Creates a quaternion with the given forward direction with up = /// Creates a quaternion with the given forward direction with up =
/// Vector3::up /// Vector3::up
@ -140,7 +139,7 @@ public:
/// For the rotation, Vector::up is used for the up direction. /// For the rotation, Vector::up is used for the up direction.
/// Note: if the forward direction == Vector3::up, the result is /// Note: if the forward direction == Vector3::up, the result is
/// Quaternion::identity /// Quaternion::identity
static Quaternion LookRotation(const Vector3 &forward); static Quaternion LookRotation(const Vector3& forward);
/// <summary> /// <summary>
/// Calculat the rotation from on vector to another /// Calculat the rotation from on vector to another
@ -157,7 +156,8 @@ public:
/// <param name="to">The destination rotation</param> /// <param name="to">The destination rotation</param>
/// <param name="maxDegreesDelta">The maximum amount of degrees to /// <param name="maxDegreesDelta">The maximum amount of degrees to
/// rotate</param> <returns>The possibly limited rotation</returns> /// rotate</param> <returns>The possibly limited rotation</returns>
static Quaternion RotateTowards(const Quaternion &from, const Quaternion &to, static Quaternion RotateTowards(const Quaternion& from,
const Quaternion& to,
float maxDegreesDelta); float maxDegreesDelta);
/// <summary> /// <summary>
@ -166,13 +166,13 @@ public:
/// <param name="angle">The angle</param> /// <param name="angle">The angle</param>
/// <param name="axis">The axis</param> /// <param name="axis">The axis</param>
/// <returns>The resulting quaternion</returns> /// <returns>The resulting quaternion</returns>
static Quaternion AngleAxis(float angle, const Vector3 &axis); static Quaternion AngleAxis(float angle, const Vector3& axis);
/// <summary> /// <summary>
/// Convert this quaternion to angle/axis representation /// Convert this quaternion to angle/axis representation
/// </summary> /// </summary>
/// <param name="angle">A pointer to the angle for the result</param> /// <param name="angle">A pointer to the angle for the result</param>
/// <param name="axis">A pointer to the axis for the result</param> /// <param name="axis">A pointer to the axis for the result</param>
void ToAngleAxis(float *angle, Vector3 *axis); void ToAngleAxis(float* angle, Vector3* axis);
/// <summary> /// <summary>
/// Get the angle between two orientations /// Get the angle between two orientations
@ -190,8 +190,9 @@ public:
/// <param name="factor">The factor between 0 and 1.</param> /// <param name="factor">The factor between 0 and 1.</param>
/// <returns>The resulting rotation</returns> /// <returns>The resulting rotation</returns>
/// A factor 0 returns rotation1, factor1 returns rotation2. /// A factor 0 returns rotation1, factor1 returns rotation2.
static Quaternion Slerp(const Quaternion &rotation1, static Quaternion Slerp(const Quaternion& rotation1,
const Quaternion &rotation2, float factor); const Quaternion& rotation2,
float factor);
/// <summary> /// <summary>
/// Unclamped sherical lerp between two rotations /// Unclamped sherical lerp between two rotations
/// </summary> /// </summary>
@ -201,8 +202,9 @@ public:
/// <returns>The resulting rotation</returns> /// <returns>The resulting rotation</returns>
/// A factor 0 returns rotation1, factor1 returns rotation2. /// A factor 0 returns rotation1, factor1 returns rotation2.
/// Values outside the 0..1 range will result in extrapolated rotations /// Values outside the 0..1 range will result in extrapolated rotations
static Quaternion SlerpUnclamped(const Quaternion &rotation1, static Quaternion SlerpUnclamped(const Quaternion& rotation1,
const Quaternion &rotation2, float factor); const Quaternion& rotation2,
float factor);
/// <summary> /// <summary>
/// Create a rotation from euler angles /// Create a rotation from euler angles
@ -260,8 +262,10 @@ public:
/// <param name="swing">A pointer to the quaternion for the swing /// <param name="swing">A pointer to the quaternion for the swing
/// result</param> <param name="twist">A pointer to the quaternion for the /// result</param> <param name="twist">A pointer to the quaternion for the
/// twist result</param> /// twist result</param>
static void GetSwingTwist(Vector3 axis, Quaternion rotation, static void GetSwingTwist(Vector3 axis,
Quaternion *swing, Quaternion *twist); Quaternion rotation,
Quaternion* swing,
Quaternion* twist);
/// <summary> /// <summary>
/// Calculate the dot product of two quaternions /// Calculate the dot product of two quaternions
@ -271,20 +275,19 @@ public:
/// <returns></returns> /// <returns></returns>
static float Dot(Quaternion rotation1, Quaternion rotation2); static float Dot(Quaternion rotation1, Quaternion rotation2);
private: private:
float GetLength() const; float GetLength() const;
float GetLengthSquared() const; float GetLengthSquared() const;
static float GetLengthSquared(const Quaternion &q); static float GetLengthSquared(const Quaternion& q);
void ToAxisAngleRad(const Quaternion &q, Vector3 *const axis, float *angle); void ToAxisAngleRad(const Quaternion& q, Vector3* const axis, float* angle);
static Quaternion FromEulerRad(Vector3 euler); static Quaternion FromEulerRad(Vector3 euler);
static Quaternion FromEulerRadXYZ(Vector3 euler); static Quaternion FromEulerRadXYZ(Vector3 euler);
Vector3 xyz() const; Vector3 xyz() const;
}; };
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer using namespace LinearAlgebra;
using namespace Passer::LinearAlgebra;
#endif #endif

View File

@ -5,13 +5,15 @@
#include <math.h> #include <math.h>
template <typename T> SphericalOf<T>::SphericalOf() { template <typename T>
SphericalOf<T>::SphericalOf() {
this->distance = 0.0f; this->distance = 0.0f;
this->direction = DirectionOf<T>(); this->direction = DirectionOf<T>();
} }
template <typename T> template <typename T>
SphericalOf<T>::SphericalOf(float distance, AngleOf<T> horizontal, SphericalOf<T>::SphericalOf(float distance,
AngleOf<T> horizontal,
AngleOf<T> vertical) { AngleOf<T> vertical) {
if (distance < 0) { if (distance < 0) {
this->distance = -distance; this->distance = -distance;
@ -34,7 +36,8 @@ SphericalOf<T>::SphericalOf(float distance, DirectionOf<T> direction) {
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::Degrees(float distance, float horizontal, SphericalOf<T> SphericalOf<T>::Degrees(float distance,
float horizontal,
float vertical) { float vertical) {
AngleOf<T> horizontalAngle = AngleOf<T>::Degrees(horizontal); AngleOf<T> horizontalAngle = AngleOf<T>::Degrees(horizontal);
AngleOf<T> verticalAngle = AngleOf<T>::Degrees(vertical); AngleOf<T> verticalAngle = AngleOf<T>::Degrees(vertical);
@ -43,7 +46,8 @@ SphericalOf<T> SphericalOf<T>::Degrees(float distance, float horizontal,
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::Radians(float distance, float horizontal, SphericalOf<T> SphericalOf<T>::Radians(float distance,
float horizontal,
float vertical) { float vertical) {
return SphericalOf<T>(distance, AngleOf<T>::Radians(horizontal), return SphericalOf<T>(distance, AngleOf<T>::Radians(horizontal),
AngleOf<T>::Radians(vertical)); AngleOf<T>::Radians(vertical));
@ -57,7 +61,8 @@ SphericalOf<T> SphericalOf<T>::FromPolar(PolarOf<T> polar) {
return r; return r;
} }
template <typename T> SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) { template <typename T>
SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
float distance = v.magnitude(); float distance = v.magnitude();
if (distance == 0.0f) { if (distance == 0.0f) {
return SphericalOf(distance, AngleOf<T>(), AngleOf<T>()); return SphericalOf(distance, AngleOf<T>(), AngleOf<T>());
@ -81,7 +86,8 @@ template <typename T> SphericalOf<T> SphericalOf<T>::FromVector3(Vector3 v) {
* @tparam T The type of the distance and direction values. * @tparam T The type of the distance and direction values.
* @return Vector3 The 3D vector representation of the spherical coordinates. * @return Vector3 The 3D vector representation of the spherical coordinates.
*/ */
template <typename T> Vector3 SphericalOf<T>::ToVector3() const { template <typename T>
Vector3 SphericalOf<T>::ToVector3() const {
float verticalRad = (pi / 2) - this->direction.vertical.InRadians(); float verticalRad = (pi / 2) - this->direction.vertical.InRadians();
float horizontalRad = this->direction.horizontal.InRadians(); float horizontalRad = this->direction.horizontal.InRadians();
@ -126,7 +132,8 @@ SphericalOf<T> SphericalOf<T>::WithDistance(float distance) {
return v; return v;
} }
template <typename T> SphericalOf<T> SphericalOf<T>::operator-() const { template <typename T>
SphericalOf<T> SphericalOf<T>::operator-() const {
SphericalOf<T> v = SphericalOf<T>( SphericalOf<T> v = SphericalOf<T>(
this->distance, this->direction.horizontal + AngleOf<T>::Degrees(180), this->distance, this->direction.horizontal + AngleOf<T>::Degrees(180),
this->direction.vertical + AngleOf<T>::Degrees(180)); this->direction.vertical + AngleOf<T>::Degrees(180));
@ -134,7 +141,7 @@ template <typename T> SphericalOf<T> SphericalOf<T>::operator-() const {
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T> &s2) const { SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T>& s2) const {
// let's do it the easy way... // let's do it the easy way...
Vector3 v1 = this->ToVector3(); Vector3 v1 = this->ToVector3();
Vector3 v2 = s2.ToVector3(); Vector3 v2 = s2.ToVector3();
@ -143,13 +150,13 @@ SphericalOf<T> SphericalOf<T>::operator-(const SphericalOf<T> &s2) const {
return r; return r;
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::operator-=(const SphericalOf<T> &v) { SphericalOf<T> SphericalOf<T>::operator-=(const SphericalOf<T>& v) {
*this = *this - v; *this = *this - v;
return *this; return *this;
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T> &s2) const { SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T>& s2) const {
// let's do it the easy way... // let's do it the easy way...
Vector3 v1 = this->ToVector3(); Vector3 v1 = this->ToVector3();
Vector3 v2 = s2.ToVector3(); Vector3 v2 = s2.ToVector3();
@ -204,17 +211,19 @@ SphericalOf<T> SphericalOf<T>::operator+(const SphericalOf<T> &s2) const {
*/ */
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::operator+=(const SphericalOf<T> &v) { SphericalOf<T> SphericalOf<T>::operator+=(const SphericalOf<T>& v) {
*this = *this + v; *this = *this + v;
return *this; return *this;
} }
template <typename T> SphericalOf<T> SphericalOf<T>::operator*=(float f) { template <typename T>
SphericalOf<T> SphericalOf<T>::operator*=(float f) {
this->distance *= f; this->distance *= f;
return *this; return *this;
} }
template <typename T> SphericalOf<T> SphericalOf<T>::operator/=(float f) { template <typename T>
SphericalOf<T> SphericalOf<T>::operator/=(float f) {
this->distance /= f; this->distance /= f;
return *this; return *this;
} }
@ -225,8 +234,8 @@ template <typename T> SphericalOf<T> SphericalOf<T>::operator/=(float f) {
const float epsilon = 1E-05f; const float epsilon = 1E-05f;
template <typename T> template <typename T>
float SphericalOf<T>::DistanceBetween(const SphericalOf<T> &v1, float SphericalOf<T>::DistanceBetween(const SphericalOf<T>& v1,
const SphericalOf<T> &v2) { const SphericalOf<T>& v2) {
// SphericalOf<T> difference = v1 - v2; // SphericalOf<T> difference = v1 - v2;
// return difference.distance; // return difference.distance;
Vector3 vec1 = v1.ToVector3(); Vector3 vec1 = v1.ToVector3();
@ -236,8 +245,8 @@ float SphericalOf<T>::DistanceBetween(const SphericalOf<T> &v1,
} }
template <typename T> template <typename T>
AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf &v1, AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf& v1,
const SphericalOf &v2) { const SphericalOf& v2) {
// float denominator = v1.distance * v2.distance; // float denominator = v1.distance * v2.distance;
// if (denominator < epsilon) // if (denominator < epsilon)
// return 0.0f; // return 0.0f;
@ -256,9 +265,9 @@ AngleOf<T> SphericalOf<T>::AngleBetween(const SphericalOf &v1,
} }
template <typename T> template <typename T>
AngleOf<T> Passer::LinearAlgebra::SphericalOf<T>::SignedAngleBetween( AngleOf<T> SphericalOf<T>::SignedAngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T> &v1, const SphericalOf<T> &v2, const SphericalOf<T>& v2,
const SphericalOf<T> &axis) { const SphericalOf<T>& axis) {
Vector3 v1_vector = v1.ToVector3(); Vector3 v1_vector = v1.ToVector3();
Vector3 v2_vector = v2.ToVector3(); Vector3 v2_vector = v2.ToVector3();
Vector3 axis_vector = axis.ToVector3(); Vector3 axis_vector = axis.ToVector3();
@ -267,7 +276,7 @@ AngleOf<T> Passer::LinearAlgebra::SphericalOf<T>::SignedAngleBetween(
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T> &v, SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T>& v,
AngleOf<T> horizontalAngle, AngleOf<T> horizontalAngle,
AngleOf<T> verticalAngle) { AngleOf<T> verticalAngle) {
SphericalOf<T> r = SphericalOf<T> r =
@ -276,19 +285,19 @@ SphericalOf<T> SphericalOf<T>::Rotate(const SphericalOf<T> &v,
return r; return r;
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::RotateHorizontal(const SphericalOf<T> &v, SphericalOf<T> SphericalOf<T>::RotateHorizontal(const SphericalOf<T>& v,
AngleOf<T> a) { AngleOf<T> a) {
SphericalOf<T> r = SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal + a, v.direction.vertical); SphericalOf(v.distance, v.direction.horizontal + a, v.direction.vertical);
return r; return r;
} }
template <typename T> template <typename T>
SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T> &v, SphericalOf<T> SphericalOf<T>::RotateVertical(const SphericalOf<T>& v,
AngleOf<T> a) { AngleOf<T> a) {
SphericalOf<T> r = SphericalOf<T> r =
SphericalOf(v.distance, v.direction.horizontal, v.direction.vertical + a); SphericalOf(v.distance, v.direction.horizontal, v.direction.vertical + a);
return r; return r;
} }
template class Passer::LinearAlgebra::SphericalOf<float>; template class SphericalOf<float>;
template class Passer::LinearAlgebra::SphericalOf<signed short>; template class SphericalOf<signed short>;

View File

@ -7,16 +7,17 @@
#include "Direction.h" #include "Direction.h"
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
struct Vector3; struct Vector3;
template <typename T> class PolarOf; template <typename T>
class PolarOf;
/// @brief A spherical vector using angles in various representations /// @brief A spherical vector using angles in various representations
/// @tparam T The implementation type used for the representations of the agles /// @tparam T The implementation type used for the representations of the agles
template <typename T> class SphericalOf { template <typename T>
public: class SphericalOf {
public:
/// @brief The distance in meters /// @brief The distance in meters
/// @remark The distance should never be negative /// @remark The distance should never be negative
float distance; float distance;
@ -38,7 +39,8 @@ public:
/// @param horizontal The horizontal angle in degrees /// @param horizontal The horizontal angle in degrees
/// @param vertical The vertical angle in degrees /// @param vertical The vertical angle in degrees
/// @return The spherical vector /// @return The spherical vector
static SphericalOf<T> Degrees(float distance, float horizontal, static SphericalOf<T> Degrees(float distance,
float horizontal,
float vertical); float vertical);
/// @brief Short-hand Deg alias for the Degrees function /// @brief Short-hand Deg alias for the Degrees function
constexpr static auto Deg = Degrees; constexpr static auto Deg = Degrees;
@ -48,7 +50,8 @@ public:
/// @param horizontal The horizontal angle in radians /// @param horizontal The horizontal angle in radians
/// @param vertical The vertical angle in radians /// @param vertical The vertical angle in radians
/// @return The spherical vectpr /// @return The spherical vectpr
static SphericalOf<T> Radians(float distance, float horizontal, static SphericalOf<T> Radians(float distance,
float horizontal,
float vertical); float vertical);
// Short-hand Rad alias for the Radians function // Short-hand Rad alias for the Radians function
constexpr static auto Rad = Radians; constexpr static auto Rad = Radians;
@ -95,23 +98,23 @@ public:
/// @brief Subtract a spherical vector from this vector /// @brief Subtract a spherical vector from this vector
/// @param v The vector to subtract /// @param v The vector to subtract
/// @return The result of the subtraction /// @return The result of the subtraction
SphericalOf<T> operator-(const SphericalOf<T> &v) const; SphericalOf<T> operator-(const SphericalOf<T>& v) const;
SphericalOf<T> operator-=(const SphericalOf<T> &v); SphericalOf<T> operator-=(const SphericalOf<T>& v);
/// @brief Add a spherical vector to this vector /// @brief Add a spherical vector to this vector
/// @param v The vector to add /// @param v The vector to add
/// @return The result of the addition /// @return The result of the addition
SphericalOf<T> operator+(const SphericalOf<T> &v) const; SphericalOf<T> operator+(const SphericalOf<T>& v) const;
SphericalOf<T> operator+=(const SphericalOf<T> &v); SphericalOf<T> operator+=(const SphericalOf<T>& v);
/// @brief Scale the vector uniformly up /// @brief Scale the vector uniformly up
/// @param f The scaling factor /// @param f The scaling factor
/// @return The scaled vector /// @return The scaled vector
/// @remark This operation will scale the distance of the vector. The angle /// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected. /// will be unaffected.
friend SphericalOf<T> operator*(const SphericalOf<T> &v, float f) { friend SphericalOf<T> operator*(const SphericalOf<T>& v, float f) {
return SphericalOf<T>(v.distance * f, v.direction); return SphericalOf<T>(v.distance * f, v.direction);
} }
friend SphericalOf<T> operator*(float f, const SphericalOf<T> &v) { friend SphericalOf<T> operator*(float f, const SphericalOf<T>& v) {
return SphericalOf<T>(f * v.distance, v.direction); return SphericalOf<T>(f * v.distance, v.direction);
} }
SphericalOf<T> operator*=(float f); SphericalOf<T> operator*=(float f);
@ -120,10 +123,10 @@ public:
/// @return The scaled factor /// @return The scaled factor
/// @remark This operation will scale the distance of the vector. The angle /// @remark This operation will scale the distance of the vector. The angle
/// will be unaffected. /// will be unaffected.
friend SphericalOf<T> operator/(const SphericalOf<T> &v, float f) { friend SphericalOf<T> operator/(const SphericalOf<T>& v, float f) {
return SphericalOf<T>(v.distance / f, v.direction); return SphericalOf<T>(v.distance / f, v.direction);
} }
friend SphericalOf<T> operator/(float f, const SphericalOf<T> &v) { friend SphericalOf<T> operator/(float f, const SphericalOf<T>& v) {
return SphericalOf<T>(f / v.distance, v.direction); return SphericalOf<T>(f / v.distance, v.direction);
} }
SphericalOf<T> operator/=(float f); SphericalOf<T> operator/=(float f);
@ -132,41 +135,42 @@ public:
/// @param v1 The first coordinate /// @param v1 The first coordinate
/// @param v2 The second coordinate /// @param v2 The second coordinate
/// @return The distance between the coordinates in meters /// @return The distance between the coordinates in meters
static float DistanceBetween(const SphericalOf<T> &v1, static float DistanceBetween(const SphericalOf<T>& v1,
const SphericalOf<T> &v2); const SphericalOf<T>& v2);
/// @brief Calculate the unsigned angle between two spherical vectors /// @brief Calculate the unsigned angle between two spherical vectors
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @return The unsigned angle between the vectors /// @return The unsigned angle between the vectors
static AngleOf<T> AngleBetween(const SphericalOf<T> &v1, static AngleOf<T> AngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T> &v2); const SphericalOf<T>& v2);
/// @brief Calculate the signed angle between two spherical vectors /// @brief Calculate the signed angle between two spherical vectors
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @param axis The axis are which the angle is calculated /// @param axis The axis are which the angle is calculated
/// @return The signed angle between the vectors /// @return The signed angle between the vectors
static AngleOf<T> SignedAngleBetween(const SphericalOf<T> &v1, static AngleOf<T> SignedAngleBetween(const SphericalOf<T>& v1,
const SphericalOf<T> &v2, const SphericalOf<T>& v2,
const SphericalOf<T> &axis); const SphericalOf<T>& axis);
/// @brief Rotate a spherical vector /// @brief Rotate a spherical vector
/// @param v The vector to rotate /// @param v The vector to rotate
/// @param horizontalAngle The horizontal rotation angle in local space /// @param horizontalAngle The horizontal rotation angle in local space
/// @param verticalAngle The vertical rotation angle in local space /// @param verticalAngle The vertical rotation angle in local space
/// @return The rotated vector /// @return The rotated vector
static SphericalOf<T> Rotate(const SphericalOf &v, AngleOf<T> horizontalAngle, static SphericalOf<T> Rotate(const SphericalOf& v,
AngleOf<T> horizontalAngle,
AngleOf<T> verticalAngle); AngleOf<T> verticalAngle);
/// @brief Rotate a spherical vector horizontally /// @brief Rotate a spherical vector horizontally
/// @param v The vector to rotate /// @param v The vector to rotate
/// @param angle The horizontal rotation angle in local space /// @param angle The horizontal rotation angle in local space
/// @return The rotated vector /// @return The rotated vector
static SphericalOf<T> RotateHorizontal(const SphericalOf<T> &v, static SphericalOf<T> RotateHorizontal(const SphericalOf<T>& v,
AngleOf<T> angle); AngleOf<T> angle);
/// @brief Rotate a spherical vector vertically /// @brief Rotate a spherical vector vertically
/// @param v The vector to rotate /// @param v The vector to rotate
/// @param angle The vertical rotation angle in local space /// @param angle The vertical rotation angle in local space
/// @return The rotated vector /// @return The rotated vector
static SphericalOf<T> RotateVertical(const SphericalOf<T> &v, static SphericalOf<T> RotateVertical(const SphericalOf<T>& v,
AngleOf<T> angle); AngleOf<T> angle);
}; };
@ -186,9 +190,8 @@ using Spherical = Spherical16;
using Spherical = SphericalSingle; using Spherical = SphericalSingle;
#endif #endif
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer using namespace LinearAlgebra;
using namespace Passer::LinearAlgebra;
#include "Polar.h" #include "Polar.h"
#include "Vector3.h" #include "Vector3.h"

View File

@ -164,5 +164,5 @@ void SwingTwistOf<T>::Normalize() {
} }
} }
template class Passer::LinearAlgebra::SwingTwistOf<float>; template class SwingTwistOf<float>;
template class Passer::LinearAlgebra::SwingTwistOf<signed short>; template class SwingTwistOf<signed short>;

View File

@ -10,14 +10,14 @@
#include "Quaternion.h" #include "Quaternion.h"
#include "Spherical.h" #include "Spherical.h"
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
/// @brief An orientation using swing and twist angles in various /// @brief An orientation using swing and twist angles in various
/// representations /// representations
/// @tparam T The implmentation type used for the representation of the angles /// @tparam T The implmentation type used for the representation of the angles
template <typename T> class SwingTwistOf { template <typename T>
public: class SwingTwistOf {
public:
DirectionOf<T> swing; DirectionOf<T> swing;
AngleOf<T> twist; AngleOf<T> twist;
@ -25,7 +25,8 @@ public:
SwingTwistOf<T>(DirectionOf<T> swing, AngleOf<T> twist); SwingTwistOf<T>(DirectionOf<T> swing, AngleOf<T> twist);
SwingTwistOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist); SwingTwistOf<T>(AngleOf<T> horizontal, AngleOf<T> vertical, AngleOf<T> twist);
static SwingTwistOf<T> Degrees(float horizontal, float vertical = 0, static SwingTwistOf<T> Degrees(float horizontal,
float vertical = 0,
float twist = 0); float twist = 0);
Quaternion ToQuaternion() const; Quaternion ToQuaternion() const;
@ -43,7 +44,7 @@ public:
/// </summary> /// </summary>
/// <param name="vector">The vector to rotate</param> /// <param name="vector">The vector to rotate</param>
/// <returns>The rotated vector</returns> /// <returns>The rotated vector</returns>
SphericalOf<T> operator*(const SphericalOf<T> &vector) const; SphericalOf<T> operator*(const SphericalOf<T>& vector) const;
/// <summary> /// <summary>
/// Multiply this rotation with another rotation /// Multiply this rotation with another rotation
/// </summary> /// </summary>
@ -51,8 +52,8 @@ public:
/// <returns>The resulting swing/twist rotation</returns> /// <returns>The resulting swing/twist rotation</returns>
/// The result will be this rotation rotated according to /// The result will be this rotation rotated according to
/// the give rotation. /// the give rotation.
SwingTwistOf<T> operator*(const SwingTwistOf<T> &rotation) const; SwingTwistOf<T> operator*(const SwingTwistOf<T>& rotation) const;
SwingTwistOf<T> operator*=(const SwingTwistOf<T> &rotation); SwingTwistOf<T> operator*=(const SwingTwistOf<T>& rotation);
static SwingTwistOf<T> Inverse(SwingTwistOf<T> rotation); static SwingTwistOf<T> Inverse(SwingTwistOf<T> rotation);
@ -62,9 +63,9 @@ public:
/// <param name="angle">The angle</param> /// <param name="angle">The angle</param>
/// <param name="axis">The axis</param> /// <param name="axis">The axis</param>
/// <returns>The resulting quaternion</returns> /// <returns>The resulting quaternion</returns>
static SwingTwistOf<T> AngleAxis(float angle, const DirectionOf<T> &axis); static SwingTwistOf<T> AngleAxis(float angle, const DirectionOf<T>& axis);
static AngleOf<T> Angle(const SwingTwistOf<T> &r1, const SwingTwistOf<T> &r2); static AngleOf<T> Angle(const SwingTwistOf<T>& r1, const SwingTwistOf<T>& r2);
void Normalize(); void Normalize();
}; };
@ -72,8 +73,13 @@ public:
using SwingTwistSingle = SwingTwistOf<float>; using SwingTwistSingle = SwingTwistOf<float>;
using SwingTwist16 = SwingTwistOf<signed short>; using SwingTwist16 = SwingTwistOf<signed short>;
} // namespace LinearAlgebra #if defined(ARDUINO)
} // namespace Passer using SwingTwist = SwingTwist16;
using namespace Passer::LinearAlgebra; #else
using SwingTwist = SwingTwistSingle;
#endif
} // namespace LinearAlgebra
using namespace LinearAlgebra;
#endif #endif

View File

@ -26,11 +26,11 @@ Vector2::Vector2(float _x, float _y) {
// y = v.y; // y = v.y;
// } // }
Vector2::Vector2(Vector3 v) { Vector2::Vector2(Vector3 v) {
x = v.Right(); // x; x = v.Right(); // x;
y = v.Forward(); // z; y = v.Forward(); // z;
} }
Vector2::Vector2(PolarSingle p) { Vector2::Vector2(PolarSingle p) {
float horizontalRad = p.angle.InDegrees() * Passer::LinearAlgebra::Deg2Rad; float horizontalRad = p.angle.InDegrees() * Deg2Rad;
float cosHorizontal = cosf(horizontalRad); float cosHorizontal = cosf(horizontalRad);
float sinHorizontal = sinf(horizontalRad); float sinHorizontal = sinf(horizontalRad);
@ -49,18 +49,24 @@ const Vector2 Vector2::down = Vector2(0, -1);
const Vector2 Vector2::forward = Vector2(0, 1); const Vector2 Vector2::forward = Vector2(0, 1);
const Vector2 Vector2::back = Vector2(0, -1); const Vector2 Vector2::back = Vector2(0, -1);
bool Vector2::operator==(const Vector2 &v) { bool Vector2::operator==(const Vector2& v) {
return (this->x == v.x && this->y == v.y); return (this->x == v.x && this->y == v.y);
} }
float Vector2::Magnitude(const Vector2 &v) { float Vector2::Magnitude(const Vector2& v) {
return sqrtf(v.x * v.x + v.y * v.y); return sqrtf(v.x * v.x + v.y * v.y);
} }
float Vector2::magnitude() const { return (float)sqrtf(x * x + y * y); } float Vector2::magnitude() const {
float Vector2::SqrMagnitude(const Vector2 &v) { return v.x * v.x + v.y * v.y; } return (float)sqrtf(x * x + y * y);
float Vector2::sqrMagnitude() const { return (x * x + y * y); } }
float Vector2::SqrMagnitude(const Vector2& v) {
return v.x * v.x + v.y * v.y;
}
float Vector2::sqrMagnitude() const {
return (x * x + y * y);
}
Vector2 Vector2::Normalize(const Vector2 &v) { Vector2 Vector2::Normalize(const Vector2& v) {
float num = Vector2::Magnitude(v); float num = Vector2::Magnitude(v);
Vector2 result = Vector2::zero; Vector2 result = Vector2::zero;
if (num > Float::epsilon) { if (num > Float::epsilon) {
@ -77,26 +83,28 @@ Vector2 Vector2::normalized() const {
return result; return result;
} }
Vector2 Vector2::operator-() { return Vector2(-this->x, -this->y); } Vector2 Vector2::operator-() {
return Vector2(-this->x, -this->y);
}
Vector2 Vector2::operator-(const Vector2 &v) const { Vector2 Vector2::operator-(const Vector2& v) const {
return Vector2(this->x - v.x, this->y - v.y); return Vector2(this->x - v.x, this->y - v.y);
} }
Vector2 Vector2::operator-=(const Vector2 &v) { Vector2 Vector2::operator-=(const Vector2& v) {
this->x -= v.x; this->x -= v.x;
this->y -= v.y; this->y -= v.y;
return *this; return *this;
} }
Vector2 Vector2::operator+(const Vector2 &v) const { Vector2 Vector2::operator+(const Vector2& v) const {
return Vector2(this->x + v.x, this->y + v.y); return Vector2(this->x + v.x, this->y + v.y);
} }
Vector2 Vector2::operator+=(const Vector2 &v) { Vector2 Vector2::operator+=(const Vector2& v) {
this->x += v.x; this->x += v.x;
this->y += v.y; this->y += v.y;
return *this; return *this;
} }
Vector2 Vector2::Scale(const Vector2 &v1, const Vector2 &v2) { Vector2 Vector2::Scale(const Vector2& v1, const Vector2& v2) {
return Vector2(v1.x * v2.x, v1.y * v2.y); return Vector2(v1.x * v2.x, v1.y * v2.y);
} }
// Vector2 Passer::LinearAlgebra::operator*(const Vector2 &v, float f) { // Vector2 Passer::LinearAlgebra::operator*(const Vector2 &v, float f) {
@ -122,18 +130,18 @@ Vector2 Vector2::operator/=(float f) {
return *this; return *this;
} }
float Vector2::Dot(const Vector2 &v1, const Vector2 &v2) { float Vector2::Dot(const Vector2& v1, const Vector2& v2) {
return v1.x * v2.x + v1.y * v2.y; return v1.x * v2.x + v1.y * v2.y;
} }
float Vector2::Distance(const Vector2 &v1, const Vector2 &v2) { float Vector2::Distance(const Vector2& v1, const Vector2& v2) {
return Magnitude(v1 - v2); return Magnitude(v1 - v2);
} }
float Vector2::Angle(const Vector2 &v1, const Vector2 &v2) { float Vector2::Angle(const Vector2& v1, const Vector2& v2) {
return (float)fabs(SignedAngle(v1, v2)); return (float)fabs(SignedAngle(v1, v2));
} }
float Vector2::SignedAngle(const Vector2 &v1, const Vector2 &v2) { float Vector2::SignedAngle(const Vector2& v1, const Vector2& v2) {
float sqrMagFrom = v1.sqrMagnitude(); float sqrMagFrom = v1.sqrMagnitude();
float sqrMagTo = v2.sqrMagnitude(); float sqrMagTo = v2.sqrMagnitude();
@ -148,15 +156,14 @@ float Vector2::SignedAngle(const Vector2 &v1, const Vector2 &v2) {
float angleFrom = atan2f(v1.y, v1.x); float angleFrom = atan2f(v1.y, v1.x);
float angleTo = atan2f(v2.y, v2.x); float angleTo = atan2f(v2.y, v2.x);
return -(angleTo - angleFrom) * Passer::LinearAlgebra::Rad2Deg; return -(angleTo - angleFrom) * Rad2Deg;
} }
Vector2 Vector2::Rotate(const Vector2 &v, Vector2 Vector2::Rotate(const Vector2& v, AngleSingle a) {
Passer::LinearAlgebra::AngleSingle a) { float angleRad = a.InDegrees() * Deg2Rad;
float angleRad = a.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
#if defined(AVR) #if defined(AVR)
float sinValue = sin(angleRad); float sinValue = sin(angleRad);
float cosValue = cos(angleRad); // * Angle::Deg2Rad); float cosValue = cos(angleRad); // * Angle::Deg2Rad);
#else #else
float sinValue = (float)sinf(angleRad); float sinValue = (float)sinf(angleRad);
float cosValue = (float)cosf(angleRad); float cosValue = (float)cosf(angleRad);
@ -169,7 +176,7 @@ Vector2 Vector2::Rotate(const Vector2 &v,
return r; return r;
} }
Vector2 Vector2::Lerp(const Vector2 &v1, const Vector2 &v2, float f) { Vector2 Vector2::Lerp(const Vector2& v1, const Vector2& v2, float f) {
Vector2 v = v1 + (v2 - v1) * f; Vector2 v = v1 + (v2 - v1) * f;
return v; return v;
} }

View File

@ -26,11 +26,11 @@ typedef struct Vec2 {
} Vec2; } Vec2;
} }
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
struct Vector3; struct Vector3;
template <typename T> class PolarOf; template <typename T>
class PolarOf;
/// @brief A 2-dimensional vector /// @brief A 2-dimensional vector
/// @remark This uses the right=handed carthesian coordinate system. /// @remark This uses the right=handed carthesian coordinate system.
@ -38,7 +38,7 @@ template <typename T> class PolarOf;
struct Vector2 : Vec2 { struct Vector2 : Vec2 {
friend struct Vec2; friend struct Vec2;
public: public:
/// @brief A new 2-dimensional zero vector /// @brief A new 2-dimensional zero vector
Vector2(); Vector2();
/// @brief A new 2-dimensional vector /// @brief A new 2-dimensional vector
@ -80,12 +80,12 @@ public:
/// @return true if it is identical to the given vector /// @return true if it is identical to the given vector
/// @note This uses float comparison to check equality which may have strange /// @note This uses float comparison to check equality which may have strange
/// effects. Equality on floats should be avoided. /// effects. Equality on floats should be avoided.
bool operator==(const Vector2 &v); bool operator==(const Vector2& v);
/// @brief The vector length /// @brief The vector length
/// @param v The vector for which you need the length /// @param v The vector for which you need the length
/// @return The vector length /// @return The vector length
static float Magnitude(const Vector2 &v); static float Magnitude(const Vector2& v);
/// @brief The vector length /// @brief The vector length
/// @return The vector length /// @return The vector length
float magnitude() const; float magnitude() const;
@ -95,7 +95,7 @@ public:
/// @remark The squared length is computationally simpler than the real /// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This prevents the calculation /// length. Think of Pythagoras A^2 + B^2 = C^2. This prevents the calculation
/// of the squared root of C. /// of the squared root of C.
static float SqrMagnitude(const Vector2 &v); static float SqrMagnitude(const Vector2& v);
/// @brief The squared vector length /// @brief The squared vector length
/// @return The squared vector length /// @return The squared vector length
/// @remark The squared length is computationally simpler than the real /// @remark The squared length is computationally simpler than the real
@ -106,7 +106,7 @@ public:
/// @brief Convert the vector to a length of 1 /// @brief Convert the vector to a length of 1
/// @param v The vector to convert /// @param v The vector to convert
/// @return The vector normalized to a length of 1 /// @return The vector normalized to a length of 1
static Vector2 Normalize(const Vector2 &v); static Vector2 Normalize(const Vector2& v);
/// @brief Convert the vector to a length 1 /// @brief Convert the vector to a length 1
/// @return The vector normalized to a length of 1 /// @return The vector normalized to a length of 1
Vector2 normalized() const; Vector2 normalized() const;
@ -118,13 +118,13 @@ public:
/// @brief Subtract a vector from this vector /// @brief Subtract a vector from this vector
/// @param v The vector to subtract from this vector /// @param v The vector to subtract from this vector
/// @return The result of the subtraction /// @return The result of the subtraction
Vector2 operator-(const Vector2 &v) const; Vector2 operator-(const Vector2& v) const;
Vector2 operator-=(const Vector2 &v); Vector2 operator-=(const Vector2& v);
/// @brief Add a vector to this vector /// @brief Add a vector to this vector
/// @param v The vector to add to this vector /// @param v The vector to add to this vector
/// @return The result of the addition /// @return The result of the addition
Vector2 operator+(const Vector2 &v) const; Vector2 operator+(const Vector2& v) const;
Vector2 operator+=(const Vector2 &v); Vector2 operator+=(const Vector2& v);
/// @brief Scale the vector using another vector /// @brief Scale the vector using another vector
/// @param v1 The vector to scale /// @param v1 The vector to scale
@ -132,16 +132,16 @@ public:
/// @return The scaled vector /// @return The scaled vector
/// @remark Each component of the vector v1 will be multiplied with the /// @remark Each component of the vector v1 will be multiplied with the
/// matching component from the scaling vector v2. /// matching component from the scaling vector v2.
static Vector2 Scale(const Vector2 &v1, const Vector2 &v2); static Vector2 Scale(const Vector2& v1, const Vector2& v2);
/// @brief Scale the vector uniformly up /// @brief Scale the vector uniformly up
/// @param f The scaling factor /// @param f The scaling factor
/// @return The scaled vector /// @return The scaled vector
/// @remark Each component of the vector will be multipled with the same /// @remark Each component of the vector will be multipled with the same
/// factor f. /// factor f.
friend Vector2 operator*(const Vector2 &v, float f) { friend Vector2 operator*(const Vector2& v, float f) {
return Vector2(v.x * f, v.y * f); return Vector2(v.x * f, v.y * f);
} }
friend Vector2 operator*(float f, const Vector2 &v) { friend Vector2 operator*(float f, const Vector2& v) {
return Vector2(v.x * f, v.y * f); return Vector2(v.x * f, v.y * f);
// return Vector2(f * v.x, f * v.y); // return Vector2(f * v.x, f * v.y);
} }
@ -150,10 +150,10 @@ public:
/// @param f The scaling factor /// @param f The scaling factor
/// @return The scaled vector /// @return The scaled vector
/// @remark Each componet of the vector will be divided by the same factor. /// @remark Each componet of the vector will be divided by the same factor.
friend Vector2 operator/(const Vector2 &v, float f) { friend Vector2 operator/(const Vector2& v, float f) {
return Vector2(v.x / f, v.y / f); return Vector2(v.x / f, v.y / f);
} }
friend Vector2 operator/(float f, const Vector2 &v) { friend Vector2 operator/(float f, const Vector2& v) {
return Vector2(f / v.x, f / v.y); return Vector2(f / v.x, f / v.y);
} }
Vector2 operator/=(float f); Vector2 operator/=(float f);
@ -162,13 +162,13 @@ public:
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @return The dot product of the two vectors /// @return The dot product of the two vectors
static float Dot(const Vector2 &v1, const Vector2 &v2); static float Dot(const Vector2& v1, const Vector2& v2);
/// @brief The distance between two vectors /// @brief The distance between two vectors
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @return The distance between the two vectors /// @return The distance between the two vectors
static float Distance(const Vector2 &v1, const Vector2 &v2); static float Distance(const Vector2& v1, const Vector2& v2);
/// @brief The angle between two vectors /// @brief The angle between two vectors
/// @param v1 The first vector /// @param v1 The first vector
@ -177,18 +177,18 @@ public:
/// @remark This reterns an unsigned angle which is the shortest distance /// @remark This reterns an unsigned angle which is the shortest distance
/// between the two vectors. Use Vector2::SignedAngle if a signed angle is /// between the two vectors. Use Vector2::SignedAngle if a signed angle is
/// needed. /// needed.
static float Angle(const Vector2 &v1, const Vector2 &v2); static float Angle(const Vector2& v1, const Vector2& v2);
/// @brief The signed angle between two vectors /// @brief The signed angle between two vectors
/// @param v1 The starting vector /// @param v1 The starting vector
/// @param v2 The ending vector /// @param v2 The ending vector
/// @return The signed angle between the two vectors /// @return The signed angle between the two vectors
static float SignedAngle(const Vector2 &v1, const Vector2 &v2); static float SignedAngle(const Vector2& v1, const Vector2& v2);
/// @brief Rotate the vector /// @brief Rotate the vector
/// @param v The vector to rotate /// @param v The vector to rotate
/// @param a The angle in degrees to rotate /// @param a The angle in degrees to rotate
/// @return The rotated vector /// @return The rotated vector
static Vector2 Rotate(const Vector2 &v, Passer::LinearAlgebra::AngleSingle a); static Vector2 Rotate(const Vector2& v, AngleSingle a);
/// @brief Lerp (linear interpolation) between two vectors /// @brief Lerp (linear interpolation) between two vectors
/// @param v1 The starting vector /// @param v1 The starting vector
@ -198,12 +198,11 @@ public:
/// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value /// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value
/// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference /// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference
/// between *v1* and *v2* etc. /// between *v1* and *v2* etc.
static Vector2 Lerp(const Vector2 &v1, const Vector2 &v2, float f); static Vector2 Lerp(const Vector2& v1, const Vector2& v2, float f);
}; };
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer using namespace LinearAlgebra;
using namespace Passer::LinearAlgebra;
#include "Polar.h" #include "Polar.h"

View File

@ -31,10 +31,8 @@ Vector3::Vector3(Vector2 v) {
} }
Vector3::Vector3(SphericalOf<float> s) { Vector3::Vector3(SphericalOf<float> s) {
float verticalRad = (90.0f - s.direction.vertical.InDegrees()) * float verticalRad = (90.0f - s.direction.vertical.InDegrees()) * Deg2Rad;
Passer::LinearAlgebra::Deg2Rad; float horizontalRad = s.direction.horizontal.InDegrees() * Deg2Rad;
float horizontalRad =
s.direction.horizontal.InDegrees() * Passer::LinearAlgebra::Deg2Rad;
float cosVertical = cosf(verticalRad); float cosVertical = cosf(verticalRad);
float sinVertical = sinf(verticalRad); float sinVertical = sinf(verticalRad);
float cosHorizontal = cosf(horizontalRad); float cosHorizontal = cosf(horizontalRad);
@ -67,17 +65,21 @@ const Vector3 Vector3::back = Vector3(0, 0, -1);
// return Vector3(v.x, 0, v.y); // return Vector3(v.x, 0, v.y);
// } // }
float Vector3::Magnitude(const Vector3 &v) { float Vector3::Magnitude(const Vector3& v) {
return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z); return sqrtf(v.x * v.x + v.y * v.y + v.z * v.z);
} }
float Vector3::magnitude() const { return (float)sqrtf(x * x + y * y + z * z); } float Vector3::magnitude() const {
return (float)sqrtf(x * x + y * y + z * z);
}
float Vector3::SqrMagnitude(const Vector3 &v) { float Vector3::SqrMagnitude(const Vector3& v) {
return v.x * v.x + v.y * v.y + v.z * v.z; return v.x * v.x + v.y * v.y + v.z * v.z;
} }
float Vector3::sqrMagnitude() const { return (x * x + y * y + z * z); } float Vector3::sqrMagnitude() const {
return (x * x + y * y + z * z);
}
Vector3 Vector3::Normalize(const Vector3 &v) { Vector3 Vector3::Normalize(const Vector3& v) {
float num = Vector3::Magnitude(v); float num = Vector3::Magnitude(v);
Vector3 result = Vector3::zero; Vector3 result = Vector3::zero;
if (num > epsilon) { if (num > epsilon) {
@ -98,26 +100,26 @@ Vector3 Vector3::operator-() const {
return Vector3(-this->x, -this->y, -this->z); return Vector3(-this->x, -this->y, -this->z);
} }
Vector3 Vector3::operator-(const Vector3 &v) const { Vector3 Vector3::operator-(const Vector3& v) const {
return Vector3(this->x - v.x, this->y - v.y, this->z - v.z); return Vector3(this->x - v.x, this->y - v.y, this->z - v.z);
} }
Vector3 Vector3::operator-=(const Vector3 &v) { Vector3 Vector3::operator-=(const Vector3& v) {
this->x -= v.x; this->x -= v.x;
this->y -= v.y; this->y -= v.y;
this->z -= v.z; this->z -= v.z;
return *this; return *this;
} }
Vector3 Vector3::operator+(const Vector3 &v) const { Vector3 Vector3::operator+(const Vector3& v) const {
return Vector3(this->x + v.x, this->y + v.y, this->z + v.z); return Vector3(this->x + v.x, this->y + v.y, this->z + v.z);
} }
Vector3 Vector3::operator+=(const Vector3 &v) { Vector3 Vector3::operator+=(const Vector3& v) {
this->x += v.x; this->x += v.x;
this->y += v.y; this->y += v.y;
this->z += v.z; this->z += v.z;
return *this; return *this;
} }
Vector3 Vector3::Scale(const Vector3 &v1, const Vector3 &v2) { Vector3 Vector3::Scale(const Vector3& v1, const Vector3& v2) {
return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z); return Vector3(v1.x * v2.x, v1.y * v2.y, v1.z * v2.z);
} }
// Vector3 Passer::LinearAlgebra::operator*(const Vector3 &v, float f) { // Vector3 Passer::LinearAlgebra::operator*(const Vector3 &v, float f) {
@ -145,24 +147,24 @@ Vector3 Vector3::operator/=(float f) {
return *this; return *this;
} }
float Vector3::Dot(const Vector3 &v1, const Vector3 &v2) { float Vector3::Dot(const Vector3& v1, const Vector3& v2) {
return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z; return v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
} }
bool Vector3::operator==(const Vector3 &v) const { bool Vector3::operator==(const Vector3& v) const {
return (this->x == v.x && this->y == v.y && this->z == v.z); return (this->x == v.x && this->y == v.y && this->z == v.z);
} }
float Vector3::Distance(const Vector3 &v1, const Vector3 &v2) { float Vector3::Distance(const Vector3& v1, const Vector3& v2) {
return Magnitude(v1 - v2); return Magnitude(v1 - v2);
} }
Vector3 Vector3::Cross(const Vector3 &v1, const Vector3 &v2) { Vector3 Vector3::Cross(const Vector3& v1, const Vector3& v2) {
return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z, return Vector3(v1.y * v2.z - v1.z * v2.y, v1.z * v2.x - v1.x * v2.z,
v1.x * v2.y - v1.y * v2.x); v1.x * v2.y - v1.y * v2.x);
} }
Vector3 Vector3::Project(const Vector3 &v, const Vector3 &n) { Vector3 Vector3::Project(const Vector3& v, const Vector3& n) {
float sqrMagnitude = Dot(n, n); float sqrMagnitude = Dot(n, n);
if (sqrMagnitude < epsilon) if (sqrMagnitude < epsilon)
return Vector3::zero; return Vector3::zero;
@ -173,7 +175,7 @@ Vector3 Vector3::Project(const Vector3 &v, const Vector3 &n) {
} }
} }
Vector3 Vector3::ProjectOnPlane(const Vector3 &v, const Vector3 &n) { Vector3 Vector3::ProjectOnPlane(const Vector3& v, const Vector3& n) {
Vector3 r = v - Project(v, n); Vector3 r = v - Project(v, n);
return r; return r;
} }
@ -184,7 +186,7 @@ float clamp(float x, float lower, float upper) {
return upperClamp; return upperClamp;
} }
AngleOf<float> Vector3::Angle(const Vector3 &v1, const Vector3 &v2) { AngleOf<float> Vector3::Angle(const Vector3& v1, const Vector3& v2) {
float denominator = sqrtf(v1.sqrMagnitude() * v2.sqrMagnitude()); float denominator = sqrtf(v1.sqrMagnitude() * v2.sqrMagnitude());
if (denominator < epsilon) if (denominator < epsilon)
return AngleOf<float>(); return AngleOf<float>();
@ -193,15 +195,16 @@ AngleOf<float> Vector3::Angle(const Vector3 &v1, const Vector3 &v2) {
float fraction = dot / denominator; float fraction = dot / denominator;
if (isnan(fraction)) if (isnan(fraction))
return AngleOf<float>::Degrees( return AngleOf<float>::Degrees(
fraction); // short cut to returning NaN universally fraction); // short cut to returning NaN universally
float cdot = clamp(fraction, -1.0, 1.0); float cdot = clamp(fraction, -1.0, 1.0);
float r = ((float)acos(cdot)); float r = ((float)acos(cdot));
return AngleOf<float>::Radians(r); return AngleOf<float>::Radians(r);
} }
AngleOf<float> Vector3::SignedAngle(const Vector3 &v1, const Vector3 &v2, AngleOf<float> Vector3::SignedAngle(const Vector3& v1,
const Vector3 &axis) { const Vector3& v2,
const Vector3& axis) {
// angle in [0,180] // angle in [0,180]
AngleOf<float> angle = Vector3::Angle(v1, v2); AngleOf<float> angle = Vector3::Angle(v1, v2);
@ -215,7 +218,7 @@ AngleOf<float> Vector3::SignedAngle(const Vector3 &v1, const Vector3 &v2,
return AngleOf<float>(signed_angle); return AngleOf<float>(signed_angle);
} }
Vector3 Vector3::Lerp(const Vector3 &v1, const Vector3 &v2, float f) { Vector3 Vector3::Lerp(const Vector3& v1, const Vector3& v2, float f) {
Vector3 v = v1 + (v2 - v1) * f; Vector3 v = v1 + (v2 - v1) * f;
return v; return v;
} }

View File

@ -14,7 +14,7 @@ extern "C" {
/// This is a C-style implementation /// This is a C-style implementation
/// This uses the right-handed coordinate system. /// This uses the right-handed coordinate system.
typedef struct Vec3 { typedef struct Vec3 {
protected: protected:
/// <summary> /// <summary>
/// The right axis of the vector /// The right axis of the vector
/// </summary> /// </summary>
@ -31,10 +31,10 @@ protected:
} Vec3; } Vec3;
} }
namespace Passer {
namespace LinearAlgebra { namespace LinearAlgebra {
template <typename T> class SphericalOf; template <typename T>
class SphericalOf;
/// @brief A 3-dimensional vector /// @brief A 3-dimensional vector
/// @remark This uses a right-handed carthesian coordinate system. /// @remark This uses a right-handed carthesian coordinate system.
@ -42,7 +42,7 @@ template <typename T> class SphericalOf;
struct Vector3 : Vec3 { struct Vector3 : Vec3 {
friend struct Vec3; friend struct Vec3;
public: public:
/// @brief A new 3-dimensional zero vector /// @brief A new 3-dimensional zero vector
Vector3(); Vector3();
/// @brief A new 3-dimensional vector /// @brief A new 3-dimensional vector
@ -88,12 +88,12 @@ public:
/// @return true if it is identical to the given vector /// @return true if it is identical to the given vector
/// @note This uses float comparison to check equality which may have strange /// @note This uses float comparison to check equality which may have strange
/// effects. Equality on floats should be avoided. /// effects. Equality on floats should be avoided.
bool operator==(const Vector3 &v) const; bool operator==(const Vector3& v) const;
/// @brief The vector length /// @brief The vector length
/// @param v The vector for which you need the length /// @param v The vector for which you need the length
/// @return The vector length /// @return The vector length
static float Magnitude(const Vector3 &v); static float Magnitude(const Vector3& v);
/// @brief The vector length /// @brief The vector length
/// @return The vector length /// @return The vector length
float magnitude() const; float magnitude() const;
@ -103,7 +103,7 @@ public:
/// @remark The squared length is computationally simpler than the real /// @remark The squared length is computationally simpler than the real
/// length. Think of Pythagoras A^2 + B^2 = C^2. This leaves out the /// length. Think of Pythagoras A^2 + B^2 = C^2. This leaves out the
/// calculation of the squared root of C. /// calculation of the squared root of C.
static float SqrMagnitude(const Vector3 &v); static float SqrMagnitude(const Vector3& v);
/// @brief The squared vector length /// @brief The squared vector length
/// @return The squared vector length /// @return The squared vector length
/// @remark The squared length is computationally simpler than the real /// @remark The squared length is computationally simpler than the real
@ -114,7 +114,7 @@ public:
/// @brief Convert the vector to a length of 1 /// @brief Convert the vector to a length of 1
/// @param v The vector to convert /// @param v The vector to convert
/// @return The vector normalized to a length of 1 /// @return The vector normalized to a length of 1
static Vector3 Normalize(const Vector3 &v); static Vector3 Normalize(const Vector3& v);
/// @brief Convert the vector to a length of 1 /// @brief Convert the vector to a length of 1
/// @return The vector normalized to a length of 1 /// @return The vector normalized to a length of 1
Vector3 normalized() const; Vector3 normalized() const;
@ -126,13 +126,13 @@ public:
/// @brief Subtract a vector from this vector /// @brief Subtract a vector from this vector
/// @param v The vector to subtract from this vector /// @param v The vector to subtract from this vector
/// @return The result of this subtraction /// @return The result of this subtraction
Vector3 operator-(const Vector3 &v) const; Vector3 operator-(const Vector3& v) const;
Vector3 operator-=(const Vector3 &v); Vector3 operator-=(const Vector3& v);
/// @brief Add a vector to this vector /// @brief Add a vector to this vector
/// @param v The vector to add to this vector /// @param v The vector to add to this vector
/// @return The result of the addition /// @return The result of the addition
Vector3 operator+(const Vector3 &v) const; Vector3 operator+(const Vector3& v) const;
Vector3 operator+=(const Vector3 &v); Vector3 operator+=(const Vector3& v);
/// @brief Scale the vector using another vector /// @brief Scale the vector using another vector
/// @param v1 The vector to scale /// @param v1 The vector to scale
@ -140,16 +140,16 @@ public:
/// @return The scaled vector /// @return The scaled vector
/// @remark Each component of the vector v1 will be multiplied with the /// @remark Each component of the vector v1 will be multiplied with the
/// matching component from the scaling vector v2. /// matching component from the scaling vector v2.
static Vector3 Scale(const Vector3 &v1, const Vector3 &v2); static Vector3 Scale(const Vector3& v1, const Vector3& v2);
/// @brief Scale the vector uniformly up /// @brief Scale the vector uniformly up
/// @param f The scaling factor /// @param f The scaling factor
/// @return The scaled vector /// @return The scaled vector
/// @remark Each component of the vector will be multipled with the same /// @remark Each component of the vector will be multipled with the same
/// factor f. /// factor f.
friend Vector3 operator*(const Vector3 &v, float f) { friend Vector3 operator*(const Vector3& v, float f) {
return Vector3(v.x * f, v.y * f, v.z * f); return Vector3(v.x * f, v.y * f, v.z * f);
} }
friend Vector3 operator*(float f, const Vector3 &v) { friend Vector3 operator*(float f, const Vector3& v) {
// return Vector3(f * v.x, f * v.y, f * v.z); // return Vector3(f * v.x, f * v.y, f * v.z);
return Vector3(v.x * f, v.y * f, v.z * f); return Vector3(v.x * f, v.y * f, v.z * f);
} }
@ -158,10 +158,10 @@ public:
/// @param f The scaling factor /// @param f The scaling factor
/// @return The scaled vector /// @return The scaled vector
/// @remark Each componet of the vector will be divided by the same factor. /// @remark Each componet of the vector will be divided by the same factor.
friend Vector3 operator/(const Vector3 &v, float f) { friend Vector3 operator/(const Vector3& v, float f) {
return Vector3(v.x / f, v.y / f, v.z / f); return Vector3(v.x / f, v.y / f, v.z / f);
} }
friend Vector3 operator/(float f, const Vector3 &v) { friend Vector3 operator/(float f, const Vector3& v) {
// return Vector3(f / v.x, f / v.y, f / v.z); // return Vector3(f / v.x, f / v.y, f / v.z);
return Vector3(v.x / f, v.y / f, v.z / f); return Vector3(v.x / f, v.y / f, v.z / f);
} }
@ -171,31 +171,31 @@ public:
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @return The distance between the two vectors /// @return The distance between the two vectors
static float Distance(const Vector3 &v1, const Vector3 &v2); static float Distance(const Vector3& v1, const Vector3& v2);
/// @brief The dot product of two vectors /// @brief The dot product of two vectors
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @return The dot product of the two vectors /// @return The dot product of the two vectors
static float Dot(const Vector3 &v1, const Vector3 &v2); static float Dot(const Vector3& v1, const Vector3& v2);
/// @brief The cross product of two vectors /// @brief The cross product of two vectors
/// @param v1 The first vector /// @param v1 The first vector
/// @param v2 The second vector /// @param v2 The second vector
/// @return The cross product of the two vectors /// @return The cross product of the two vectors
static Vector3 Cross(const Vector3 &v1, const Vector3 &v2); static Vector3 Cross(const Vector3& v1, const Vector3& v2);
/// @brief Project the vector on another vector /// @brief Project the vector on another vector
/// @param v The vector to project /// @param v The vector to project
/// @param n The normal vecto to project on /// @param n The normal vecto to project on
/// @return The projected vector /// @return The projected vector
static Vector3 Project(const Vector3 &v, const Vector3 &n); static Vector3 Project(const Vector3& v, const Vector3& n);
/// @brief Project the vector on a plane defined by a normal orthogonal to the /// @brief Project the vector on a plane defined by a normal orthogonal to the
/// plane. /// plane.
/// @param v The vector to project /// @param v The vector to project
/// @param n The normal of the plane to project on /// @param n The normal of the plane to project on
/// @return Teh projected vector /// @return Teh projected vector
static Vector3 ProjectOnPlane(const Vector3 &v, const Vector3 &n); static Vector3 ProjectOnPlane(const Vector3& v, const Vector3& n);
/// @brief The angle between two vectors /// @brief The angle between two vectors
/// @param v1 The first vector /// @param v1 The first vector
@ -204,14 +204,15 @@ public:
/// @remark This reterns an unsigned angle which is the shortest distance /// @remark This reterns an unsigned angle which is the shortest distance
/// between the two vectors. Use Vector3::SignedAngle if a signed angle is /// between the two vectors. Use Vector3::SignedAngle if a signed angle is
/// needed. /// needed.
static AngleOf<float> Angle(const Vector3 &v1, const Vector3 &v2); static AngleOf<float> Angle(const Vector3& v1, const Vector3& v2);
/// @brief The signed angle between two vectors /// @brief The signed angle between two vectors
/// @param v1 The starting vector /// @param v1 The starting vector
/// @param v2 The ending vector /// @param v2 The ending vector
/// @param axis The axis to rotate around /// @param axis The axis to rotate around
/// @return The signed angle between the two vectors /// @return The signed angle between the two vectors
static AngleOf<float> SignedAngle(const Vector3 &v1, const Vector3 &v2, static AngleOf<float> SignedAngle(const Vector3& v1,
const Vector3 &axis); const Vector3& v2,
const Vector3& axis);
/// @brief Lerp (linear interpolation) between two vectors /// @brief Lerp (linear interpolation) between two vectors
/// @param v1 The starting vector /// @param v1 The starting vector
@ -221,12 +222,11 @@ public:
/// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value /// @remark The factor f is unclamped. Value 0 matches the vector *v1*, Value
/// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference /// 1 matches vector *v2*. Value -1 is vector *v1* minus the difference
/// between *v1* and *v2* etc. /// between *v1* and *v2* etc.
static Vector3 Lerp(const Vector3 &v1, const Vector3 &v2, float f); static Vector3 Lerp(const Vector3& v1, const Vector3& v2, float f);
}; };
} // namespace LinearAlgebra } // namespace LinearAlgebra
} // namespace Passer using namespace LinearAlgebra;
using namespace Passer::LinearAlgebra;
#include "Spherical.h" #include "Spherical.h"

View File

@ -1,11 +1,13 @@
#if GTEST #if GTEST
#include "gtest/gtest.h" #include "gtest/gtest.h"
#include <limits>
#include <math.h> #include <math.h>
#include <limits>
#include "Angle.h" #include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity() #define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Angle16, Construct) { TEST(Angle16, Construct) {
@ -86,7 +88,7 @@ TEST(Angle16, Normalize) {
r = Angle16::Normalize(Angle16::Degrees(0)); r = Angle16::Normalize(Angle16::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0"; EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0";
if (false) { // std::numeric_limits<float>::is_iec559) { if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported // Infinites are not supported
r = Angle16::Normalize(Angle16::Degrees(FLOAT_INFINITY)); r = Angle16::Normalize(Angle16::Degrees(FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY"; EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY";
@ -125,7 +127,7 @@ TEST(Angle16, Clamp) {
Angle16::Degrees(-10)); Angle16::Degrees(-10));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10"; EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10";
if (false) { // std::numeric_limits<float>::is_iec559) { if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported // Infinites are not supported
r = Angle16::Clamp(Angle16::Degrees(10), Angle16::Degrees(0), r = Angle16::Clamp(Angle16::Degrees(10), Angle16::Degrees(0),
Angle16::Degrees(FLOAT_INFINITY)); Angle16::Degrees(FLOAT_INFINITY));
@ -216,7 +218,7 @@ TEST(Angle16, MoveTowards) {
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(0), 30); r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(0), 30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30"; EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30";
if (false) { // std::numeric_limits<float>::is_iec559) { if (false) { // std::numeric_limits<float>::is_iec559) {
// infinites are not supported // infinites are not supported
r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90), r = Angle16::MoveTowards(Angle16::Degrees(0), Angle16::Degrees(90),
FLOAT_INFINITY); FLOAT_INFINITY);

View File

@ -1,11 +1,13 @@
#if GTEST #if GTEST
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <limits>
#include <math.h> #include <math.h>
#include <limits>
#include "Angle.h" #include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity() #define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(Angle8, Construct) { TEST(Angle8, Construct) {
@ -86,7 +88,7 @@ TEST(Angle8, Normalize) {
r = Angle8::Normalize(Angle8::Degrees(0)); r = Angle8::Normalize(Angle8::Degrees(0));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0"; EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Normalize 0";
if (false) { // std::numeric_limits<float>::is_iec559) { if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported // Infinites are not supported
r = Angle8::Normalize(Angle8::Degrees(FLOAT_INFINITY)); r = Angle8::Normalize(Angle8::Degrees(FLOAT_INFINITY));
EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY"; EXPECT_FLOAT_EQ(r.InDegrees(), FLOAT_INFINITY) << "Normalize INFINITY";
@ -124,7 +126,7 @@ TEST(Angle8, Clamp) {
Angle8::Degrees(-10)); Angle8::Degrees(-10));
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10"; EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "Clamp 0 10 -10";
if (false) { // std::numeric_limits<float>::is_iec559) { if (false) { // std::numeric_limits<float>::is_iec559) {
// Infinites are not supported // Infinites are not supported
r = Angle8::Clamp(Angle8::Degrees(10), Angle8::Degrees(0), r = Angle8::Clamp(Angle8::Degrees(10), Angle8::Degrees(0),
Angle8::Degrees(FLOAT_INFINITY)); Angle8::Degrees(FLOAT_INFINITY));
@ -215,7 +217,7 @@ TEST(Angle8, MoveTowards) {
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(0), 30); r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(0), 30);
EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30"; EXPECT_FLOAT_EQ(r.InDegrees(), 0) << "MoveTowards 0 0 30";
if (false) { // std::numeric_limits<float>::is_iec559) { if (false) { // std::numeric_limits<float>::is_iec559) {
// infinites are not supported // infinites are not supported
r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90), r = Angle8::MoveTowards(Angle8::Degrees(0), Angle8::Degrees(90),
FLOAT_INFINITY); FLOAT_INFINITY);

View File

@ -1,11 +1,13 @@
#if GTEST #if GTEST
#include <gtest/gtest.h> #include <gtest/gtest.h>
#include <limits>
#include <math.h> #include <math.h>
#include <limits>
#include "Angle.h" #include "Angle.h"
using namespace LinearAlgebra;
#define FLOAT_INFINITY std::numeric_limits<float>::infinity() #define FLOAT_INFINITY std::numeric_limits<float>::infinity()
TEST(AngleSingle, Construct) { TEST(AngleSingle, Construct) {

View File

@ -1,7 +1,7 @@
#include "LowLevelMessages.h" #include "LowLevelMessages.h"
#include "LinearAlgebra/float16.h"
// #include <iostream> // #include <iostream>
#include "LinearAlgebra/float16.h"
namespace RoboidControl { namespace RoboidControl {
@ -42,30 +42,30 @@ float LowLevelMessages::ReceiveFloat16(const char* buffer,
return (float)f.toFloat(); return (float)f.toFloat();
} }
void LowLevelMessages::SendSpherical16(char* buffer, void LowLevelMessages::SendSpherical(char* buffer,
unsigned char* ix, unsigned char* ix,
Spherical16 s) { Spherical s) {
SendFloat16(buffer, ix, s.distance); SendFloat16(buffer, ix, s.distance);
SendAngle8(buffer, ix, s.direction.horizontal.InDegrees()); SendAngle8(buffer, ix, s.direction.horizontal.InDegrees());
SendAngle8(buffer, ix, s.direction.vertical.InDegrees()); SendAngle8(buffer, ix, s.direction.vertical.InDegrees());
} }
Spherical16 LowLevelMessages::ReceiveSpherical16(const char* buffer, Spherical LowLevelMessages::ReceiveSpherical(const char* buffer,
unsigned char* startIndex) { unsigned char* startIndex) {
float distance = ReceiveFloat16(buffer, startIndex); float distance = ReceiveFloat16(buffer, startIndex);
Angle8 horizontal8 = ReceiveAngle8(buffer, startIndex); Angle8 horizontal8 = ReceiveAngle8(buffer, startIndex);
Angle16 horizontal = Angle16::Binary(horizontal8.GetBinary() * 256); Angle horizontal = Angle::Radians(horizontal8.InRadians());
Angle8 vertical8 = ReceiveAngle8(buffer, startIndex); Angle8 vertical8 = ReceiveAngle8(buffer, startIndex);
Angle16 vertical = Angle16::Binary(vertical8.GetBinary() * 256); Angle vertical = Angle::Radians(vertical8.InRadians());
Spherical16 s = Spherical16(distance, horizontal, vertical); Spherical s = Spherical(distance, horizontal, vertical);
return s; return s;
} }
void LowLevelMessages::SendQuat32(char* buffer, void LowLevelMessages::SendQuat32(char* buffer,
unsigned char* ix, unsigned char* ix,
SwingTwist16 rotation) { SwingTwist rotation) {
Quaternion q = rotation.ToQuaternion(); Quaternion q = rotation.ToQuaternion();
unsigned char qx = (char)(q.x * 127 + 128); unsigned char qx = (char)(q.x * 127 + 128);
unsigned char qy = (char)(q.y * 127 + 128); unsigned char qy = (char)(q.y * 127 + 128);
@ -85,14 +85,14 @@ void LowLevelMessages::SendQuat32(char* buffer,
buffer[(*ix)++] = qw; buffer[(*ix)++] = qw;
} }
SwingTwist16 LowLevelMessages::ReceiveQuat32(const char* buffer, SwingTwist LowLevelMessages::ReceiveQuat32(const char* buffer,
unsigned char* ix) { unsigned char* ix) {
float qx = (buffer[(*ix)++] - 128.0F) / 127.0F; float qx = (buffer[(*ix)++] - 128.0F) / 127.0F;
float qy = (buffer[(*ix)++] - 128.0F) / 127.0F; float qy = (buffer[(*ix)++] - 128.0F) / 127.0F;
float qz = (buffer[(*ix)++] - 128.0F) / 127.0F; float qz = (buffer[(*ix)++] - 128.0F) / 127.0F;
float qw = buffer[(*ix)++] / 255.0F; float qw = buffer[(*ix)++] / 255.0F;
Quaternion q = Quaternion(qx, qy, qz, qw); Quaternion q = Quaternion(qx, qy, qz, qw);
SwingTwist16 s = SwingTwist16::FromQuaternion(q); SwingTwist s = SwingTwist::FromQuaternion(q);
return s; return s;
} }

View File

@ -11,11 +11,12 @@ class LowLevelMessages {
static void SendFloat16(char* buffer, unsigned char* ix, float value); static void SendFloat16(char* buffer, unsigned char* ix, float value);
static float ReceiveFloat16(const char* buffer, unsigned char* startIndex); static float ReceiveFloat16(const char* buffer, unsigned char* startIndex);
static void SendSpherical16(char* buffer, unsigned char* ix, Spherical16 s); static void SendSpherical(char* buffer, unsigned char* ix, Spherical s);
static Spherical16 ReceiveSpherical16(const char* buffer, unsigned char* startIndex); static Spherical ReceiveSpherical(const char* buffer,
unsigned char* startIndex);
static void SendQuat32(char* buffer, unsigned char* ix, SwingTwist16 q); static void SendQuat32(char* buffer, unsigned char* ix, SwingTwist q);
static SwingTwist16 ReceiveQuat32(const char* buffer, unsigned char* ix); static SwingTwist ReceiveQuat32(const char* buffer, unsigned char* ix);
}; };
} // namespace RoboidControl } // namespace RoboidControl

View File

@ -3,22 +3,6 @@
namespace RoboidControl { namespace RoboidControl {
// PoseMsg::PoseMsg(unsigned char networkId,
// unsigned char thingId,
// unsigned char poseType,
// Spherical16 position,
// SwingTwist16 orientation,
// Spherical16 linearVelocity,
// Spherical16 angularVelocity) {
// this->networkId = networkId;
// this->thingId = thingId;
// this->poseType = poseType;
// this->position = position;
// this->orientation = orientation;
// this->linearVelocity = linearVelocity;
// this->angularVelocity = angularVelocity;
// }
PoseMsg::PoseMsg(unsigned char networkId, Thing* thing, bool force) { PoseMsg::PoseMsg(unsigned char networkId, Thing* thing, bool force) {
this->networkId = networkId; this->networkId = networkId;
this->thingId = thing->id; this->thingId = thing->id;
@ -29,7 +13,7 @@ PoseMsg::PoseMsg(unsigned char networkId, Thing* thing, bool force) {
this->poseType |= Pose_Position; this->poseType |= Pose_Position;
thing->positionUpdated = false; thing->positionUpdated = false;
} }
if (thing->orientationUpdated || force ) { if (thing->orientationUpdated || force) {
this->orientation = thing->GetOrientation(); this->orientation = thing->GetOrientation();
this->poseType |= Pose_Orientation; this->poseType |= Pose_Orientation;
thing->orientationUpdated = false; thing->orientationUpdated = false;
@ -51,7 +35,7 @@ PoseMsg::PoseMsg(const char* buffer) {
this->networkId = buffer[ix++]; this->networkId = buffer[ix++];
this->thingId = buffer[ix++]; this->thingId = buffer[ix++];
this->poseType = buffer[ix++]; this->poseType = buffer[ix++];
this->position = LowLevelMessages::ReceiveSpherical16(buffer, &ix); this->position = LowLevelMessages::ReceiveSpherical(buffer, &ix);
this->orientation = LowLevelMessages::ReceiveQuat32(buffer, &ix); this->orientation = LowLevelMessages::ReceiveQuat32(buffer, &ix);
// linearVelocity // linearVelocity
// angularVelocity // angularVelocity
@ -69,13 +53,13 @@ unsigned char PoseMsg::Serialize(char* buffer) {
buffer[ix++] = this->thingId; buffer[ix++] = this->thingId;
buffer[ix++] = this->poseType; buffer[ix++] = this->poseType;
if ((this->poseType & Pose_Position) != 0) if ((this->poseType & Pose_Position) != 0)
LowLevelMessages::SendSpherical16(buffer, &ix, this->position); LowLevelMessages::SendSpherical(buffer, &ix, this->position);
if ((this->poseType & Pose_Orientation) != 0) if ((this->poseType & Pose_Orientation) != 0)
LowLevelMessages::SendQuat32(buffer, &ix, this->orientation); LowLevelMessages::SendQuat32(buffer, &ix, this->orientation);
if ((this->poseType & Pose_LinearVelocity) != 0) if ((this->poseType & Pose_LinearVelocity) != 0)
LowLevelMessages::SendSpherical16(buffer, &ix, this->linearVelocity); LowLevelMessages::SendSpherical(buffer, &ix, this->linearVelocity);
if ((this->poseType & Pose_AngularVelocity) != 0) if ((this->poseType & Pose_AngularVelocity) != 0)
LowLevelMessages::SendSpherical16(buffer, &ix, this->angularVelocity); LowLevelMessages::SendSpherical(buffer, &ix, this->angularVelocity);
return ix; return ix;
} }

View File

@ -3,8 +3,8 @@
namespace RoboidControl { namespace RoboidControl {
/// @brief Message to communicate the pose of the thing /// @brief Message to communicate the pose of the thing
/// The pose is in local space relative to the parent. If there is not parent (the thing is a root thing), the pose will /// The pose is in local space relative to the parent. If there is not parent
/// be in world space. /// (the thing is a root thing), the pose will be in world space.
class PoseMsg : public IMessage { class PoseMsg : public IMessage {
public: public:
/// @brief The message ID /// @brief The message ID
@ -29,29 +29,14 @@ class PoseMsg : public IMessage {
static const unsigned char Pose_AngularVelocity = 0x08; static const unsigned char Pose_AngularVelocity = 0x08;
/// @brief The position of the thing in local space in meters /// @brief The position of the thing in local space in meters
Spherical16 position; Spherical position;
/// @brief The orientation of the thing in local space /// @brief The orientation of the thing in local space
SwingTwist16 orientation; SwingTwist orientation;
/// @brief The linear velocity of the thing in local space in meters per second /// @brief The linear velocity of the thing in local space in meters per
Spherical16 linearVelocity; /// second
Spherical linearVelocity;
/// @brief The angular velocity of the thing in local space /// @brief The angular velocity of the thing in local space
Spherical16 angularVelocity; Spherical angularVelocity;
/// @brief Create a new message for sending
/// @param networkId The network ID of the thing
/// @param thingId The ID of the thing
/// @param poseType Bit pattern stating which pose components are available
/// @param position The position of the thing in local space in meters
/// @param orientation The orientation of the thing in local space
/// @param linearVelocity The linear velocity of the thing in local space in meters per second
/// @param angularVelocity The angular velocity of the thing in local space
// PoseMsg(unsigned char networkId,
// unsigned char thingId,
// unsigned char poseType,
// Spherical16 position,
// SwingTwist16 orientation,
// Spherical16 linearVelocity = Spherical16(),
// Spherical16 angularVelocity = Spherical16());
/// @brief Create a new message for sending /// @brief Create a new message for sending
/// @param networkId he network ID of the thing /// @param networkId he network ID of the thing

View File

@ -8,7 +8,7 @@ Participant::Participant() {}
Participant::Participant(const char* ipAddress, int port) { Participant::Participant(const char* ipAddress, int port) {
// make a copy of the ip address string // make a copy of the ip address string
int addressLength = strlen(ipAddress); int addressLength = (int)strlen(ipAddress);
int stringLength = addressLength + 1; int stringLength = addressLength + 1;
char* addressString = new char[stringLength]; char* addressString = new char[stringLength];
#if defined(_WIN32) || defined(_WIN64) #if defined(_WIN32) || defined(_WIN64)

View File

@ -31,11 +31,11 @@ Thing::Thing(Participant* owner, int thingType) {
this->type = thingType; this->type = thingType;
this->networkId = 0; this->networkId = 0;
this->position = Spherical16::zero; this->position = Spherical::zero;
this->orientation = SwingTwist16::identity; this->orientation = SwingTwist::identity;
this->linearVelocity = Spherical16::zero; this->linearVelocity = Spherical::zero;
this->angularVelocity = Spherical16::zero; this->angularVelocity = Spherical::zero;
// std::cout << "add thing to participant\n"; // std::cout << "add thing to participant\n";
owner->Add(this); owner->Add(this);
@ -51,8 +51,8 @@ Thing::Thing(Participant* owner,
this->id = thingId; this->id = thingId;
this->type = (unsigned char)thingType; this->type = (unsigned char)thingType;
this->linearVelocity = Spherical16::zero; this->linearVelocity = Spherical::zero;
this->angularVelocity = Spherical16::zero; this->angularVelocity = Spherical::zero;
// std::cout << "Created thing " << (int)this->networkId << "/" << // std::cout << "Created thing " << (int)this->networkId << "/" <<
// (int)this->id // (int)this->id
// << "\n"; // << "\n";
@ -183,16 +183,20 @@ unsigned long Thing::GetTimeMs() {
#endif #endif
} }
void Thing::Update() { void Thing::Update(bool recursive) {
Update(GetTimeMs()); Update(GetTimeMs(), recursive);
} }
void Thing::Update(unsigned long currentTimeMs) { void Thing::Update(unsigned long currentTimeMs, bool recursive) {
(void)currentTimeMs; (void)currentTimeMs;
if (recursive) {
// PoseMsg* poseMsg = new PoseMsg(this->networkId, this); for (unsigned char childIx = 0; childIx < this->childCount; childIx++) {
// participant->Send(remoteParticipant, poseMsg); Thing* child = this->children[childIx];
// delete poseMsg; if (child == nullptr)
continue;
child->Update(currentTimeMs, recursive);
}
}
} }
void Thing::UpdateThings(unsigned long currentTimeMs) { void Thing::UpdateThings(unsigned long currentTimeMs) {
@ -207,38 +211,38 @@ void Thing::ProcessBinary(char* bytes) {
(void)bytes; (void)bytes;
}; };
void Thing::SetPosition(Spherical16 position) { void Thing::SetPosition(Spherical position) {
this->position = position; this->position = position;
this->positionUpdated = true; this->positionUpdated = true;
} }
Spherical16 Thing::GetPosition() { Spherical Thing::GetPosition() {
return this->position; return this->position;
} }
void Thing::SetOrientation(SwingTwist16 orientation) { void Thing::SetOrientation(SwingTwist orientation) {
this->orientation = orientation; this->orientation = orientation;
this->orientationUpdated = true; this->orientationUpdated = true;
} }
SwingTwist16 Thing::GetOrientation() { SwingTwist Thing::GetOrientation() {
return this->orientation; return this->orientation;
} }
void Thing::SetLinearVelocity(Spherical16 linearVelocity) { void Thing::SetLinearVelocity(Spherical linearVelocity) {
this->linearVelocity = linearVelocity; this->linearVelocity = linearVelocity;
this->linearVelocityUpdated = true; this->linearVelocityUpdated = true;
} }
Spherical16 Thing::GetLinearVelocity() { Spherical Thing::GetLinearVelocity() {
return this->linearVelocity; return this->linearVelocity;
} }
void Thing::SetAngularVelocity(Spherical16 angularVelocity) { void Thing::SetAngularVelocity(Spherical angularVelocity) {
this->angularVelocity = angularVelocity; this->angularVelocity = angularVelocity;
this->angularVelocityUpdated = true; this->angularVelocityUpdated = true;
} }
Spherical16 Thing::GetAngularVelocity() { Spherical Thing::GetAngularVelocity() {
return this->angularVelocity; return this->angularVelocity;
} }

29
Thing.h
View File

@ -119,16 +119,16 @@ class Thing {
/// @brief Set the position of the thing /// @brief Set the position of the thing
/// @param position The new position in local space, in meters /// @param position The new position in local space, in meters
void SetPosition(Spherical16 position); void SetPosition(Spherical position);
/// @brief Get the position of the thing /// @brief Get the position of the thing
/// @return The position in local space, in meters /// @return The position in local space, in meters
Spherical16 GetPosition(); Spherical GetPosition();
/// @brief Set the orientation of the thing /// @brief Set the orientation of the thing
/// @param orientation The new orientation in local space /// @param orientation The new orientation in local space
void SetOrientation(SwingTwist16 orientation); void SetOrientation(SwingTwist orientation);
/// @brief Get the orientation of the thing /// @brief Get the orientation of the thing
/// @return The orienation in local space /// @return The orienation in local space
SwingTwist16 GetOrientation(); SwingTwist GetOrientation();
/// @brief The scale of the thing (deprecated I think) /// @brief The scale of the thing (deprecated I think)
// float scale = 1; // assuming uniform scale // float scale = 1; // assuming uniform scale
@ -140,16 +140,16 @@ class Thing {
/// @brief Set the linear velocity of the thing /// @brief Set the linear velocity of the thing
/// @param linearVelocity The new linear velocity in local space, in meters /// @param linearVelocity The new linear velocity in local space, in meters
/// per second /// per second
void SetLinearVelocity(Spherical16 linearVelocity); void SetLinearVelocity(Spherical linearVelocity);
/// @brief Get the linear velocity of the thing /// @brief Get the linear velocity of the thing
/// @return The linear velocity in local space, in meters per second /// @return The linear velocity in local space, in meters per second
virtual Spherical16 GetLinearVelocity(); virtual Spherical GetLinearVelocity();
/// @brief Set the angular velocity of the thing /// @brief Set the angular velocity of the thing
/// @param angularVelocity the new angular velocity in local space /// @param angularVelocity the new angular velocity in local space
virtual void SetAngularVelocity(Spherical16 angularVelocity); virtual void SetAngularVelocity(Spherical angularVelocity);
/// @brief Get the angular velocity of the thing /// @brief Get the angular velocity of the thing
/// @return The angular velocity in local space /// @return The angular velocity in local space
virtual Spherical16 GetAngularVelocity(); virtual Spherical GetAngularVelocity();
bool linearVelocityUpdated = false; bool linearVelocityUpdated = false;
bool angularVelocityUpdated = false; bool angularVelocityUpdated = false;
@ -157,16 +157,16 @@ class Thing {
/// @brief The position in local space /// @brief The position in local space
/// @remark When this Thing has a parent, the position is relative to the /// @remark When this Thing has a parent, the position is relative to the
/// parent's position and orientation /// parent's position and orientation
Spherical16 position; Spherical position;
/// @brief The orientation in local space /// @brief The orientation in local space
/// @remark When this Thing has a parent, the orientation is relative to the /// @remark When this Thing has a parent, the orientation is relative to the
/// parent's orientation /// parent's orientation
SwingTwist16 orientation; SwingTwist orientation;
/// @brief The linear velocity in local space /// @brief The linear velocity in local space
Spherical16 linearVelocity; Spherical linearVelocity;
/// @brief The angular velocity in local spze /// @brief The angular velocity in local spze
Spherical16 angularVelocity; Spherical angularVelocity;
public: public:
/// @brief Terminated things are no longer updated /// @brief Terminated things are no longer updated
@ -181,12 +181,11 @@ class Thing {
static unsigned long GetTimeMs(); static unsigned long GetTimeMs();
void Update(); void Update(bool recursive = false);
/// @brief Updates the state of the thing /// @brief Updates the state of the thing
/// @param currentTimeMs The current clock time in milliseconds /// @param currentTimeMs The current clock time in milliseconds
virtual void Update( virtual void Update(unsigned long currentTimeMs, bool recursive = false);
unsigned long currentTimeMs); // { (void)currentTimeMs; };
static void UpdateThings(unsigned long currentTimeMs); static void UpdateThings(unsigned long currentTimeMs);

View File

@ -1,20 +1,18 @@
#include "DifferentialDrive.h" #include "DifferentialDrive.h"
namespace RoboidControl { namespace RoboidControl {
DifferentialDrive::DifferentialDrive() : Thing() {}
RoboidControl::DifferentialDrive::DifferentialDrive(Participant* participant) RoboidControl::DifferentialDrive::DifferentialDrive(Participant* participant)
: Thing(participant) { : Thing(participant) {}
this->leftWheel = new Thing(participant);
this->rightWheel = new Thing(participant);
}
void DifferentialDrive::SetDimensions(float wheelDiameter, void DifferentialDrive::SetDriveDimensions(float wheelDiameter,
float wheelSeparation) { float wheelSeparation) {
this->wheelRadius = this->wheelRadius =
wheelDiameter > 0 ? wheelDiameter / 2 : -wheelDiameter / 2; wheelDiameter > 0 ? wheelDiameter / 2 : -wheelDiameter / 2;
this->wheelSeparation = this->wheelSeparation =
wheelSeparation > 0 ? wheelSeparation : -wheelSeparation; wheelSeparation > 0 ? wheelSeparation : -wheelSeparation;
this->rpsToMs = wheelDiameter * Passer::LinearAlgebra::pi; this->rpsToMs = wheelDiameter * LinearAlgebra::pi;
float distance = this->wheelSeparation / 2; float distance = this->wheelSeparation / 2;
if (leftWheel != nullptr) if (leftWheel != nullptr)
@ -35,7 +33,17 @@ void DifferentialDrive::SetMotors(Thing* leftWheel, Thing* rightWheel) {
this->rightWheel->SetPosition(Spherical(distance, Direction::right)); this->rightWheel->SetPosition(Spherical(distance, Direction::right));
} }
void DifferentialDrive::Update(unsigned long currentMs) { void DifferentialDrive::SetWheelVelocity(float speedLeft, float speedRight) {
if (this->leftWheel != nullptr)
this->leftWheel->SetAngularVelocity(Spherical(speedLeft, Direction::left));
if (this->rightWheel != nullptr)
this->rightWheel->SetAngularVelocity(
Spherical(speedRight, Direction::right));
}
void DifferentialDrive::Update(unsigned long currentMs, bool recursive) {
if (this->linearVelocityUpdated == false)
return;
// this assumes forward velocity only.... // this assumes forward velocity only....
float linearVelocity = this->GetLinearVelocity().distance; float linearVelocity = this->GetLinearVelocity().distance;
@ -49,16 +57,12 @@ void DifferentialDrive::Update(unsigned long currentMs) {
float speedLeft = float speedLeft =
(linearVelocity + angularSpeed * this->wheelSeparation / 2) / (linearVelocity + angularSpeed * this->wheelSeparation / 2) /
this->wheelRadius * Rad2Deg; this->wheelRadius * Rad2Deg;
if (this->leftWheel != nullptr)
this->leftWheel->SetAngularVelocity(Spherical(speedLeft, Direction::left));
float speedRight = float speedRight =
(linearVelocity - angularSpeed * this->wheelSeparation / 2) / (linearVelocity - angularSpeed * this->wheelSeparation / 2) /
this->wheelRadius * Rad2Deg; this->wheelRadius * Rad2Deg;
if (this->rightWheel != nullptr)
this->rightWheel->SetAngularVelocity(
Spherical(speedRight, Direction::right));
this->SetWheelVelocity(speedLeft, speedRight);
Thing::Update(currentMs, recursive);
// std::cout << "lin. speed " << linearVelocity << " ang. speed " << // std::cout << "lin. speed " << linearVelocity << " ang. speed " <<
// angularVelocity.distance << " left wheel " // angularVelocity.distance << " left wheel "
// << speedLeft << " right wheel " << speedRight << "\n"; // << speedLeft << " right wheel " << speedRight << "\n";

View File

@ -5,14 +5,39 @@
namespace RoboidControl { namespace RoboidControl {
/// @brief A thing which can move itself using a differential drive system /// @brief A thing which can move itself using a differential drive system
///
/// @sa @link https://en.wikipedia.org/wiki/Differential_wheeled_robot @endlink
class DifferentialDrive : public Thing { class DifferentialDrive : public Thing {
public: public:
/// @brief Create a differential drive without networking support
DifferentialDrive();
/// @brief Create a differential drive with networking support
/// @param participant The local participant
DifferentialDrive(Participant* participant); DifferentialDrive(Participant* participant);
void SetDimensions(float wheelDiameter, float wheelSeparation); /// @brief Configures the dimensions of the drive
/// @param wheelDiameter The diameter of the wheels in meters
/// @param wheelSeparation The distance between the wheels in meters
///
/// These values are used to compute the desired wheel speed from the set
/// linear and angular velocity.
/// @sa SetLinearVelocity SetAngularVelocity
void SetDriveDimensions(float wheelDiameter, float wheelSeparation);
/// @brief Congures the motors for the wheels
/// @param leftWheel The motor for the left wheel
/// @param rightWheel The motor for the right wheel
void SetMotors(Thing* leftWheel, Thing* rightWheel); void SetMotors(Thing* leftWheel, Thing* rightWheel);
virtual void Update(unsigned long currentMs) override; /// @brief Directly specify the speeds of the motors
/// @param speedLeft The speed of the left wheel in degrees per second.
/// Positive moves the robot in the forward direction.
/// @param speedRight The speed of the right wheel in degrees per second.
/// Positive moves the robot in the forward direction.
void SetWheelVelocity(float speedLeft, float speedRight);
/// @copydoc RoboidControl::Thing::Update(unsigned long)
virtual void Update(unsigned long currentMs, bool recursive = true) override;
protected: protected:
/// @brief The radius of a wheel in meters /// @brief The radius of a wheel in meters
@ -23,7 +48,9 @@ class DifferentialDrive : public Thing {
/// @brief Convert revolutions per second to meters per second /// @brief Convert revolutions per second to meters per second
float rpsToMs = 1.0f; float rpsToMs = 1.0f;
/// @brief The left wheel
Thing* leftWheel = nullptr; Thing* leftWheel = nullptr;
/// @brief The right wheel
Thing* rightWheel = nullptr; Thing* rightWheel = nullptr;
}; };

View File

@ -1,10 +1,13 @@
#include "TouchSensor.h" #include "TouchSensor.h"
namespace RoboidControl { namespace RoboidControl {
TouchSensor::TouchSensor() : Thing(Thing::Type::TouchSensor) {}
TouchSensor::TouchSensor(Participant* participant) : Thing(participant) { TouchSensor::TouchSensor(Participant* participant)
this->touchedSomething = false; : Thing(participant, Thing::Type::TouchSensor) {}
this->type = (unsigned char)Thing::Type::TouchSensor;
TouchSensor::TouchSensor(Thing* parent) : Thing(parent->owner) {
this->SetParent(parent);
} }
void TouchSensor::GenerateBinary(char* bytes, unsigned char* ix) {} void TouchSensor::GenerateBinary(char* bytes, unsigned char* ix) {}

View File

@ -7,15 +7,20 @@ namespace RoboidControl {
/// @brief A sensor which can detect touches /// @brief A sensor which can detect touches
class TouchSensor : public Thing { class TouchSensor : public Thing {
public: public:
/// @brief Value which is true when the sensor is touching something, false otherwise /// @brief Create a touch sensor with isolated participant
bool touchedSomething = false; TouchSensor();
/// @brief Create a touch sensor /// @brief Create a touch sensor
TouchSensor(Participant* participant); TouchSensor(Participant* participant);
/// @brief Create a temperature sensor with the given ID /// @brief Create a temperature sensor with the given ID
/// @param networkId The network ID of the sensor /// @param networkId The network ID of the sensor
/// @param thingId The ID of the thing /// @param thingId The ID of the thing
// TouchSensor(RemoteParticipant* participant, unsigned char networkId, unsigned char thingId); TouchSensor(Thing* parent);
// TouchSensor(RemoteParticipant* participant, unsigned char networkId,
// unsigned char thingId);
/// @brief Value which is true when the sensor is touching something, false
/// otherwise
bool touchedSomething = false;
/// @brief Function to create a binary message with the temperature /// @brief Function to create a binary message with the temperature
/// @param buffer The byte array for thw binary data /// @param buffer The byte array for thw binary data